Pre-Ribosomal RNA Processing in Human Cells: from Mechanisms to Congenital Diseases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The DEAD-Box RNA Helicase-Like Utp25 Is an SSU Processome Component
Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press The DEAD-box RNA helicase-like Utp25 is an SSU processome component J. MICHAEL CHARETTE1,2 and SUSAN J. BASERGA1,2,3 1Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA 2Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA 3Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA ABSTRACT The SSU processome is a large ribonucleoprotein complex consisting of the U3 snoRNA and at least 43 proteins. A database search, initiated in an effort to discover additional SSU processome components, identified the uncharacterized, conserved and essential yeast nucleolar protein YIL091C/UTP25 as one such candidate. The C-terminal DUF1253 motif, a domain of unknown function, displays limited sequence similarity to DEAD-box RNA helicases. In the absence of the conserved DEAD-box sequence, motif Ia is the only clearly identifiable helicase element. Since the yeast homolog is nucleolar and interacts with components of the SSU processome, we examined its role in pre-rRNA processing. Genetic depletion of Utp25 resulted in slowed growth. Northern analysis of pre-rRNA revealed an 18S rRNA maturation defect at sites A0,A1, and A2. Coimmunoprecipitation confirmed association with U3 snoRNA and with Mpp10, and with components of the t-Utp/UtpA, UtpB, and U3 snoRNP subcomplexes. Mutation of the conserved motif Ia residues resulted in no discernable temperature- sensitive or cold-sensitive growth defects, implying that this motif is dispensable for Utp25 function. -
Proteotoxicity from Aberrant Ribosome Biogenesis Compromises Cell Fitness
Proteotoxicity From Aberrant Ribosome Biogenesis Compromises Cell Fitness The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Tye, Blake Wells. 2019. Proteotoxicity From Aberrant Ribosome Biogenesis Compromises Cell Fitness. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42013104 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Proteotoxicity from Aberrant Ribosome Biogenesis Compromises Cell Fitness A dissertation presented by Blake Wells Tye to The Committee on Higher Degrees in Chemical Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemical Biology Harvard University Cambridge, Massachusetts May 2019 © 2019 Blake Wells Tye All rights reserved. Dissertation Advisor: Author: L. Stirling Churchman, PhD Blake Wells Tye Proteotoxicity from Aberrant Ribosome Biogenesis Compromises Cell Fitness Abstract Proteins are the workhorses of the cell, carrying out much of the structural and enzymatic work of life. Many proteins function as part of greater assemblies, or complexes, with other proteins and/or biomolecules. As the cell grows and divides, it must double its proteome, which requires synthesis and folding of individual proteins, assembly into complexes, and proper subcellular localization. This is repeated for millions of proteins molecules compromising thousands of potential assemblies, making up a rather tricky set of tasks for cells to carry out simultaneously. -
Analysis of Gene Expression Data for Gene Ontology
ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins. -
Integrated Bioinformatic Analysis of RNA Binding Proteins in Hepatocellular Carcinoma
www.aging-us.com AGING 2021, Vol. 13, No. 2 Research Paper Integrated bioinformatic analysis of RNA binding proteins in hepatocellular carcinoma Ling Wang1,*, Zhen Zhang2,3,*, Yuan Li1, Yanyan Wan1, Baocai Xing1,& 1Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital and Institute, Beijing 100142, China 2Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China 3Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing 100044, China *Equal contribution Correspondence to: Baocai Xing; email: [email protected] Keywords: RNA binding protein, hepatocellular carcinoma, biomarker, transcriptomics, proteomics Received: June 8, 2020 Accepted: November 3, 2020 Published: December 19, 2020 Copyright: © 2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT RNA binding proteins (RBPs) are aberrantly expressed in a tissue-specific manner across many tumors. These proteins, which play a vital role in post-transcriptional gene regulation, are involved in RNA splicing, maturation, transport, stability, degradation, and translation. We set out to establish an accurate risk score model based on RBPs to estimate prognosis in hepatocellular carcinoma (HCC). RNA-sequencing data, proteomic data and corresponding clinical information were acquired from the Cancer Genome Atlas database and the Clinical Proteomic Tumor Analysis Consortium database respectively. We identified 406 differentially expressed RBPs between HCC tumor and normal tissues at the transcriptional and protein level. -
The Rnase H-Like Superfamily: New Members, Comparative Structural Analysis and Evolutionary Classification Karolina A
4160–4179 Nucleic Acids Research, 2014, Vol. 42, No. 7 Published online 23 January 2014 doi:10.1093/nar/gkt1414 The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification Karolina A. Majorek1,2,3,y, Stanislaw Dunin-Horkawicz1,y, Kamil Steczkiewicz4, Anna Muszewska4,5, Marcin Nowotny6, Krzysztof Ginalski4 and Janusz M. Bujnicki1,3,* 1Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland, 2Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA USA-22908, USA, 3Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, 4Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, PL-02-089 Warsaw, Poland, 5Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, PL-02-106 Warsaw, Poland and 6Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland Received September 23, 2013; Revised December 12, 2013; Accepted December 26, 2013 ABSTRACT revealed a correlation between the orientation of Ribonuclease H-like (RNHL) superfamily, also called the C-terminal helix with the exonuclease/endo- the retroviral integrase superfamily, groups together nuclease function and the architecture of the numerous enzymes involved in nucleic acid metab- active site. Our analysis provides a comprehensive olism and implicated in many biological processes, picture of sequence-structure-function relation- including replication, homologous recombination, ships in the RNHL superfamily that may guide func- DNA repair, transposition and RNA interference. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Identification and Functional Analysis of Novel Genes Associated with Inherited Bone Marrow Failure Syndromes
Identification and Functional Analysis of Novel Genes Associated with Inherited Bone Marrow Failure Syndromes by Anna Matveev A thesis submitted in conformity with the requirements for the degree of Master of Science Institute of Medical Science University of Toronto © Copyright by Anna Matveev 2020 Abstract Identification and Functional Analysis of Novel Genes Associated with Inherited Bone Marrow Failure Syndromes Anna Matveev Master of Science Institute of Medical Science University of Toronto 2020 Inherited bone marrow failure syndromes are multisystem-disorders that affect development of hematopoietic system. One of IBMFSs is Shwachman-Diamond-syndrome and about 80-90% of patients have mutations in the Shwachman-Bodian-Diamond-Syndrome gene. To unravel the genetic cause of the disease in the remaining 10-20% of patients, we performed WES as well as SNP-genotyping in families with SDS-phenotype and no mutations in SBDS. The results showed a region of homozygosity in chromosome 5p-arm DNAJC21 is in this region. Western blotting revealed reduced/null protein in patient. DNAJC21-homolog in yeast has been shown facilitating the release of the Arx1/Alb1 heterodimer from pre-60S.To investigate the cellular functions of DNAJC21 we knocked-down it in HEK293T-cells. We observed a high-level of ROS, which led to reduced cell proliferation. Our data indicate that mutations in DNAJC21 contribute to SDS. We hypothesize that DNAJC21 related ribosomal defects lead to increased levels of ROS therefore altering development and maturation of hematopoietic cells. ii Acknowledgments I would like to take this opportunity to extend my deepest gratitude to everyone who has helped me throughout my degree. -
Mito-Cytosolic Translational Balance Increased Cytoprotection And
Graphical Abstract Worms Human cells Mice Mito-cytosolic translational balance Genetically mrps-5 RNAi Mitochondrial Cytosolic ribosomes ribosomes ATF4/atf-5 Doxycycline Pharmacologically Increased cytoprotection and longevity Manuscript A conserved mito-cytosolic translational balance links two longevity pathways Marte Molenaars1*, Georges E. Janssens1*, Evan G. Williams2, Aldo Jongejan3, Jiayi Lan2, Sylvie Rabot4, Fatima Joly4, Perry D. Moerland3, Bauke V. Schomakers1,5, Marco Lezzerini1 Yasmine J. Liu1, Mark A. McCormick6,7, Brian K. Kennedy8,9, Michel van Weeghel1,5, Antoine H.C. van Kampen3, Ruedi Aebersold2,10, Alyson W. MacInnes1, Riekelt H. Houtkooper1,11# 1Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands 2Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland 3Bioinformatics Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands 4Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France 5Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands. 6 Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, USA 7Autophagy, Inflammation, and Metabolism Center of Biological Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, USA 8Buck Institute for Research on Aging, Novato, USA 9Departments -
Epigenome-Wide Exploratory Study of Monozygotic Twins Suggests Differentially Methylated Regions to Associate with Hand Grip Strength
Biogerontology (2019) 20:627–647 https://doi.org/10.1007/s10522-019-09818-1 (0123456789().,-volV)( 0123456789().,-volV) RESEARCH ARTICLE Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength Mette Soerensen . Weilong Li . Birgit Debrabant . Marianne Nygaard . Jonas Mengel-From . Morten Frost . Kaare Christensen . Lene Christiansen . Qihua Tan Received: 15 April 2019 / Accepted: 24 June 2019 / Published online: 28 June 2019 Ó The Author(s) 2019 Abstract Hand grip strength is a measure of mus- significant CpG sites or pathways were found, how- cular strength and is used to study age-related loss of ever two of the suggestive top CpG sites were mapped physical capacity. In order to explore the biological to the COL6A1 and CACNA1B genes, known to be mechanisms that influence hand grip strength varia- related to muscular dysfunction. By investigating tion, an epigenome-wide association study (EWAS) of genomic regions using the comb-p algorithm, several hand grip strength in 672 middle-aged and elderly differentially methylated regions in regulatory monozygotic twins (age 55–90 years) was performed, domains were identified as significantly associated to using both individual and twin pair level analyses, the hand grip strength, and pathway analyses of these latter controlling the influence of genetic variation. regions revealed significant pathways related to the Moreover, as measurements of hand grip strength immune system, autoimmune disorders, including performed over 8 years were available in the elderly diabetes type 1 and viral myocarditis, as well as twins (age 73–90 at intake), a longitudinal EWAS was negative regulation of cell differentiation. -
Mitochondrial Misreading in Skeletal Muscle Accelerates Metabolic Aging and Confers Lipid Accumulation and Increased Inflammation
Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press REPORT Mitochondrial misreading in skeletal muscle accelerates metabolic aging and confers lipid accumulation and increased inflammation DIMITRI SHCHERBAKOV,1,4 STEFAN DUSCHA,1,4 REDA JUSKEVICIENE,1 LISA M. RESTELLI,2 STEPHAN FRANK,2 ENDRE LACZKO,3 and ERIK C. BÖTTGER1 1Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland 2Division of Neuropathology, Institute of Medical Genetics and Pathology, Basel University Hospital, 4031 Basel, Switzerland 3Functional Genomics Center Zurich, ETH Zürich und Universität Zürich, 8057 Zürich, Switzerland ABSTRACT We have recently reported on an experimental model of mitochondrial mistranslation conferred by amino acid exchange V338Y in mitochondrial ribosomal protein MrpS5. Here we used a combination of RNA-seq and metabolic profiling of ho- mozygous transgenic Mrps5V338Y/V338Y mice to analyze the changes associated with the V338Y mutation in postmitotic skeletal muscle. Metabolome analysis demonstrated enhanced levels of age-associated metabolites in the mutant V338Y animals accompanied by increased glycolysis, lipid desaturation and eicosanoid biosynthesis, and alterations of the pentose phosphate pathway. In addition, transcriptome signatures of aged V338Y mutant muscle pointed to elevated inflammation, likely reflecting the increased levels of bioactive lipids. Our findings indicate that mistranslation-mediated impairment of mitochondrial function affects specific bioenergetic processes in muscle in an age-dependent manner. Keywords: mitochondria; misreading; skeletal muscle; aging; metabolome INTRODUCTION express a mtDNA mutator phenotype, with a threefold to fivefold increase in the levels of random point mutations A decline in mitochondrial function has been associated in mtDNA, display respiratory chain dysfunction and fea- with aging and complex age-related changes in metabo- tures of accelerated aging (Trifunovic et al. -
Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6
Research Collection Doctoral Thesis Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6 Author(s): Voigts-Hoffmann, Felix Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-007303759 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library ETH Zurich Dissertation No. 20189 Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6 A dissertation submitted to ETH ZÜRICH for the degree of Doctor of Sciences (Dr. sc. ETH Zurich) presented by Felix Voigts-Hoffmann MSc Molecular Biotechnology, Universität Heidelberg born April 11, 1981 citizen of Göttingen, Germany accepted on recommendation of Prof. Dr. Nenad Ban (Examiner) Prof. Dr. Raimund Dutzler (Co-examiner) Prof. Dr. Rudolf Glockshuber (Co-examiner) 2012 blank page ii Summary Ribosomes are large complexes of several ribosomal RNAs and dozens of proteins, which catalyze the synthesis of proteins according to the sequence encoded in messenger RNA. Over the last decade, prokaryotic ribosome structures have provided the basis for a mechanistic understanding of protein synthesis. While the core functional centers are conserved in all kingdoms, eukaryotic ribosomes are much larger than archaeal or bacterial ribosomes. Eukaryotic ribosomal rRNA and proteins contain extensions or insertions to the prokaryotic core, and many eukaryotic proteins do not have prokaryotic counterparts. Furthermore, translation regulation and ribosome biogenesis is much more complex in eukaryotes, and defects in components of the translation machinery are associated with human diseases and cancer. -
Is Swachman-Diamond Syndrome a Ribosomopathy?
Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Of blood, bones, and ribosomes: is Swachman-Diamond syndrome a ribosomopathy? Arlen W. Johnson1,3 and Steve R. Ellis2 1Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin Texas 78712, USA; 2Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA Mutations in the human SBDS (Shwachman-Bodian-Di- regulation (Ambekar et al. 2010), and stabilizing the amond syndrome) gene are the most common cause of mitotic spindle (Austin et al. 2008). This has led to the Shwachman-Diamond syndrome, an inherited bone mar- suggestion that SBDS is a multifunctional protein, which row failure syndrome. In this issue of Genes & Develop- in turn has led to considerable discussion about which, ment, Finch and colleagues (pp. 917–929) establish that if any, clinical features of SDS are due to defects in SBDS functions in ribosome synthesis by promoting the ribosome production, and which can be attributed to recycling of eukaryotic initiation factor 6 (eIF6) in a GTP- a role for SBDS in other cellular pathways. The study by dependent manner. This work supports the idea that Finch et al. (2011) in this issue of Genes & Development a ribosomopathy may underlie this syndrome. clearly defines a role of SBDS in ribosome synthesis in mammalian cells. This knowledge represents an impor- tant step in ongoing efforts to equate clinical features of SDS with cellular processes affected by loss-of-function Shwachman-Diamond syndrome (SDS) is an inherited mutations in SBDS.