High Energy Gamma-Ray Astronomy Observations of Geminga with the Veritas Array

Total Page:16

File Type:pdf, Size:1020Kb

High Energy Gamma-Ray Astronomy Observations of Geminga with the Veritas Array HIGH ENERGY GAMMA-RAY ASTRONOMY OBSERVATIONS OF GEMINGA WITH THE VERITAS ARRAY by Gary Marvin Finnegan A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Department of Physics and Astronomy The University of Utah December 2012 Copyright c Gary Marvin Finnegan 2012 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL This dissertation of Gary Marvin Finnegan has been approved by the following supervisory committee members: David B. Kieda , Chair August 22, 2012 Date Approved Peter W. Alfeld , Member August 22, 2012 Date Approved Carleton Detar , Member August 22, 2012 Date Approved Stephane L. Le Bohec , Member August 22, 2012 Date Approved R. Wayne Springer , Member August 22, 2012 Date Approved and by David B. Kieda , Chair of the Department of Physics and Astronomy and by Charles A. Wright of the Graduate School. ABSTRACT The closest known super-nova remnant and pulsar is Geminga. The Geminga pulsar is the first pulsar to have ever been detected initially by gamma rays and the first pulsar in a class of radio-quiet pulsars. In 2007, the Milagro collaboration detected a large angularly extended ( 2.6◦) emission of high energy gamma rays ( 20 T eV ), that was positionally ∼ ∼ coincident with Geminga. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground- based observatory with four imaging Cherenkov telescopes with an energy range between 100 GeV to more than 30 TeV. The imaging Cherenkov telescopes detect the Cherenkov light from charged particles in electromagnetic air showers initiated by high energy particles such as gamma rays and cosmic rays. Most gamma-ray sources detected by VERITAS are point like sources, which have an angular extension smaller than the angular resolution of the telescopes ( 0.1◦). For a point source, the background noise can be measured in the ∼ same field of view (FOV) as the source. For an angularly extended object, such as Geminga, an external FOV from the source region must be used to estimate the background noise, to avoid contamination from the extended source region. In this dissertation, I describe a new analysis procedure that is designed to increase the observation sensitivity of angularly extended objects like Geminga. I apply this procedure to a known extended gamma-ray source, Boomerang, as well as Geminga. The results indicate the detection of very high energy emission from the Geminga region at the level of a four percent of the Crab nebula with a weighted average spectral index of 2.8 0.2. − ± A possible extension less than one degree wide is shown. This detection however awaits a confirmation by the VERITAS collaboration. LIST OF TABLES 1.1 Gamma-ray initiated extensive air shower parameters . ................. 20 2.1 Hillas image parameters definitions . ................. 27 3.1 Comparison of Vela, Geminga, and the Crab pulsars . .............. 49 4.1 Data selection criteria cuts for the 2007 Geminga data. Ton and Toff are the duration of the total observations for the ON and OFF off runs respectively. 53 4.2 Table summary of the distribution study of significances in the FOV . 57 4.3 Data selection criteria cuts for the 2010 Geminga data. Ton and Toff are the duration of the total observations for the ON and OFF off runs respectively. 57 4.4 Data selection criteria cuts for the 2011 Geminga data. Ton and Toff are the duration of the total observations for the ON and OFF off runs respectively. 59 4.5 Summary table the 2007, 2010, and 2011 data. .............. 60 5.1 Comparison of luminosities (E > 300GeV ) and age of Vela, Crab, and Geminga 70 LIST OF FIGURES 1.1 The electromagnetic spectrum. The top bar shows which photon windows are open for ground level observations. Other diagrams illustrate the size, frequency and temperature of the corresponding photon. Credit: NASA (via https://mynasadata.larc.nasa.gov) . ................ 2 1.2 Composite X-ray image of the Tycho SNR taken by the Chandra X-ray obser- vatory. The blue filaments show the extrememly high energy electrons. The red and green remnant material is multimillion degree debris from the SNR. Credit: NASA/CXC/Rutgers/J.Warren & J.Hughes et al. ........... 5 1.3 Adiagramofapulsar ............................... ............. 7 1.4 A diagram of different pulsar models.................. ............... 10 1.5 Spectral energy distribution of the Crab pulsar . ................. 12 1.6 IC 443 very high energy spectrum..................... .............. 13 1.7 IC443excessmap .................................. ............. 14 1.8 A diagram of a theoretical model of a radio-loud AGN. The broad and narrow lines refer to radio emission. The active galaxy would surround this object and is not shown in the diagram. Credit: NASA/GSFC/C.M. Urry & P. Padovani 17 1.9 Gamma ray initiated electromagnetic shower . ................ 20 1.10 A proton initiated electromagnetic air shower . ................... 22 1.11 A comparison of a 320 GeV gamma ray EAS and a 1 TeV proton EAS...... 23 1.12 The wavefront of the Cherenkov radiation from an EAS. (a) shows the diagram of the Cherenkov light emitted by the charged particle. (b) shows the light cone that is swept out by the wave front of the Cherenkov light............ 24 2.1 The VERITAS telescopes. Credit: Steve Criswell, Smithsonian Astrophysical Observatory ........................................ ........... 25 2.2 Hillas Parameters................................ ................ 27 2.3 A single event as seen by the VERITAS telescopes with the fitted ellipse. The ellipse has a major axis equal to the RMS length, and the minor axis equal to the RMS width. The solid line is the major axis. The dashed line is the distance parameter. The X is the centroid of the camera and the Cherenkov image. The star is the reconstructed arrival directions of the primary particle. 28 2.4 The reflected regions and ring background models . ............... 31 2.5 An example of the acceptance function of the camera. The number of events drops off towards the edge of the field of view. Cherenkov images that originate close to the edge of the field of view have shower images that are normally truncated at the edge, and become more difficult to reconstruct their geometric properties. The drop is caused by the inability to reconstruct events that fall neartheedgeofthefieldofview. ........................ .......... 32 2.6 Orbit mode radial exposure profile. .................. ................ 33 2.7 Two-dimensional exposure map of a single orbit mode run. The longer the exposure is, the darker the color in the map. .............. ............ 34 2.8 Woble mode radial exposure profile (East to West or North to South axis). 35 2.9 Two-dimensional exposure map of four wobble mode runs. The longer expo- sure is the darker the color in the map.................... ............ 36 2.10 Excess map of the Crab Nebula from an orbit mode observation. .......... 37 2.11 Significance map of the Crab Nebula. Black circle: 68% containment of the source. ............................................ ............ 40 2.12 TheVERITAS sensitivity .......................... ............... 41 2.13 The angular resolution of VERITAS observations . ................. 42 3.1 The ROSAT periodograms of the Geminga data . ............ 45 3.2 XMM-Newton image of Geminga (top) showing the discovery of twin tails. The motion of Geminga across the sky is indicated, showing the trailing tails of the neutron star. Image courtesy of P.A. Caraveo (INAF/IASF), Milan and ESA. ............................................... .......... 46 vi 3.3 Fermi and Milagro spectral energy distribution of Geminga............... 47 4.1 Pre-trials Significance distribution of the 2007 wobble data .............. 52 4.2 The significance of each bin for the 2007 data in the Geminga region. 54 4.3 The excess events for each bin for the 2007 data in the Geminga region. 55 4.4 FADC digital counts histogram per event from the 2007 data ............. 56 4.5 Histograms of the significance for each map bin of a simulated gamma-ray sky 58 4.6 Simulated significance histograms of an extended and point-like source. Figure (a) shows the extended source and figure (b) shows the point-like source. The red line is the gaussian fit to the distribution and the blue is the simulated data. 59 4.7 A histogram of the the excess events (OFF events subtracted from the ON events) from the Crab nebula spectrum analysis. ............. 60 4.8 The excess map of the 2010 ON-OFF data. ........... 61 4.9 The significance map of the 2010 ON-OFF data. ............ 62 4.10 FADC digital counts histogram per event from the 2010 data ............. 63 4.11 The excess map of the 2011 ON-OFF data. ............ 64 4.12 The significance map of the 2011 ON-OFF data . ............. 65 4.13 FADC digital counts histogram per event from the 2011 data ............. 66 5.1 Spectral energy distribution of the Geminga pulsar (< 0.1T eV ) and the Geminga diffusesource. ...................................... ............ 69 vii Dedication Page ACKNOWLEDGMENTS Thanks to ... CONTENTS ABSTRACT ................................................... ..... iii LIST OF TABLES ................................................... iv LIST OF FIGURES ................................................. v ACKNOWLEDGMENTS ............................................ ix CHAPTERS 1. INTRODUCTION TO HIGH ENERGY GAMMA-RAY ASTRONOMY 1 1.1 Introduction .................................... .............
Recommended publications
  • Filter Performance Comparisons for Some Common Nebulae
    Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3.
    [Show full text]
  • Supernova Shocks in Molecular Clouds: Velocity Distribution of Molecular Hydrogen William T
    Draft version September 6, 2019 Typeset using LATEX preprint2 style in AASTeX63 Supernova Shocks in Molecular Clouds: Velocity Distribution of Molecular Hydrogen William T. Reach,1 Le Ngoc Tram,1 Matthew Richter,2 Antoine Gusdorf,3 Curtis DeWitt,1 1Universities Space Research Association, MS 232-11, Moffett Field, CA 94035, USA 2University of California, Davis, CA USA 3Observatoire de Paris, Ecole´ normale sup´erieure, Sorbonne Universit´e,CNRS, LERMA, 75005 Paris, France ABSTRACT Supernovae from core-collapse of massive stars drive shocks into the molecular clouds from which the stars formed. Such shocks affect future star formation from the molecu- lar clouds, and the fast-moving, dense gas with compressed magnetic fields is associated with enhanced cosmic rays. This paper presents new theoretical modeling, using the Paris-Durham shock model, and new observations at high spectral resolution, using the Stratospheric Observatory for Infrared Astronomy (SOFIA), of the H2 S(5) pure rota- tional line from molecular shocks in the supernova remnant IC 443. We generate MHD models for non-steady-state shocks driven by the pressure of the IC 443 blast wave into gas of densities 103 to 105 cm−3. We present the first detailed derivation of the shape of the velocity profile for emission from H2 lines behind such shocks, taking into account the shock age, preshock density, and magnetic field. For preshock densities 103{105 −3 cm , the H2 emission arises from layers that extend 0.01{0.0003 pc behind the shock, respectively. The predicted shifts of line centers, and the line widths, of the H2 lines range from 20{2, and 30{4 km s−1, respectively.
    [Show full text]
  • How to Make $1000 with Your Telescope! – 4 Stargazers' Diary
    Fort Worth Astronomical Society (Est. 1949) February 2010 : Astronomical League Member Club Calendar – 2 Opportunities & The Sky this Month – 3 How to Make $1000 with your Telescope! – 4 Astronaut Sally Ride to speak at UTA – 4 Aurgia the Charioteer – 5 Stargazers’ Diary – 6 Bode’s Galaxy by Steve Tuttle 1 February 2010 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 Algol at Minima Last Qtr Moon Æ 5:48 am 11:07 pm Top ten binocular deep-sky objects for February: M35, M41, M46, M47, M50, M93, NGC 2244, NGC 2264, NGC 2301, NGC 2360 Top ten deep-sky objects for February: M35, M41, M46, M47, M50, M93, NGC 2261, NGC 2362, NGC 2392, NGC 2403 7 8 9 10 11 12 13 Algol at Minima Morning sports a Moon at Apogee New Moon Æ super thin crescent (252,612 miles) 8:51 am 7:56 pm Moon 8:00 pm 3RF Star Party Make use of the New Moon Weekend for . better viewing at the Dark Sky Site See Notes Below New Moon New Moon Weekend Weekend 14 15 16 17 18 19 20 Presidents Day 3RF Star Party Valentine’s Day FWAS Traveler’s Guide Meeting to the Planets UTA’s Maverick Clyde Tombaugh Ranger 8 returns Normal Room premiers on Speakers Series discovered Pluto photographs and NatGeo 7pm Sally Ride “Fat Tuesday” Ash Wednesday 80 years ago. impacts Moon. 21 22 23 24 25 26 27 Algol at Minima First Qtr Moon Moon at Perigee Å (222,345 miles) 6:42 pm 12:52 am 4 pm {Low in the NW) Algol at Minima Æ 9:43 pm Challenge binary star for month: 15 Lyncis (Lynx) Challenge deep-sky object for month: IC 443 (Gemini) Notable carbon star for month: BL Orionis (Orion) 28 Notes: Full Moon Look for a very thin waning crescent moon perched just above and slightly right of tiny Mercury on the morning of 10:38 pm Feb.
    [Show full text]
  • A Multispectral Analysis of the Northeastern Shell of IC 443
    MNRAS 000,1–13 (2019) Preprint 13 August 2019 Compiled using MNRAS LATEX style file v3.0 A multispectral analysis of the northeastern shell of IC 443 Alexandre Alarie,1;2;3 Laurent Drissen,2;3 1 Instituto de Astronomía, Universidad National Autónoma de México, Apdo. Postal 70264, 04510 Mexico D.F., Mexico 2 Département de physique, de génie physique et d’optique, Université Laval, Québec, QC, G1V 0A6, Canada 3 Centre de Recherche en Astrophysique du Québec 13 August 2019 ABSTRACT We have carried out optical observations of the north-eastern part of the supernova remnant IC 443 using the CFHT imaging spectrograph SITELLE. The observations consist of three multispectral cubes covering an 110 ×110 area allowing the investigation of both the spatial and spectral variation of 9 emission lines : [O II] ll3726+3729, [O III] ll4959,5007, Hb, Ha, [N II] ll6548,6583 and [S II] ll6716,6731. Extinction measurement from the Ha/Hb shows significant variation across the observed region with E(B-V) = 0.8-1.1. Electron density measurements using [S II] lines indicate densities ranging from 100 up to 2500 cm−3. Models computed with the shock modelling code MAPPINGS are presented and compared with the observations. A combination of complete shock model and truncated ones are required in order to explain the observed spectrum. The shock velocities found in IC 443 are between 20 and 150 km s−1 with 75 km s−1 being the most prominent velocity. The pre-shock number density varies from 20 to 60 cm−3. A single set of abundances close to solar values combined with varying shock parameters (shock velocity, pre-shock density and shock age) are sufficient to explain the great variation of lines intensities observed in IC 443.
    [Show full text]
  • Urania Nr 5/2001
    Eta Carinae To zdjęcie mgławicy otaczającej gwiazdę // Carinae uzyskano za po­ mocą telskopu kosmicznego Hubble a (K. Davidson i J. Mors). Porównując je z innymi zdjęciami, a w szczególności z obrazem wyko­ nanym 17 miesięcy wcześniej, Auto­ rzy stwierdzili rozprężanie się mgła­ wicy z szybkością ok. 2,5 min km/h, co prowadzi do wniosku, że rozpo­ częła ona swe istnienie około 150 lat temu. To bardzo ciekawy i intrygujący wynik. Otóż największy znany roz­ błysk )j Carinae miał miejsce w roku 1840. Wtedy gwiazda ta stała się naj­ jaśniejszą gwiazdą południowego nie­ ba i jasność jej przez krótki czas znacznie przewyższała blask gwiaz­ dy Canopus. Jednak pyłowy dysk ob­ serwowany wokół)/ Carinae wydaje się być znacznie młodszy - jego wiek (ekspansji) jest oceniany na 100 lat, co może znaczyć, że powstał w cza­ sie innego, mniejszego wybuchu ob­ serwowanego w roku 1890. Więcej na temat tego intrygują­ cego obiektu przeczytać można we­ wnątrz numeru, w artykule poświę­ conym tej gwieździe. NGC 6537 Obserwacje przeprowadzone teleskopem Hubble’a pokazały istnienie wielkich falowych struktur w mgławicy Czerwonego Pająka (NGC 6537) w gwiazdozbiorze Strzelca.Ta gorąca i „wietrzna” mgławica powstała wokół jednej z najgorętszych gwiazd Wszech­ świata, której wiatr gwiazdowy wiejący z prędkością 2000-4500 kilometrów na sekundę wytwarza fale o wysokości 100 miliardów kilometrów. Sama mgławica rozszerza się z szybkością 300 km/s. Jest też ona wyjątkowo gorąca — ok. 10000 K. Sama gwiazda, która utworzyła mgławicę, jest obecnie białym karłem i musi mieć temperaturę nie niższą niż pół miliona stopni — jest tak gorąca, że nie widać jej w obszarach uzyskanych teleskopem Hubble’a, a świeci głównie w promieniowaniu X.
    [Show full text]
  • Pos(ICRC2019)832 † ∗ [email protected] Speaker
    Probing Particle Diffusion around Two Nearby Pulsars with TeV Gamma-Ray Observations from HAWC PoS(ICRC2019)832 Hao Zhou∗ Los Alamos National Laboratory E-mail: [email protected] for the HAWC Collaborationy Nearby cosmic-ray accelerators, especially pulsar wind nebulae, are possible origins of the local multi-GeV positron excess. Pulsar Geminga and B0656+14, less than 300 pc from the Earth, have been postulated as the main sources of the positron excess. With one and half years of data, the HAWC gamma-ray observatory discovered very extended TeV gamma-ray structures produced from high-energy electrons and positrons around these two nearby middle-aged pulsars. Morphology studies suggest that the diffusion in the vicinity of these two pulsars is 100 times slower than the average in our Galaxy. This result provides important constraints on the origin of positron excess, but raises questions like why diffusion is so slow at high energies near these pulsars. With more than twice of data from the previous results, we now explore the possibility of energy-dependent diffusion at these sources. 36th International Cosmic Ray Conference -ICRC2019- July 24th - August 1st, 2019 Madison, WI, U.S.A. ∗Speaker. yFor a complete author list and acknowledgemets, see PoS(ICRC2019)1177 and http://www.hawc- observatory.org/collaboration/icrc2019.php c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ Probing Particle Diffusion with HAWC Hao Zhou 1. Introduction Pulsar wind nebulae are known as efficient particle accelerators of electrons and positrons.
    [Show full text]
  • List of Bright Nebulae Primary I.D. Alternate I.D. Nickname
    List of Bright Nebulae Alternate Primary I.D. Nickname I.D. NGC 281 IC 1590 Pac Man Neb LBN 619 Sh 2-183 IC 59, IC 63 Sh2-285 Gamma Cas Nebula Sh 2-185 NGC 896 LBN 645 IC 1795, IC 1805 Melotte 15 Heart Nebula IC 848 Soul Nebula/Baby Nebula vdB14 BD+59 660 NGC 1333 Embryo Neb vdB15 BD+58 607 GK-N1901 MCG+7-8-22 Nova Persei 1901 DG 19 IC 348 LBN 758 vdB 20 Electra Neb. vdB21 BD+23 516 Maia Nebula vdB22 BD+23 522 Merope Neb. vdB23 BD+23 541 Alcyone Neb. IC 353 NGC 1499 California Nebula NGC 1491 Fossil Footprint Neb IC 360 LBN 786 NGC 1554-55 Hind’s Nebula -Struve’s Lost Nebula LBN 896 Sh 2-210 NGC 1579 Northern Trifid Nebula NGC 1624 G156.2+05.7 G160.9+02.6 IC 2118 Witch Head Nebula LBN 991 LBN 945 IC 405 Caldwell 31 Flaming Star Nebula NGC 1931 LBN 1001 NGC 1952 M 1 Crab Nebula Sh 2-264 Lambda Orionis N NGC 1973, 1975, Running Man Nebula 1977 NGC 1976, 1982 M 42, M 43 Orion Nebula NGC 1990 Epsilon Orionis Neb NGC 1999 Rubber Stamp Neb NGC 2070 Caldwell 103 Tarantula Nebula Sh2-240 Simeis 147 IC 425 IC 434 Horsehead Nebula (surrounds dark nebula) Sh 2-218 LBN 962 NGC 2023-24 Flame Nebula LBN 1010 NGC 2068, 2071 M 78 SH 2 276 Barnard’s Loop NGC 2149 NGC 2174 Monkey Head Nebula IC 2162 Ced 72 IC 443 LBN 844 Jellyfish Nebula Sh2-249 IC 2169 Ced 78 NGC Caldwell 49 Rosette Nebula 2237,38,39,2246 LBN 943 Sh 2-280 SNR205.6- G205.5+00.5 Monoceros Nebula 00.1 NGC 2261 Caldwell 46 Hubble’s Var.
    [Show full text]
  • X-Ray and Gamma-Ray Studies of Particle Acceleration in Supernova Remnants
    X-Ray and Gamma-Ray Studies of Particle Acceleration in Supernova Remnants Takaaki Tanaka (KIPAC, Stanford University) Fermi LAT results presented on behalf of the Fermi LAT collaboration Teraelectronvolt Astronomy 37 SNRs = Cosmic-Ray Sources? Supernova remnants have been thought to be accelerating cosmic rays up to the knee (PeV) thorough the diffusive shock acceleration mechanism Synchrotron X-rays and TeV gamma rays from SNRs = Evidence of acceleration up to TeV energies SN 1006 Chandra H.E.S.S. 30′ Figure 6: Four SNRs imaged in (dominantly) non-thermal X-rays (left) and resolved in VHE γ-rays with H.E.S.S. (right). a) RX J1713.7 3946 with 1–3 keV data from ASCA (Uchiyama, Takahashi & Aharonian −2002), b) RX J0852.0 4622 with ROSAT (1.3–2.4 keV) (Aschenbach 1998), c) RCW86 with− 2–4 keV data from XMM-Newton (Vinketal. 2006) d) SN 1006 with Chandra archive data (0.5–10 keV). The H.E.S.S. data are taken from Aharonian et al. (2006b, 2007d), Aharonian & etal.(2008), Naumann-Godo & et al. (2006). The white scale bars are 0.5◦ long. Suzaku (XIS + HXD) Results ① Suzaku has been probing electrons accelerated in SNRs through XIS + HXD measurements of synchrotron X-rays ① RX J1713.7–3946 (Takahashi+ 2008; Tanaka+ 2008) ② Tycho (Tamagawa+ 2009) ③ Cassiopeia A (Maeda+ 2009) No. S1] Suzaku Observations of Tycho’s SNR S173 No. 6] Possible keV–TeV Correlation in the Reverse Shock 1223 ② ③ Fig. 8. (a) XIS and PIN spectra fitted with a thermal bremsstrahlung, an srcut model, and GaussianFig. lines.
    [Show full text]
  • Stars, Constellations, and Dsos [50 Pts]
    Reach for the Stars B – KEY Bonus (+1) TRAPPIST-1 Part I: Stars, Constellations, and DSOs [50 pts] 1. Kepler’s SNR 2. Tycho’s SNR 3. M16 (Eagle Nebula) 4. Radiation pressure (wind) from young stars 5. Cas A 6. Extinction (from interstellar dust) 7. 30 Dor 8. [T10] Tarantula Nebula 9. LMC 10. Sgr A* 11. Gravitational interaction with orbiting stars (based on movement over time) 12. M42 (Orion Nebula) 13. [T8] Trapezium 14. (Charles) Messier 15. NGC 7293 (Helix Nebula) –OR– M57 (Ring Nebula) 16. TP-AGB (thermal pulse AGB) 17. Binary system –OR– stellar winds –OR– stellar rotation –OR– magnetic fields 18. Geminga 19. [T4] Jets from pulsar spin poles 20. X-ray 21. NGC 3603 22. Among the most massive & luminous stars known 23. T Tauri 24. FUors (FU Orionis stars) 25. NGC 602 26. Open cluster 27. LMC –AND– SMC 28. Irregular 29. Tidal forces –OR– gravity of MW 30. M1 (Crab Nebula) 31. PWN (pulsar wind nebula) 32. X-ray 33. M17 (Omega Nebula) 34. Omega Nebula –OR– Swan Nebula –OR– Checkmark Nebula –OR– Horseshoe Nebula 35. NGC 6618 36. Zeta Ophiuchi 37. Bow shock (from moving quickly through the ISM) 38. It “wobbles” across the sky (moves perpendicular to overall proper motion) 39. Procyon (α CMi) 40. Mizar –AND– Alcor 41. Mizar 42. Pollux (β Gem) 43. [T5] High rotational velocity 44. Altair (α Aql) –OR– Regulus (α Leo) –OR– Vega (α Lyr) 45. Polaris (α UMi) 46. Precession 47. Binary with observed Doppler shift of spectral lines 48. Beta Cephei variable (β Cep) 49.
    [Show full text]
  • VERITAS Prospects for Geminga Pulsar
    VERITAS Prospects for Geminga Pulsar Emily Harris University of Pittsburgh, Department of Physics and Astronomy Columbia University, Nevis Laboratories (Dated: August 7, 2018) Recent observations of the positron excess in Earth's atmosphere by PAMELA and Fermi-LAT suggest that particle acceleration in nearby pulsar wind nebulae play an important role in the local interstellar medium. Measurements show that lepton acceleration by the Geminga pulsar wind nebula reaches multi-TeV energies, which then leads to gamma-ray emission detectable by Cherenkov telescopes such as VERITAS. The high energy emission, close proximity, and old age of Geminga indicates it may be the origin of the positron flux in local interstellar space. In this study, we aim to investigate the prospects for VERITAS detection of Geminga, which has an emission region greater than the field of view of the telescopes. We perform simulations of the gamma-ray emission region around Geminga using the 3-Dimensional Maximum Likelihood Method. We find that by simulating our pointing strategy along with our model of the lepton diffusion around Geminga, VERITAS will be able to detect Geminga with a high significance greater than 11σ. However, the skymaps produced by the tools currently available with the likelihood analysis do not accurately represent the quality of the expected data, and are rather dominated by statistical fluctuations. I. Introduction gamma-ray observatories and is located at the Fred Lawrence Whipple Observatory in Tuscon, Arizona. High-energy gamma-ray astronomy is a relatively It is an array of four 12-meter imaging atmospheric young field when compared to the history of astronomy Cherenkov telescopes (IACTs), with a field of view of in other wavelengths [1].
    [Show full text]
  • The X-Ray Structure and Spectrum of the Pulsar Wind Nebula Surrounding PSR B1853+01 in W44
    The X-ray Structure and Spectrum of the Pulsar Wind Nebula Surrounding PSR B1853+01 in W44 R. Petre, K. D. Kuntz 1 NASA Goddard Space Flight Center, Greenbelt, MD 20771 and R. L. Shelton The Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 ABSTRACT We present the result of a Chandra ACIS observation of the pulsar PSR B1853+01 and its associated pulsar wind nebula (PWN), embedded within the supernova remnant W44. A hard band ACIS map cleanly distinguishes the PWN from the thermal emission of W44. The nebula is extended in the north-south direction, with an extent about half that of the radio emission. Morphological differences between the X-ray and radio images are apparent. Spectral fitting reveals a clear difference in spectral index between the hard emission from PSR B1853+01 (F --_ 1.4) and the extended nebula (F --, 2.2). The more accurate values for the X-ray flux and spectral index are used refine estimates for PWN parameters, including magnetic field strength, the average Lorentz factor _ of the particles in the wind, the magnetization parameter a, and the ratio k of electrons to other particles. Subject headings: supernova remnants--ISM:individual(W 44)--X-rays:general 1. Introduction fated, old radio pulsars. Additionally, because of its high proper motion, the pulsar leaves a record The remarkable pulsar wind nebula associated of its evolution embedded in the extended neb- with PSR B1853+01 and embedded in the evolved, ula. A combination of high resolution radio and mixed-morphology supernova remnant W44 is of X-ray observations can potentially disentangle this particular interest for several reasons.
    [Show full text]
  • Tev Measurements of Young Pulsars and Supernova Remnants P.M
    OG 2.2.21 1 TeV Measurements of Young Pulsars and Supernova Remnants P.M. Chadwick, K. Lyons, T.J.L. McComb, K.J. Orford, M.G.G. O'Connell, J.L. Osborne, S.M. Rayner, S.E. Shaw, and K.E. Turver Department of Physics, Rochester Building, Science Laboratories, University of Durham, Durham, DH1 3LE, U.K. Abstract Observations have been made with the University of Durham Mark 6 telescope of a number of supernova remnants and young pulsars (Vela pulsar, PSR B1055±52, PSR J1105±6107, PSR J0537±6910 and PSR B0540±69). No VHE gamma ray emission, either steady or pulsed, has been detected from these objects. 1 Introduction The Compton Gamma Ray Observatory (CGRO) telescopes have detected pulsed gamma radiation from 7 pulsars so far: Crab, Vela, Geminga, PSR B1509±58, PSR B1706±44, PSR B1951+32 and PSR B1055±52 (see e.g. Thompson et al. 1997). Of these, the Crab and PSR B1706±44 are con®rmed VHE gamma ray emitters, and the Vela remnant has been detected by the CANGAROO group. Although the gamma ray emission from all the pulsars detected with the EGRET telescope is pulsed, thus far no imaging VHE gamma ray telescope has detected pulsed radiation at TeV energies from any of the EGRET pulsars. We have previously presented limits on VHE gamma ray emission from a number of Southern hemisphere pulsars using the University of Durham Mark 3 telescope (Brazier et al. 1990). We present here the results of VHE gamma ray observations of ®ve plerions using the Mark 6 imaging telescope; two EGRET sources (Vela and PSR B1055±52) and three X-ray emitting pulsars, PSR J1105±6107, PSR J0537±6910 and PSR B0540±69.
    [Show full text]