Fall 2010 Vol 2 Issue 1 Thenerve

Total Page:16

File Type:pdf, Size:1020Kb

Fall 2010 Vol 2 Issue 1 Thenerve Fall 2010 Vol 2 Issue 1 thenerve Spatial Navigation and the Memory Network The Religious Brain The Drugs and Mechanisms of General Anesthesia Neuroscience and the Military TheResolving Rise of the the Cyborgs Line Between Genius and Insanity Mind and Brain Society The Mind and Brain Society (MBS) was founded in the fall of 2008 in concert with BU’s new Undergraduate Program in Neuroscience. The group aims to create a net- work for undergraduate students who wish to take an active role in current issues and research. MBS serves as a hub for not only Neuroscience majors, but all students in- terested in Psychology, Biology, Philosophy, Computer Science, etc. Our goal is to sup- port an eager multidisciplinary undergraduate community with the conversations and resources fundamental to Neuroscience today. Throughout the academic year, MBS hosts events spotlighting many different fac- ets of Neuroscience. We hold discussion sessions during which we informally discuss a topic of interest over coffee; previous topics include “The Neuroscience of Religion” and “NeuroEthics.” The group also hosts research presentations by BU professors and screenings of thought-provoking films containing neuroscience motifs. CONTENTS Spring 2010 Vol. 1 Issue 2 RESEARCH IN BRIEF 5 ARTICLES Sports-related Concussions and the NFL by John Batoha & Evan Stein 11 Resolving the Line Between Genius and Insanity by Frank DeVita 17 Ten Minutes to a Trance by Anuhya Caipa 22 Trick or Treatment? The Placebo Effect by Natalie Banacos 24 Brain Research and National Defense by Aisha Sohail 27 REVIEWS General Anesthesia: Drugs and Mechanisms by Grigori Guitchounts 32 Spatial Navigation: Decoding the Human Memory Network by Evan Stein 41 OPINION Evolutionary Psychology on the Couch by Devyn Buckley 49 Do brains run algorithms? by Kayla Ritchie 57 SPRING 2010 | 3 “When we speak of nature it is wrong to forget that we are ourselves a part of nature.” -Henri Editors-In-Chief Grigori Guitchounts Matisse Kimberly LeVine tudents of neuroscience decide to join the field for a myriad of reasons- not the least of which includes a Editors Ssentiment of vanity. “My brain is amazing and I want Frank DeVita to know how it works.” At the beginning, many walk around Lauren Joseph fascinated, suddenly more in tune with how we know and experience what we do- spouting off “Did you know’s…” to Associate Editors unsuspecting friends and family. As study continues, we Natalie Banacos learn of tinier molecules, more complex proteins, and the John Batoha most finely tuned processes. The scale becomes smaller Devyn Buckley and several steps removed from our consciousness. It is easy to consider these inner-workings as only controlled Monika Chitre experiments under careful watch in a lab, but if we can keep Jennifer Richardson in mind that such precise orchestrations occur naturally Kayla Ritchie within us, the whole thing becomes even more astounding. Evan Stein Welcome to the second year of The Nerve’s infancy. Once again, we are thrilled to present an issue with breadth Artistic Director across the field of neuroscience while spotlighting a few of Kayla Ritchie our favorite topics from the last six months. We’d like to extend our deepest thanks to The Nerve staff and writers and Boston University faculty for pushing us into our sec- Artwork ond volume. Mursal Atif As you read each article, be a little self-centered. Con- Devyn Buckley sider the way your wiring affects your daily life. Consider Mariya Marioutina the amount of electricity running through you. Consider Margaret Mcguinness each molecule taking its course through your brain, moving Aubrey Reuben in such synchrony to make your very reading this possible! It’s a lot to think about, but the exquisitely intricate nature of the system is what makes it so extraordinary. MBS Staff This and other issues of The Nerve would not have been Megan Mataga possible without the generous help ofPaul Lipton, Howard Macayla Donegan Eichenbaum, Lindsey Clarkson, Denise Parisi, Zachary Bos, Shea Gillet and Jarret Frank. Advisors - Grigori Guitchounts and Kimberly LeVine Paul Lipton Editors-In-Chief Zachary Bos RESEARCH IN BRIEF Elucidating a New Pathway for Pain Management Pain management is an important branch of med- peripheral nervous system and suppress FAAH activ- icine, especially in fields that consider long-term pain- ity, thus increasing anandamide levels in the periph- related diseases such as cancer or arthritis. People ex- ery. As a result, behavioral responses to peripheral perience pain as a result of nerve impulses traveling nerve pain and inflammation were reduced and neu- through the spinal cord to the central nervous system ronal activation in pain processing was suppressed in in response to noxious stimuli. As the pain signal trav- rodent models in response to increased anandamide els to the brain, it can be modulated in a number of binding at CB1 receptors. different ways by intervening nerve fibers that cause Experiments subjected rodent models to neuro- an inhibitory effect, thus reducing pain. This interfer- pathic and inflammatory pain to test the efficacy of ence can be experienced in the common instinct rub URB937 as an analgesic. For neuropathic pain, sciatic a wound: our body’s touch receptors connect to pain nerve injury was induced and the compound was im- signal fibers in the upward pain pathway to the brain mediately administered. Results showed decreased and slow the noxious signal’s travel by inducing vari- sensitivity to pain and daily administration of the ous neuronal interactions. Other ways to modulate drug showed consistent results. Chemically induced pain incorporate the use of analgesic drugs, most inflammatory swelling in the rodents was combated commonly opiates, such as morphine for acute pain, with URB937 with equally effective results. Spinal or lighter analgesics such as acetaminophen (Tylenol) pain perception was also investigated by measuring and salicylic acid (Aspi- levels of the protein Fos, rin). Both act within the whose levels are elevated in brain itself through mo- response to neuronal activi- lecular interactions to ty in the spinal cord and thus modulate pain in a top in response to pain. URB937 down fashion through was able to attenuate Fos neurotransmitter sys- levels in regions of the neck tems. and dorsal horn of the spinal Neurotransmitters cord, implying that the trav- are a crucial piece of the eling pain signal was sup- puzzle in the neurosci- pressed before it was able to ence underlying pain. reach the brain itself. Current research is elu- The suggestion of this cidating the mechanisms research is that increased of anandamide, a myste- anandamide levels in the rious neurotransmitter periphery and CB1 recep- that acts on the much-re- tors can effectively attenuate searched cannabinoid CB1 and CB2 receptor as well pain signals to the CNS. Since URB937 was designed as the vaniloid receptors. We do not know much about to remain exclusively outside the CNS, this research anandamide, but its levels spike in response to pain establishes the existence of a previously unexplored or inflammation and these receptors bind the neu- connection between the peripheral endocannabinoid rotransmitter, creating an analgesic affect. In a recent system and pain perception. Given their results, the Nature Neuroscience study, researchers elucidated a researchers hypothesize that peripheral anandamide mechanism of anandamide in the peripheral nervous acts as a diffuse paracrine signal to modulate pain system (PNS) and its action on cannabinoid recep- stimuli as they arrive in damaged tissues. This implies tors. The team created an inhibitor of fatty acid amide that pain stimulates anandamide production and CB1 hydrolase (FAAH), a compound that degrades anan- receptors are present in abundance in peripheral damide under normal circumstances. The inhibitor, nerve endings and throughout tissues and organs. dubbed URB937, was designed to remain only in the These results open new doors to pain therapy that can FALL 2010 | 5 RESEARCH IN BRIEF exploit the cannabinoid system to effectively attenu- matic learning difficulties. The causes of ADHD are ate pain without the highly undesirable side effects largely unknown. The general population, as well as a produced by classical opioid pain therapy. portion of the scientific community, has believed that it is likely attributed to poor parenting and a sugar — Frank DeVita rich diet, but this study presents the first evidence that ADHD is instead a genetic neurodevelopmental original paper: ClapperNature JR et Neuroscienceal. Anandamide disorder. suppresses pain initiation through a peripheral en- The study conducted at Cardiff University ana- docannabinoid mechanism. 13, lyzed the genomes of 366 children with ADHD and 1265–1270. 2010. 1047 controls. These children with ADHD were aged Rare CNVs in the ADHD 5-17 years who were diagnosed with ADHD or hy- perkinetic disorder, but not schizophrenia or autism. Genome The researchers genotyped single nucleotide poly- morphisms (SNP:DNA sequence variation in which a single nucleotide differs from the appropriate base pairing) for both groups, looking for and comparing ADHD is a disorder known to almost everyone; copy number variants (CNVs) in their genomes. it has established a prevalence in our school systems CNVs occur when one of the two copies of a gene and the media. The Center for Disease Control high- is missing or when there are too many copies. Their lights that 3-7 percent of school-aged children suf- findings showed that 57 large, rare CNVs were iden- fer from ADHD. In the United Kingdom, where this tified in the ADHD population, in contrast to the 78 particular study was done, it is reported that around CNVs that were found in the much larger control pop- one in 50 children is affected by the disorder. But ulation. This data shows that these rare CNVs were even with such high prevalence and awareness about almost twice as likely to occur in children with ADHD ADHD, the causes of the disease have escaped the sci- (14%) compared to controls (7%), including a rate entific and medical community.
Recommended publications
  • Impaired Latent Inhibition in GDNF-Deficient Mice Exposed To
    ORIGINAL RESEARCH published: 10 October 2017 doi: 10.3389/fnbeh.2017.00177 Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress Mona Buhusi*, Colten K. Brown and Catalin V. Buhusi Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS) alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF) is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI), a measure of selective attention and learning, in GDNF-heterozygous (HET) mice and their wild-type (WT) littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons) in the nucleus Edited by: accumbens shell and increased activation in the nucleus accumbens core, both key João J. Cerqueira, regions in the expression of LI.
    [Show full text]
  • Using Psilocybin to Investigate the Relationship Between Attention, Working Memory, and the Serotonin 1A and 2A Receptors
    Using Psilocybin to Investigate the Relationship between Attention, Working Memory, and the Serotonin 1A and 2A Receptors Olivia L. Carter1,2, David C. Burr3, John D. Pettigrew1, Guy M. Wallis1, Felix Hasler2, and Franz X. Vollenweider2 Abstract & Increasing evidence suggests a link between attention, reduced attentional tracking ability, but had no significant working memory, serotonin (5-HT), and prefrontal cortex ac- effect on spatial working memory, suggesting a functional dis- tivity. In an attempt to tease out the relationship between these sociation between the two tasks. Pretreatment with ketanserin elements, this study tested the effects of the hallucinogenic did not attenuate the effect of psilocybin on attentional per- mixed 5-HT1A/2A receptor agonist psilocybin alone and after formance, suggesting a primary involvement of the 5-HT1A pretreatment with the 5-HT2A antagonist ketanserin. Eight receptor in the observed deficit. Based on physiological and healthy human volunteers were tested on a multiple-object pharmacological data, we speculate that this impaired atten- tracking task and spatial working memory task under the tional performance may reflect a reduced ability to suppress or four conditions: placebo, psilocybin (215 Ag/kg), ketanserin ignore distracting stimuli rather than reduced attentional capac- (50 mg), and psilocybin and ketanserin. Psilocybin significantly ity. The clinical relevance of these results is also discussed. & INTRODUCTION ever, more recent work has shown that it is possible In a world where objects and events occurring around us to simultaneously track multiple objects distributed have varying degrees of relevance and importance, the throughout space (Pylyshyn & Storm, 1988), indepen- ability to selectively direct and maintain attention on a dent of eye movements (Culham et al., 1998).
    [Show full text]
  • The Visual Search Analogue of Latent Inhibition: Implications for Theories of Irrelevant Stimulus Processing in Normal and Schizophrenic Groups
    Psychonomic Bulletin & Review 2005, 12 (2), 224-243 The visual search analogue of latent inhibition: Implications for theories of irrelevant stimulus processing in normal and schizophrenic groups R. E. LUBOW Tel Aviv University, Ramat Aviv, Israel and OREN KAPLAN College of Management, Rishon Lezion, Israel Latent inhibition (LI) is a robust phenomenon that is demonstrated when a previously inconsequen- tial stimulus is less effective in a new learning situation than a novel stimulus. Despite LI’s simplicity, there is considerable disagreement as to its theoretical basis. Attentional theories claim that unat- tended stimulus preexposures reduce stimulus associability. Alternatively, it has been asserted that as- sociability is unaffected and that LI is a result of competition/retrieval processes. The present article reviews a series of visual search studies, some with normal subjects, both undifferentiated and divided into low and high schizotypals, and others with pathologies that entail dysfunctional attention, such as schizophrenia, Parkinson’s disease, and anxiety. The visual search conditions were designed to model those of traditional LI experiments, while tapping attentional processes independently of the learning scores that index LI. A variety of evidence from these and other studies is used to support the involve- ment of attentional and retrieval processes in LI. A model of the mechanism of action of these pro- cesses in LI is presented, together with its application to schizophrenia. There are some conditions that make it more difficult to tensive documentation indicates that such stimulus pre- acquire or to express a new association to a familiar stim- exposure may also enhance performance on a learning ulus than one to a novel stimulus, particularly when the fa- task, as in perceptual-learning effects (for reviews, see miliar stimulus has been previously unattended.
    [Show full text]
  • A Modeling Study of a Decremental Cholinergic Pathway and Its Influence on Attention and Learning
    Downloaded from learnmem.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Research Learning to ignore: A modeling study of a decremental cholinergic pathway and its influence on attention and learning Nicolas Oros,1,4 Andrea A. Chiba,3 Douglas A. Nitz,3 and Jeffrey L. Krichmar1,2 1Department of Cognitive Sciences, University of California–Irvine, Irvine, California 92697, USA; 2Department of Computer Science, University of California–Irvine, Irvine, California 92697, USA; 3Department of Cognitive Sciences, University of California–San Diego, La Jolla, California 92093, USA Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate at- tention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus basalis region (SI/ nBM) to the neocortex are necessary to increase attention to relevant stimuli and have been well studied. Lesser known are ACh projections from the medial septum/vertical limb of the diagonal band (MS/VDB) to the hippocampus and the cin- gulate that are necessary to reduce attention to irrelevant stimuli. We developed a neural simulation to provide insight into how ACh can decrement attention using this distinct pathway from the MS/VDB. We tested the model in behavioral par- adigms that require decremental attention. The model exhibits behavioral effects such as associative learning, latent inhibi- tion, and persisting behavior. Lesioning the MS/VDB disrupts latent inhibition, and drastically increases perseverative behavior. Taken together, the model demonstrates that the ACh decremental pathway is necessary for appropriate learning and attention under dynamic circumstances and suggests a canonical neural architecture for decrementing attention.
    [Show full text]
  • Latent Inhibition in an Insect: the Role of Aminergic Signaling
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Brief Communication Latent inhibition in an insect: The role of aminergic signaling Vanesa M. Ferna´ndez,1,2 Martin Giurfa,3,4 Jean-Marc Devaud,3,4,5 and Walter M. Farina1,2,5,6 1Departamento de Biodiversidad y Biologı´a Experimental, Grupo de Estudio de Insectos Sociales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria 1428, Buenos Aires, Argentina; 2IFIBYNE, CONICET, Grupo de Estudio de Insectos Sociales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria 1428, Buenos Aires, Argentina; 3Universite´ de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, F-31062 Toulouse Cedex 9, France; 4CNRS, Centre de Recherches sur la Cognition Animale, F-31062 Toulouse Cedex 9, France Latent inhibition (LI) is a decrement in learning performance that results from the nonreinforced pre-exposure of the to-be- conditioned stimulus, in both vertebrates and invertebrates. In vertebrates, LI development involves dopamine and seroto- nin; in invertebrates there is yet no information. We studied differential olfactory conditioning of the proboscis extension response in the honeybee Apis mellifera, and we compared LI in individuals treated with antagonists of biogenic amines (dop- amine, octopamine, and serotonin). An antagonist of octopamine receptors and two antagonists of serotonin receptors showed LI disruption. We thus provide evidence that serotonin would participate in the regulation of LI in honeybees. [Supplemental material is available for this article.] Pavlovian conditioning consists of learning an association be- Are the neural mechanisms underlying LI conserved across tween a neutral stimulus (the conditioned stimulus: CS) and a species? To answer this question, comparative studies dissecting biologically relevant stimulus (the unconditioned stimulus: US) the role of brain areas and neurotransmitters in a broad spectrum (Pavlov 1927).
    [Show full text]
  • Taste Processing: Insights from Animal Models
    molecules Review Taste Processing: Insights from Animal Models Andrés Molero-Chamizo 1,* and Guadalupe Nathzidy Rivera-Urbina 2 1 Department of Psychology, Psychobiology Area, University of Huelva, Campus El Carmen, 21071 Huelva, Spain 2 Faculty of administrative and social sciences, Autonomous University of Baja California, Tijuana 22890, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +34-959-21-84-78 Academic Editors: Encarna Gómez-Plaza and Rocio Gil-Muñoz Received: 17 June 2020; Accepted: 7 July 2020; Published: 8 July 2020 Abstract: Taste processing is an adaptive mechanism involving complex physiological, motivational and cognitive processes. Animal models have provided relevant data about the neuroanatomical and neurobiological components of taste processing. From these models, two important domains of taste responses are described in this review. The first part focuses on the neuroanatomical and neurophysiological bases of olfactory and taste processing. The second part describes the biological and behavioral characteristics of taste learning, with an emphasis on conditioned taste aversion as a key process for the survival and health of many species, including humans. Keywords: flavour; molecular signalling; olfactory processing; receptors; taste learning; taste processing 1. Introduction Three important sensory systems depend on physical stimuli to initiate their processing. The somatosensory system recognises touch, pain and temperature; the auditory system recognises sound waves and the visual system recognises visual waves, as specific physical modalities. There are two other sensory systems which, however, depend on the stimulation produced by different chemical molecules. Olfactory and taste systems are activated by small particles stimulating specific receptor cells located in the respective membranes of the nose and tongue.
    [Show full text]
  • Prepulse Inhibition During Withdrawal from an Escalating Dosage Schedule of Amphetamine
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Psychopharmacology (2003) 169:340–353 DOI 10.1007/s00213-002-1254-4 ORIGINAL INVESTIGATION Holger Russig · Carol A. Murphy · Joram Feldon Prepulse inhibition during withdrawal from an escalating dosage schedule of amphetamine Received: 6 March 2002 / Accepted: 21 August 2002 / Published online: 12 November 2002 Springer-Verlag 2002 Abstract Rationale: Psychomotor stimulants can induce Keywords Startle · Schizophrenia · Latent inhibition · psychotic states in humans that closely resemble those Sensitization · Rat observed in patients with idiopathic schizophrenia. At- tentional and sensorimotor gating impairments are ob- served in schizophrenic patients using the latent inhibition Introduction (LI) and prepulse inhibition (PPI) behavioral assays, respectively. Our previous studies demonstrated that after Administration of amphetamine (AMPH) can induce 4 days of withdrawal from a period of amphetamine symptoms of psychosis in humans. This outcome is most (AMPH) administration, animals exhibited disrupted LI frequently associated with a chronic high-dose escalating but normal PPI. Objective: The aim of the present study pattern of stimulant abuse (Davis and Schlemmer 1980; was to test PPI in AMPH-withdrawn rats under experi- Angrist 1994). Given that stimulant-induced psychosis in mental conditions similar to those used to best demon- humans closely resembles the psychosis observed in strate locomotor sensitization following AMPH patients with idiopathic schizophrenia (Ellinwood 1967; withdrawal. Methods: We examined the effects on PPI Griffith et al. 1972; Snyder 1973), it has been suggested of (1) pairing drug injections with PPI test-associated that similar neural adaptations could be responsible for cues, (2) administration of a low-dose dopamine agonist the development of these two phenomena.
    [Show full text]
  • Acetylcholine
    1 ACETYLCHOLINE MARINA R. PICCIOTTO MEENAKSHI ALREJA AND J. DAVID JENTSCH Acetylcholine (ACh) is critical for communication between lacking the ␣3 (6), ␣4 (7), ␣5 (8), ␣7 (9), ␣9 (10), ␤2 neurons and muscle at the neuromuscular junction, is in- (11), ␤3 (12), or ␤4 (13) subunit of the nAChR have been volved in direct neurotransmission in autonomic ganglia, reported. In addition, mice lacking the M1 (14), M2 (15), and has been implicated in cognitive processing, arousal, and M4 (16) subtypes of the muscarinic receptor have been and attention in the brain (1). Cholinergic transmission can generated. These mice have already been used to demon- occur through muscarinic (G protein-coupled) or nicotinic strate the role of particular receptor subtypes in the physio- (ionotropic) receptors and is terminated by the action of logic effects of ACh in muscle, the peripheral ganglia, and cholinesterases. Seventeen different subunits of the nicotinic the central nervous system (Table 1.1). ACh receptor (nAChR) (2) and five different subtypes of The function of ACh has been best studied at the neuro- the muscarinic receptor (3) have been cloned to date, and muscular junction, where signaling occurs through the mus- a majority of those are known to be expressed in the brain. cle form of the nAChR. In the embryo, the nAChR at the Although the anatomic locations of cholinergic cell bodies neuromuscular junction is a pentamer made up of two ␣, and their projections have been known for some time (Fig. one ␤, one ␥, and one ␦ subunit. After birth, the ␥ subunit 1.1), recent studies using specific cholinotoxins, electro- is replaced by the ⑀ subunit, so that the physiologic proper- physiology, or molecular genetics have altered our view of ties of the receptor are altered.
    [Show full text]
  • 1 Sensory Processing Sensitivity in the Context of Environmental Sensitivity
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 September 2018 doi:10.20944/preprints201809.0149.v1 Sensory Processing Sensitivity in the context of Environmental Sensitivity: a critical review and development of research agenda Greven U. Greven1,2,3*#, Francesca Lionetti4*, Charlotte Booth5*, Elaine Aron6, Elaine Fox5, Haline E. Schendan7, Michael Pluess4, Hilgo Bruining8, Bianca Acevedo9*, Patricia Bijttebier10*, Judith Homberg1* *= joint first/last authors # corresponding author 1Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, The Netherlands 2Karakter Child and Adolescent Psychiatry University Center, Nijmegen, The Netherlands 3King's College London, Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK 4Queen Mary University of London, Department of Biological and Experimental Psychology, London, UK 5University of Oxford, School of Psychology, Department of Experimental Psychology, Oxford, UK 6Stony Brook University, Stony Brook, New York, USA 7Cognition Institute, University of Plymouth, Plymouth, UK 8University Medical Center Utrecht, Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, The Netherlands 9University of California, Neuroscience Research Institute, Santa Barbara, USA 10 KU Leuven, School of Psychology and Development in Context, Leuven, Belgium Correspondence to Corina U. Greven│Radboud University Medical Center│Donders Institute for Brain, Cognition and Behaviour│Department of Cognitive Neuroscience│Kapielweg 29│6525EN Nijmegen│The Netherlands│Tel: +31(0)243611757 | [email protected] Declarations of interest: None. 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 September 2018 doi:10.20944/preprints201809.0149.v1 Abstract Sensory Processing Sensitivity (SPS) is a trait describing inter-individual differences in sensitivity to environments, both positive and negative ones.
    [Show full text]
  • 1I. Latent Inhibition and Schizophrenia
    Too much dopamine can be bad for you: 1I. Latent inhibition and schizophrenia PSY/NEU338: Animal learning and decision making: Psychological, computational and neural perspectives thanks to Ina Weiner for many of the slides in this presentation Outline • Schizophrenia • Latent inhibition • Latent inhibition as a model of schizophrenia 2 First: Schizophrenia • Schizophrenia = shattered/split mind (note: unrelated to dissociative identity disorder) • chronic, severe, and disabling brain disorder Bleuler: coined • affects about ½-1% of population above age of 18 term in 1908 • symptoms usually appear in men in late teens or (in plural: the early 20s, in women in 20s and early 30s schizophrenias) • significant heritable component, environmental component (urban environment; poverty; stress), also exacerbated/caused by some recreational/prescription drugs (cannabis..) • no single known organic cause (prenatal neurodevelopmental etiology?) • co-morbid with major depression and anxiety disorders, substance abuse (40% lifetime occurrence!), higher suicide rate (5%; life expectancy 10-12 yrs shorter) 3 positive symptoms • behaviors not seen in normal people, manifestations of psychosis, such as: • hallucinations (most common: auditory, voices) • delusions (false unwavering personal beliefs), paranoia • thought disorder (disorganized thinking - hard to organize thoughts logically, thought ‘blocking’, garbled speech, neologisms) • movement disorder (clumsy, uncoordinated, repetitious movements, catatonia (rare with treatment)) • these symptoms respond
    [Show full text]
  • Stem Cell-Derived Interneuron Transplants As a Treatment for Schizophrenia: Preclinical Validation in a Rodent Model
    Molecular Psychiatry (2016) 00, 1–10 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1359-4184/16 www.nature.com/mp ORIGINAL ARTICLE Stem cell-derived interneuron transplants as a treatment for schizophrenia: preclinical validation in a rodent model JJ Donegan1, JA Tyson2, SY Branch3, MJ Beckstead3, SA Anderson2 and DJ Lodge1 An increasing literature suggests that schizophrenia is associated with a reduction in hippocampal interneuron function. Thus, we posit that stem cell-derived interneuron transplants may be an effective therapeutic strategy to reduce hippocampal hyperactivity and attenuate behavioral deficits in schizophrenia. Here we used a dual-reporter embryonic stem cell line to generate enriched populations of parvalbumin (PV)- or somatostatin (SST)-positive interneurons, which were transplanted into the ventral hippocampus of the methylazoxymethanol rodent model of schizophrenia. These interneuron transplants integrate within the existing circuitry, reduce hippocampal hyperactivity and normalize aberrant dopamine neuron activity. Further, interneuron transplants alleviate behaviors that model negative and cognitive symptoms, including deficits in social interaction and cognitive inflexibility. Interestingly, PV- and SST-enriched transplants produced differential effects on behavior, with PV-enriched populations effectively normalizing all the behaviors examined. These data suggest that the stem cell-derived interneuron transplants may represent a novel therapeutic strategy for schizophrenia. Molecular
    [Show full text]
  • Evaluation of Latent Inhibition and Learned Irrelevance As Assays of Attentional Abnormalities in Schizotypy
    Evaluation of latent inhibition and learned irrelevance as assays of attentional abnormalities in schizotypy Mia Schmidt-Hansen BSc Cardiff University May 2007 Thesis submitted in accordance with the requirements for admission to the degree of Doctor of Philosophy (PhD) at Cardiff University UMI Number: U584946 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U584946 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree. Signed Ife,MX& (jUiuddW-r f r l l l A O O r r M A ^— (candidate) Date ''MpT STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of PhD Signed (candidate) D ,“ “b-jst STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. Signed (candidate) D ,“ l'bW STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available for outside organisations.
    [Show full text]