Applied Thermodynamics Module 4: Compressible Flow

Total Page:16

File Type:pdf, Size:1020Kb

Applied Thermodynamics Module 4: Compressible Flow Applied Thermodynamics Module 4: Compressible Flow Introduction Flows that involve significant changes in density is called compressible flows. They are frequently encountered in devices that involve the flow of gases at very high velocities. Compressible flow combines fluid dynamics and thermodynamics in that both are necessary to the development of the required theoretical background. In this module, we develop the general relations associated with one-dimensional compressible flows for an ideal gas with constant specific heats. Stagnation Properties Before going into details of stagnation properties, let’s first understand the way it comes. In analysis of control volume, two terms are frequently encountered internal energy (푢) and flow energy (푃푣). For convenience these two terms are combined and termed as enthalpy, ℎ = 푢 + 푃푣 (defined per unit mass. Whenever the kinetic and potential energies of the fluid are negligible, as is often the case, the enthalpy represents the total energy of a fluid. For high-speed flows, the potential energy of the fluid is still negligible, but the kinetic energy is not. In the analysis of high-speed flows enthalpy and kinetic energy appear frequently. For convenience these two terms are combined together and termed as stagnation (or total) enthalpy ℎ0, defined per unit mass as (1) When the potential energy of the fluid is negligible, the stagnation enthalpy represents the total energy of a flowing fluid stream per unit mass. Thus it simplifies the thermodynamic analysis of high-speed flows. Throughout this chapter the ordinary enthalpy h is referred to as the static enthalpy, whenever necessary, to distinguish it from the stagnation enthalpy. Stagnation process: A process in which flowing- fluid is brought to rest adiabatically. The properties of a fluid at the stagnation state are called stagnation properties (stagnation temperature, stagnation pressure, stagnation density, etc.). The stagnation state and the stagnation properties are indicated by the subscript 0. Fig. (1) Kinetic energy is converted to stagnation enthalpy represents the enthalpy of a enthalpy during a stagnation process. fluid when it is brought to rest adiabatically. Consider the steady flow of a fluid through a duct where the flow takes place adiabatically and with no shaft or electrical work and no change in potential energy. Energy balance to the system yields If the fluid were brought to a complete stop, then the velocity at state 2 would be zero and above equation becomes or, (2) The stagnation state is called the isentropic stagnation state when the fluid is brought to rest reversibly and adiabatically (i.e., isentropically). The entropy of a fluid remains constant during an isentropic stagnation process. The actual (irreversible) and isentropic stagnation processes are shown on the h-s diagram in Fig. (2). Notice that the stagnation enthalpy (and the stagnation temperature if the fluid is an ideal gas) of the fluid is the same for both cases. The stagnation processes are often approximated to be isentropic, and the isentropic stagnation properties are simply referred to as stagnation properties. stagnation (or total) temperature represents the temperature an ideal gas attains when it is brought to rest adiabatically. When the fluid is approximated as an ideal gas with constant specific heats, its enthalpy can be replaced by 푐푝푇 and above equation of stagnation enthalpy can be Fig.(2) The actual state, actual stagnation written as state, and isentropic stagnation state of a fluid on an h-s diagram. Or, (3) The term V2/2cp corresponds to the temperature rise during stagnation process and is called the dynamic temperature. stagnation (or total) pressure represents the temperature an ideal gas attains when it is brought to rest adiabatically. For ideal gases with constant specific heats, P0 is related to the static pressure of the fluid by (4) From fig. (2) it may be noted that the actual stagnation pressure is lower than the isentropic stagnation pressure because entropy increases during the actual stagnation process as a result of fluid friction. 1 푘 푘 By noting that 휌 = ⁄푣 and using the isentropic relation 푃푣 = 푃0푣0 , the ratio of the stagnation density to static density can be expressed as (5) Speed of Sound and Mach Number Consider a pipe that is filled with a fluid at rest, as shown in Fig. (3). A piston fitted in the pipe is now moved to the right with a constant incremental velocity dV, creating an infinitesimally small pressure wave. The speed at which an infinitesimally small pressure wave travels through the medium is known as speed of sound or sonic speed. The wave front moves to the right through the fluid at the speed of sound c and separates the moving fluid adjacent to the piston from the fluid still at rest. The fluid to the left of the wave front experiences an incremental change in its thermodynamic properties, while the fluid on the right of the wave front maintains its original thermodynamic properties, as shown in Fig. (3). To simplify the analysis, consider a control volume that encloses the wave front and moves with it, as shown in Fig. (4). To an observer traveling with the wave front, the fluid to the right will appear to be moving toward the wave front with a speed of c and the fluid to the left to be moving away from the wave front with a Fig. (3) Propagation of a small speed of c-dV. pressure wave along a duct. Applying mass balance equation to the control volume or, Neglecting higher order terms, above equation reduces to Now, applying energy balance equation to the control volume Fig. (4) Control volume moving with the small pressure In absence of any heat and work interaction and change in potential wave along a duct. energy above equation can be expanded to Which yields where we have neglected the second-order term dV². Since the variation in pressure and temperature are negligibly small and the change of state is so fast that the propagation of sonic wave is not only adiabatic but also very nearly isentropic. Then the second T ds relation reduces to Or, Combining Eqs. (a), (b), and (c) yields the desired expression for the speed of sound as Or, For an ideal gas, in an isentropic process 푃푣 푘 = 푐표푛푠푡푎푛푡 푃 = 푐표푛푠푡푎푛푡 휌푘 where k is the specific heat ratio of gas. Taking logarithm of above equation yields, 푙푛푃 − 푘푙푛휌 = 푙푛푐표푛푠푡푎푛푡 Now differentiating the above equation yields 푑푃 푑휌 − 푘 =0 푃 휌 푑푃 푃 Or, = 푘 푑휌 휌 푑푃 푑푃 For isentropic process = ( ) 푑휌 푑휌 푠 푑푃 푃 ∴ ( ) = 푘 푑휌 푠 휌 푑푃 Since 푐2 = ( ) and 푃 = 푘푅푇 푑휌 푠 푐2 = 푘푅푇 (6) 푈푛푣푒푟푠푎푙 푎푠 푐표푛푠푡푎푛푡 Where, 푅 = 푐ℎ푎푟푎푐푡푒푟푠푡푐 푔푎푠 푐표푛푠푡푎푛푡 = 푀표푙푒푐푢푙푎푟 푤푒ℎ푡 Note: 1. Lower molecular weight and higher value of k gives higher sonic velocity at the same temperature as shown in Fig. (5) 2. For a specified ideal gas R is a constant. Ratio of specific heat k, at most, could be a function of temperature. Hence the speed of sound in a specified ideal gas is a function of temperature alone (Fig. (5)) Mach Number: It is the ratio of the actual velocity of the fluid (or an object in still air) to the speed of sound in the same fluid at the same state. Fig. (5) The speed of sound (7) changes with temperature and varies with the fluid. Note that the Mach number depends on the speed of sound, which depends on the state of the fluid. Therefore, the Mach number of an aircraft cruising at constant velocity in still air may be different at different locations as shown in Fig. (6). Fluid flow regime on the basis of Mach number, the flow is called 1. Sonic when Ma=1 2. Subsonic when Ma<1 3. Supersonic when Ma>1 4. Hypersonic when Ma>>1 (i.e. Ma≥5) and Fig. (6) The Mach number can be 5. Transonic when Ma≅1 different at different temperatures even if the velocity is the same. Variation of Fluid Velocity with Flow Area Consider the mass balance for a steady-flow process: Differentiating and dividing the resultant equation by the mass flow rate, we obtain (8) Now, energy balance equation for steady flow process, without heat and work interaction and without change in potential energy, can be written as 푉2 Or, ℎ + = 푐푛푠푡푎푛푡 2 Differentiating the above expression, 푑ℎ + 푉푑푉 = 0 (9) Second Tds equation can be written as 0 (for isentropic flow) 푇푑푠 = 푑ℎ − 푣푑푃 1 푑ℎ = 푣푑푃 = 푑푃 휌 Here, it is worthwhile to mention that v denotes specific volume and V denotes velocity of flow. Putting the value of dh in equation (9) (10) Combining equations (8) and (10) gives 푑휌 1 Putting the value of = in above equation, yields 푑푃 푐2 (11) Above equation describes the variation of pressure with flow area. Two important points can be noted from above equation. 1. It may be noted that A, 휌, and V are positive quantities. For subsonic flow (Ma<1), the term 1 − 푀푎2 is positive; and thus dA and dP must have the same sign, i.e. P increases as A increases and P decrease as A decreases. Thus, at subsonic velocities, the pressure decreases in converging ducts (subsonic nozzles) and increases in diverging ducts (subsonic diffusers). 2. In supersonic flow (Ma>1), the term 1 − 푀푎2 is negative, and thus dA and dP must have opposite signs, i.e. P decreases as A increases and P increases as A decreases. Thus, at supersonic velocities, the pressure decreases in diverging ducts (supersonic nozzles) and increases in converging ducts (supersonic diffusers). Another important relation for the isentropic flow of a fluid is obtained by substituting 휌푉 = − 푑푃⁄푑푉 from equation (10) into equation (11) (12) This equation governs the shape of a nozzle or a diffuser in subsonic or supersonic isentropic flow.
Recommended publications
  • Che 253M Experiment No. 2 COMPRESSIBLE GAS FLOW
    Rev. 8/15 AD/GW ChE 253M Experiment No. 2 COMPRESSIBLE GAS FLOW The objective of this experiment is to familiarize the student with methods for measurement of compressible gas flow and to study gas flow under subsonic and supersonic flow conditions. The experiment is divided into three distinct parts: (1) Calibration and determination of the critical pressure ratio for a critical flow nozzle under supersonic flow conditions (2) Calculation of the discharge coefficient and Reynolds number for an orifice under subsonic (non- choked) flow conditions and (3) Determination of the orifice constants and mass discharge from a pressurized tank in a dynamic bleed down experiment under (choked) flow conditions. The experimental set up consists of a 100 psig air source branched into two manifolds: the first used for parts (1) and (2) and the second for part (3). The first manifold contains a critical flow nozzle, a NIST-calibrated in-line digital mass flow meter, and an orifice meter, all connected in series with copper piping. The second manifold contains a strain-gauge pressure transducer and a stainless steel tank, which can be pressurized and subsequently bled via a number of attached orifices. A number of NIST-calibrated digital hand held manometers are also used for measuring pressure in all 3 parts of this experiment. Assorted pressure regulators, manual valves, and pressure gauges are present on both manifolds and you are expected to familiarize yourself with the process flow, and know how to operate them to carry out the experiment. A process flow diagram plus handouts outlining the theory of operation of these devices are attached.
    [Show full text]
  • Laws of Similarity in Fluid Mechanics 21
    Laws of similarity in fluid mechanics B. Weigand1 & V. Simon2 1Institut für Thermodynamik der Luft- und Raumfahrt (ITLR), Universität Stuttgart, Germany. 2Isringhausen GmbH & Co KG, Lemgo, Germany. Abstract All processes, in nature as well as in technical systems, can be described by fundamental equations—the conservation equations. These equations can be derived using conservation princi- ples and have to be solved for the situation under consideration. This can be done without explicitly investigating the dimensions of the quantities involved. However, an important consideration in all equations used in fluid mechanics and thermodynamics is dimensional homogeneity. One can use the idea of dimensional consistency in order to group variables together into dimensionless parameters which are less numerous than the original variables. This method is known as dimen- sional analysis. This paper starts with a discussion on dimensions and about the pi theorem of Buckingham. This theorem relates the number of quantities with dimensions to the number of dimensionless groups needed to describe a situation. After establishing this basic relationship between quantities with dimensions and dimensionless groups, the conservation equations for processes in fluid mechanics (Cauchy and Navier–Stokes equations, continuity equation, energy equation) are explained. By non-dimensionalizing these equations, certain dimensionless groups appear (e.g. Reynolds number, Froude number, Grashof number, Weber number, Prandtl number). The physical significance and importance of these groups are explained and the simplifications of the underlying equations for large or small dimensionless parameters are described. Finally, some examples for selected processes in nature and engineering are given to illustrate the method. 1 Introduction If we compare a small leaf with a large one, or a child with its parents, we have the feeling that a ‘similarity’ of some sort exists.
    [Show full text]
  • Aerodynamics Material - Taylor & Francis
    CopyrightAerodynamics material - Taylor & Francis ______________________________________________________________________ 257 Aerodynamics Symbol List Symbol Definition Units a speed of sound ⁄ a speed of sound at sea level ⁄ A area aspect ratio ‐‐‐‐‐‐‐‐ b wing span c chord length c Copyrightmean aerodynamic material chord- Taylor & Francis specific heat at constant pressure of air · root chord tip chord specific heat at constant volume of air · / quarter chord total drag coefficient ‐‐‐‐‐‐‐‐ , induced drag coefficient ‐‐‐‐‐‐‐‐ , parasite drag coefficient ‐‐‐‐‐‐‐‐ , wave drag coefficient ‐‐‐‐‐‐‐‐ local skin friction coefficient ‐‐‐‐‐‐‐‐ lift coefficient ‐‐‐‐‐‐‐‐ , compressible lift coefficient ‐‐‐‐‐‐‐‐ compressible moment ‐‐‐‐‐‐‐‐ , coefficient , pitching moment coefficient ‐‐‐‐‐‐‐‐ , rolling moment coefficient ‐‐‐‐‐‐‐‐ , yawing moment coefficient ‐‐‐‐‐‐‐‐ ______________________________________________________________________ 258 Aerodynamics Aerodynamics Symbol List (cont.) Symbol Definition Units pressure coefficient ‐‐‐‐‐‐‐‐ compressible pressure ‐‐‐‐‐‐‐‐ , coefficient , critical pressure coefficient ‐‐‐‐‐‐‐‐ , supersonic pressure coefficient ‐‐‐‐‐‐‐‐ D total drag induced drag Copyright material - Taylor & Francis parasite drag e span efficiency factor ‐‐‐‐‐‐‐‐ L lift pitching moment · rolling moment · yawing moment · M mach number ‐‐‐‐‐‐‐‐ critical mach number ‐‐‐‐‐‐‐‐ free stream mach number ‐‐‐‐‐‐‐‐ P static pressure ⁄ total pressure ⁄ free stream pressure ⁄ q dynamic pressure ⁄ R
    [Show full text]
  • A Semi-Hydrostatic Theory of Gravity-Dominated Compressible Flow
    Generated using version 3.2 of the official AMS LATEX template 1 A semi-hydrostatic theory of gravity-dominated compressible flow 2 Thomas Dubos ∗ IPSL-Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France Fabrice voitus CNRM-Groupe d’étude de l’Atmosphere Metéorologique, Météo-France, Toulouse, France ∗Corresponding author address: Thomas Dubos, LMD, École Polytechnique, 91128 Palaiseau, France. E-mail: [email protected] 1 3 Abstract 4 From Hamilton’s least action principle, compressible equations of motion with density diag- 5 nosed from potential temperature through hydrostatic balance are derived. Slaving density 6 to potential temperature suppresses the degrees of freedom supporting the propagation of 7 acoustic waves and results in a sound-proof system. The linear normal modes and dispersion 8 relationship for an isothermal state of rest on f- and β- planes are accurate from hydrostatic 9 to non-hydrostatic scales, except for deep internal gravity waves. Especially the Lamb wave 10 and long Rossby waves are not distorted, unlike with anelastic or pseudo-incompressible 11 systems. 12 Compared to similar equations derived by Arakawa and Konor (2009), the semi-hydrostatic 13 system derived here possesses an additional term in the horizontal momentum budget. This 14 term is an apparent force resulting from the vertical coordinate not being the actual height 15 of an air parcel, but its hydrostatic height, i.e. the hypothetical height it would have after 16 the atmospheric column it belongs to has reached hydrostatic balance through adiabatic 17 vertical displacements of air parcels. The Lagrange multiplier λ introduced in Hamilton’s 18 principle to slave density to potential temperature is identified as the non-hydrostatic ver- 19 tical displacement, i.e.
    [Show full text]
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • Introduction to Compressible Computational Fluid Dynamics James S
    Introduction to Compressible Computational Fluid Dynamics James S. Sochacki Department of Mathematics James Madison University [email protected] Abstract This document is intended as an introduction to computational fluid dynamics at the upper undergraduate level. It is assumed that the student has had courses through three dimensional calculus and some computer programming experience with numer- ical algorithms. A course in differential equations is recommended. This document is intended to be used by undergraduate instructors and students to gain an under- standing of computational fluid dynamics. The document can be used in a classroom or research environment at the undergraduate level. The idea of this work is to have the students use the modules to discover properties of the equations and then relate this to the physics of fluid dynamics. Many issues, such as rarefactions and shocks are left out of the discussion because the intent is to have the students discover these concepts and then study them with the instructor. The document is used in part of the undergraduate MATH 365 - Computation Fluid Dynamics course at James Madi- son University (JMU) and is part of the joint NSF Grant between JMU and North Carolina Central University (NCCU): A Collaborative Computational Sciences Pro- gram. This document introduces the full three-dimensional Navier Stokes equations. As- sumptions to these equations are made to derive equations that are accessible to un- dergraduates with the above prerequisites. These equations are approximated using finite difference methods. The development of the equations and finite difference methods are contained in this document. Software modules and their corresponding documentation in Fortran 90, Maple and Matlab can be downloaded from the web- site: http://www.math.jmu.edu/~jim/compressible.html.
    [Show full text]
  • Compressible Flow
    94 c 2004 Faith A. Morrison, all rights reserved. Compressible Fluids Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004 Chemical engineering is mostly concerned with incompressible flows in pipes, reactors, mixers, and other process equipment. Gases may be modeled as incompressible fluids in both microscopic and macroscopic calculations as long as the pressure changes are less than about 20% of the mean pressure (Geankoplis, Denn). The friction-factor/Reynolds-number correlation for incompressible fluids is found to apply to compressible fluids in this regime of pressure variation (Perry and Chilton, Denn). Compressible flow is important in selected application, however, including high-speed flow of gasses in pipes, through nozzles, in tur- bines, and especially in relief valves. We include here a brief discussion of issues related to the flow of compressible fluids; for more information the reader is encouraged to consult the literature. A compressible fluid is one in which the fluid density changes when it is subjected to high pressure-gradients. For gasses, changes in density are accompanied by changes in temperature, and this complicates considerably the analysis of compressible flow. The key difference between compressible and incompressible flow is the way that forces are transmitted through the fluid. Consider the flow of water in a straw. When a thirsty child applies suction to one end of a straw submerged in water, the water moves - both the water close to her mouth moves and the water at the far end moves towards the lower- pressure area created in the mouth. Likewise, in a long, completely filled piping system, if a pump is turned on at one end, the water will immediately begin to flow out of the other end of the pipe.
    [Show full text]
  • An Asymptotic-Preserving All-Speed Scheme for the Euler and Navier-Stokes Equations
    An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations Floraine Cordier1;2;3, Pierre Degond2;3, Anela Kumbaro1 1 CEA-Saclay DEN, DM2S, SFME, LETR F-91191 Gif-sur-Yvette, France. fl[email protected], [email protected] 2 Universit´ede Toulouse; UPS, INSA, UT1, UTM ; Institut de Math´ematiquesde Toulouse ; F-31062 Toulouse, France. 3 CNRS; Institut de Math´ematiquesde Toulouse UMR 5219 ; F-31062 Toulouse, France. [email protected] Abstract We present an Asymptotic-Preserving 'all-speed' scheme for the simulation of compressible flows valid at all Mach-numbers ranging from very small to order unity. The scheme is based on a semi-implicit discretization which treats the acoustic part implicitly and the convective and diffusive parts explicitly. This discretiza- tion, which is the key to the Asymptotic-Preserving property, provides a consistent approximation of both the hyperbolic compressible regime and the elliptic incom- pressible regime. The divergence-free condition on the velocity in the incompress- ible regime is respected, and an the pressure is computed via an elliptic equation resulting from a suitable combination of the momentum and energy equations. The implicit treatment of the acoustic part allows the time-step to be independent of the Mach number. The scheme is conservative and applies to steady or unsteady flows and to general equations of state. One and Two-dimensional numerical results provide a validation of the Asymptotic-Preserving 'all-speed' properties. Key words: Low Mach number limit, Asymptotic-Preserving, all-speed, compressible arXiv:1108.2876v1 [math-ph] 14 Aug 2011 flows, incompressible flows, Navier-Stokes equations, Euler equations.
    [Show full text]
  • Aerodynamic Heating at Hypersonic Speed
    10 Aerodynamic Heating at Hypersonic Speed Andrey B. Gorshkov Central Research Institute of Machine Building Russia 1. Introduction At designing and modernization of a reentry space vehicle it is required accurate and reliable data on the flow field, aerodynamic characteristics, heat transfer processes. Taking into account the wide range of flow conditions, realized at hypersonic flight of the vehicle in the atmosphere, it leads to the need to incorporate in employed theoretical models the effects of rarefaction, viscous-inviscid interaction, flow separation, laminar-turbulent transition and a variety of physical and chemical processes occurring in the gas phase and on the vehicle surface. Getting the necessary information through laboratory and flight experiments requires considerable expenses. In addition, the reproduction of hypersonic flight conditions at ground experimental facilities is in many cases impossible. As a result the theoretical simulation of hypersonic flow past a spacecraft is of great importance. Use of numerical calculations with their relatively small cost provides with highly informative flow data and gives an opportunity to reproduce a wide range of flow conditions, including the conditions that cannot be reached in ground experimental facilities. Thus numerical simulation provides the transfer of experimental data obtained in laboratory tests on the flight conditions. One of the main problems that arise at designing a spacecraft reentering the Earth’s atmosphere with orbital velocity is the precise definition of high convective heat fluxes (aerodynamic heating) to the vehicle surface at hypersonic flight. In a dense atmosphere, where the assumption of continuity of gas medium is true, a detailed analysis of parameters of flow and heat transfer of a reentry vehicle may be made on the basis of numerical integration of the Navier-Stokes equations allowing for the physical and chemical processes in the shock layer at hypersonic flight conditions.
    [Show full text]
  • Role of the Sonic Scale in the Growth of Magnetic Field in Compressible
    Role of the sonic scale in the growth of magnetic field in compressible turbulence Itzhak Fouxon∗ and Michael Mondy Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel We study the growth of small fluctuations of magnetic field in supersonic turbulence, the small- scale dynamo. The growth is due to the fastest turbulent eddies above the resistive scale. We observe that for supersonic turbulence these eddies are effectively incompressible which creates a robust structure of the growth. The eddies are localised below the sonic scale ls defined as the scale where the typical velocity of the turbulent eddies equals the speed of sound. Thus the flow below ls is effectively incompressible and the field growth proceeds as in incompressible flow. At large Mach numbers ls is much smaller than the integral scale of turbulence so the fastest growing mode of the magnetic field belongs to small-scale turbulence. We derive this mode and the associated growth rate numerically in a white noise in time model of turbulence. The relevance of this model relies on considering evolution time larger than the correlation time of turbulence. PACS numbers: Introduction. The problem of the growth of small fluc- istic time-scale of turbulence at lres, a fact well-known in tuations of magnetic field in turbulent flows of a con- the incompressible case [2{4, 9] that carries over to com- ducting fluid is one of the most fundamental problems pressible turbulence. The local Mach number is usually of magnetohydrodynamics (MHD) [1, 2]. Here the back small at lres so that the flow compressibility, possibly reaction of the magnetic field on the flow is neglected due large at large scales, is irrelevant and the growth pro- to the field’s smallness.
    [Show full text]
  • 1 David Apsley 3. APPROXIMATIONS and SIMPLIFIED EQUATIONS
    3. APPROXIMATIONS AND SIMPLIFIED EQUATIONS SPRING 2021 3.1 Steady-state vs time-dependent flow 3.2 Two-dimensional vs three-dimensional flow 3.3 Incompressible vs compressible flow 3.4 Inviscid vs viscous flow 3.5 Hydrostatic vs non-hydrostatic flow 3.6 Boussinesq approximation for density 3.7 Depth-averaged (shallow-water) equations 3.8 Reynolds-averaged equations (turbulent flow) Examples Fluid dynamics is governed by equations for mass, momentum and energy. The momentum equation for a viscous fluid is called the Navier-Stokes equation; it is based upon: • continuum mechanics; • the momentum principle; • shear stress proportional to velocity gradient. A fluid for which the last is true is called a Newtonian fluid. This is the case for most fluids in engineering. However, there are important non-Newtonian fluids; e.g. mud, cement, blood, paint, polymer solutions. CFD is very useful for these, as their governing equations are usually impossible to solve analytically. The full equations are time-dependent, 3-dimensional, viscous, compressible, non-linear and highly coupled. However, in most cases it is possible to simplify analysis by adopting a reduced equation set. Some common approximations are listed below. Reduction of dimension: • steady-state; • two-dimensional. Neglect of some fluid property: • incompressible; • inviscid. Simplified forces: • hydrostatic; • Boussinesq approximation for density. Approximations based upon averaging: • depth-averaging (shallow-water equations); • Reynolds-averaging (turbulent flows). The consequences of these approximations are examined in the following sections. CFD 3 – 1 David Apsley 3.1 Steady-State vs Time-Dependent Flow Many flows are naturally time-dependent. Examples include waves, tides, turbines, reciprocating pumps and internal combustion engines.
    [Show full text]
  • Turbulence Modeling of Compressible Flows with Large Density Variation
    Turbulence modeling of compressible flows with large density variation by Igor A. Grigoriev April 2016 Technical Report Royal Institute of Technology Department of Mechanics SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stockholm framl¨agges till offentlig granskning f¨or avl¨aggande av teknologie doktorsexamen fredagen den 1 April 2016 kl 10.15 i D3, Lindstedtsv¨agen 5, Kungliga Tekniska H¨ogskolan, Stockholm. ©I.A. Grigoriev 2016 Universitetsservice US-AB, Stockholm 2016 Turbulence modeling of compressible flows with large density variation Igor A. Grigoriev Linn´eFLOW Centre, KTH Mechanics, Royal Institute of Technology SE-100 44 Stockholm, Sweden Abstract In this study we highlight the influence of mean dilatation and mean density gradient on the Reynolds stress modeling of compressible, heat-releasing and supercritical turbulent flows. Firstly, the modeling of the rapid pressure-strain correlation has been extended to self-consistently account for the influence of mean dilatation. Secondly, an algebraic model for the turbulent density flux has been developed and coupled to the tensor equation for Reynolds stress anisotropy via a 'local mean acceleration', a generalization of the buoyancy force. We applied the resulting differential Reynolds stress model (DRSM) and the corresponding explicit algebraic Reynolds stress model (EARSM) to homo- geneously sheared and compressed or expanded two-dimensional mean flows. Both formulations have shown that our model preserves the realizability of the turbulence, meaning that the Reynolds stresses do not attain unphysical val- ues, unlike earlier approaches. Comparison with rapid distortion theory (RDT) demonstrated that the DRSM captures the essentials of the transient behaviour of the diagonal anisotropies and gives good predictions of the turbulence kinetic energy.
    [Show full text]