Functions of the Dopaminergic Innervation of the Nucleus Accumbens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impaired Latent Inhibition in GDNF-Deficient Mice Exposed To
ORIGINAL RESEARCH published: 10 October 2017 doi: 10.3389/fnbeh.2017.00177 Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress Mona Buhusi*, Colten K. Brown and Catalin V. Buhusi Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS) alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF) is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI), a measure of selective attention and learning, in GDNF-heterozygous (HET) mice and their wild-type (WT) littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons) in the nucleus Edited by: accumbens shell and increased activation in the nucleus accumbens core, both key João J. Cerqueira, regions in the expression of LI. -
Sensory Processing Sensitivity and Attentional Bias – a Pilot Study
Proef ingediend met het oog op het behalen van de graad van Master in de Klinische Psychologie SENSORY PROCESSING SENSITIVITY AND ATTENTIONAL BIAS – A PILOT STUDY FLORIAN UDO ROTHENBÜCHER 2016/2017 Aantal woorden: 11775 Promotoren: Prof. Dr. Natacha Deroost & Prof. Dr. Elke Van Hoof Psychologie & Educatiewetenschappen Psychologie & Educatiewetenschappen Academiejaar 2016/2017 SAMENVATTING MASTERPROEF (na het titelblad inbinden in de masterproef + 1 keer een afzonderlijk A4-blad) Naam en voornaam: Rothenbücher Florian Rolnr.: 96884 KLIN AO ONKU AGOG Titel van de Masterproef: Sensory Processing Sensitivity And Attentional Bias – A Pilot Study Promotor: Prof. Dr. Natacha Deroost & Prof. Dr. Elke Van Hoof Samenvatting: Despite the increasing interest in the construct of sensory processing sensitivity and the recent tendency in publications to include more objective measures, the underlying mechanisms that might be responsible for the differential information processing and heightened emotionality of individuals high in sensory processing sensitivity are still unclear. Supposedly, a higher awareness of both positive and negative subtle stimuli and a deeper processing thereof are the central characteristics of the construct. These might be driven by differences in the allocation of attention. To further explore these ideas, an emotional variant of the Posner exogenous cueing task was conducted. Participants classified as high in sensory processing sensitivity as well as controls were presented with neutral, happy, angry, and sad faces for durations of 200 ms and 1000 ms. Cue validity, engagement, and disengagement effects were analyzed. This allowed for an examination of processing differences for the various emotional valences at early (200 ms, indicative of a possible lower threshold to subtle stimuli) and later stages of attention (1000 ms, indicative of a deeper elaboration of information). -
Connections Between Sensory Sensitivities in Autism
PSU McNair Scholars Online Journal Volume 13 Issue 1 Underrepresented Content: Original Article 11 Contributions in Undergraduate Research 2019 Connections Between Sensory Sensitivities in Autism; the Importance of Sensory Friendly Environments for Accessibility and Increased Quality of Life for the Neurodivergent Autistic Minority. Heidi Morgan Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/mcnair Let us know how access to this document benefits ou.y Recommended Citation Morgan, Heidi (2019) "Connections Between Sensory Sensitivities in Autism; the Importance of Sensory Friendly Environments for Accessibility and Increased Quality of Life for the Neurodivergent Autistic Minority.," PSU McNair Scholars Online Journal: Vol. 13: Iss. 1, Article 11. https://doi.org/10.15760/mcnair.2019.13.1.11 This open access Article is distributed under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike 4.0 International License (CC BY-NC-SA 4.0). All documents in PDXScholar should meet accessibility standards. If we can make this document more accessible to you, contact our team. Portland State University McNair Research Journal 2019 Connections Between Sensory Sensitivities in Autism; the Importance of Sensory Friendly Environments for Accessibility and Increased Quality of Life for the Neurodivergent Autistic Minority. by Heidi Morgan Faculty Mentor: Miranda Cunningham Citation: Morgan H. (2019). Connections between sensory sensitivities in autism; the importance of sensory friendly environments for accessibility and increased quality of life for the neurodivergent autistic minority. Portland State University McNair Scholars Online Journal, Vol. 0 Connections Between Sensory Sensitivities in Autism; the Importance of Sensory Friendly Environments for Accessibility and Increased Quality of Life for the Neurodivergent Autistic Minority. -
Using Psilocybin to Investigate the Relationship Between Attention, Working Memory, and the Serotonin 1A and 2A Receptors
Using Psilocybin to Investigate the Relationship between Attention, Working Memory, and the Serotonin 1A and 2A Receptors Olivia L. Carter1,2, David C. Burr3, John D. Pettigrew1, Guy M. Wallis1, Felix Hasler2, and Franz X. Vollenweider2 Abstract & Increasing evidence suggests a link between attention, reduced attentional tracking ability, but had no significant working memory, serotonin (5-HT), and prefrontal cortex ac- effect on spatial working memory, suggesting a functional dis- tivity. In an attempt to tease out the relationship between these sociation between the two tasks. Pretreatment with ketanserin elements, this study tested the effects of the hallucinogenic did not attenuate the effect of psilocybin on attentional per- mixed 5-HT1A/2A receptor agonist psilocybin alone and after formance, suggesting a primary involvement of the 5-HT1A pretreatment with the 5-HT2A antagonist ketanserin. Eight receptor in the observed deficit. Based on physiological and healthy human volunteers were tested on a multiple-object pharmacological data, we speculate that this impaired atten- tracking task and spatial working memory task under the tional performance may reflect a reduced ability to suppress or four conditions: placebo, psilocybin (215 Ag/kg), ketanserin ignore distracting stimuli rather than reduced attentional capac- (50 mg), and psilocybin and ketanserin. Psilocybin significantly ity. The clinical relevance of these results is also discussed. & INTRODUCTION ever, more recent work has shown that it is possible In a world where objects and events occurring around us to simultaneously track multiple objects distributed have varying degrees of relevance and importance, the throughout space (Pylyshyn & Storm, 1988), indepen- ability to selectively direct and maintain attention on a dent of eye movements (Culham et al., 1998). -
The Visual Search Analogue of Latent Inhibition: Implications for Theories of Irrelevant Stimulus Processing in Normal and Schizophrenic Groups
Psychonomic Bulletin & Review 2005, 12 (2), 224-243 The visual search analogue of latent inhibition: Implications for theories of irrelevant stimulus processing in normal and schizophrenic groups R. E. LUBOW Tel Aviv University, Ramat Aviv, Israel and OREN KAPLAN College of Management, Rishon Lezion, Israel Latent inhibition (LI) is a robust phenomenon that is demonstrated when a previously inconsequen- tial stimulus is less effective in a new learning situation than a novel stimulus. Despite LI’s simplicity, there is considerable disagreement as to its theoretical basis. Attentional theories claim that unat- tended stimulus preexposures reduce stimulus associability. Alternatively, it has been asserted that as- sociability is unaffected and that LI is a result of competition/retrieval processes. The present article reviews a series of visual search studies, some with normal subjects, both undifferentiated and divided into low and high schizotypals, and others with pathologies that entail dysfunctional attention, such as schizophrenia, Parkinson’s disease, and anxiety. The visual search conditions were designed to model those of traditional LI experiments, while tapping attentional processes independently of the learning scores that index LI. A variety of evidence from these and other studies is used to support the involve- ment of attentional and retrieval processes in LI. A model of the mechanism of action of these pro- cesses in LI is presented, together with its application to schizophrenia. There are some conditions that make it more difficult to tensive documentation indicates that such stimulus pre- acquire or to express a new association to a familiar stim- exposure may also enhance performance on a learning ulus than one to a novel stimulus, particularly when the fa- task, as in perceptual-learning effects (for reviews, see miliar stimulus has been previously unattended. -
A Modeling Study of a Decremental Cholinergic Pathway and Its Influence on Attention and Learning
Downloaded from learnmem.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Research Learning to ignore: A modeling study of a decremental cholinergic pathway and its influence on attention and learning Nicolas Oros,1,4 Andrea A. Chiba,3 Douglas A. Nitz,3 and Jeffrey L. Krichmar1,2 1Department of Cognitive Sciences, University of California–Irvine, Irvine, California 92697, USA; 2Department of Computer Science, University of California–Irvine, Irvine, California 92697, USA; 3Department of Cognitive Sciences, University of California–San Diego, La Jolla, California 92093, USA Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate at- tention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus basalis region (SI/ nBM) to the neocortex are necessary to increase attention to relevant stimuli and have been well studied. Lesser known are ACh projections from the medial septum/vertical limb of the diagonal band (MS/VDB) to the hippocampus and the cin- gulate that are necessary to reduce attention to irrelevant stimuli. We developed a neural simulation to provide insight into how ACh can decrement attention using this distinct pathway from the MS/VDB. We tested the model in behavioral par- adigms that require decremental attention. The model exhibits behavioral effects such as associative learning, latent inhibi- tion, and persisting behavior. Lesioning the MS/VDB disrupts latent inhibition, and drastically increases perseverative behavior. Taken together, the model demonstrates that the ACh decremental pathway is necessary for appropriate learning and attention under dynamic circumstances and suggests a canonical neural architecture for decrementing attention. -
Dopaminergic Basis of Salience Dysregulation in Psychosis
Review Dopaminergic basis of salience dysregulation in psychosis 1* 1,2* 3 Toby T. Winton-Brown , Paolo Fusar-Poli , Mark A. Ungless , and 1,3 Oliver D. Howes 1 Department of Psychosis Studies, Institute of Psychiatry, King’s College London, De Crespigny Park, SE58AF London, UK 2 OASIS Prodromal Service, South London and Maudsley (SLaM) National Health Service (NHS) Foundation Trust, London, UK 3 Medical Research Council Clinical Sciences Centre, Imperial College London, London, UK Disrupted salience processing is proposed as central in In recent years, there have been attempts to bridge this linking dysregulated dopamine function with psychotic gap. We will critically review here the evidence for the symptoms. Several strands of evidence are now converg- recent interpretation of dopaminergic dysfunction in psy- ing in support of this model. Animal studies show that chosis, according to which delusions emerge as an individ- midbrain dopamine neurons are activated by unexpected ual’s own explanation of the experience of aberrant salient events. In psychotic patients, neurochemical stud- salience. We start by examining normal aspects of salience ies have confirmed subcortical striatal dysregulation of and salience processing and how these relate to dopamine dopaminergic neurotransmission, whereas functional function in the human brain. We then describe the experi- magnetic resonance imaging (fMRI) studies of salience ence of aberrant salience in those experiencing early symp- tasks have located alterations in prefrontal and striatal toms of psychosis, before examining experimental evidence dopaminergic projection fields. At the clinical level, this of aberrant salience from animal studies and from neuro- may account for the altered sense of meaning and signifi- imaging studies in humans. -
Latent Inhibition in an Insect: the Role of Aminergic Signaling
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Brief Communication Latent inhibition in an insect: The role of aminergic signaling Vanesa M. Ferna´ndez,1,2 Martin Giurfa,3,4 Jean-Marc Devaud,3,4,5 and Walter M. Farina1,2,5,6 1Departamento de Biodiversidad y Biologı´a Experimental, Grupo de Estudio de Insectos Sociales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria 1428, Buenos Aires, Argentina; 2IFIBYNE, CONICET, Grupo de Estudio de Insectos Sociales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria 1428, Buenos Aires, Argentina; 3Universite´ de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, F-31062 Toulouse Cedex 9, France; 4CNRS, Centre de Recherches sur la Cognition Animale, F-31062 Toulouse Cedex 9, France Latent inhibition (LI) is a decrement in learning performance that results from the nonreinforced pre-exposure of the to-be- conditioned stimulus, in both vertebrates and invertebrates. In vertebrates, LI development involves dopamine and seroto- nin; in invertebrates there is yet no information. We studied differential olfactory conditioning of the proboscis extension response in the honeybee Apis mellifera, and we compared LI in individuals treated with antagonists of biogenic amines (dop- amine, octopamine, and serotonin). An antagonist of octopamine receptors and two antagonists of serotonin receptors showed LI disruption. We thus provide evidence that serotonin would participate in the regulation of LI in honeybees. [Supplemental material is available for this article.] Pavlovian conditioning consists of learning an association be- Are the neural mechanisms underlying LI conserved across tween a neutral stimulus (the conditioned stimulus: CS) and a species? To answer this question, comparative studies dissecting biologically relevant stimulus (the unconditioned stimulus: US) the role of brain areas and neurotransmitters in a broad spectrum (Pavlov 1927). -
Taste Processing: Insights from Animal Models
molecules Review Taste Processing: Insights from Animal Models Andrés Molero-Chamizo 1,* and Guadalupe Nathzidy Rivera-Urbina 2 1 Department of Psychology, Psychobiology Area, University of Huelva, Campus El Carmen, 21071 Huelva, Spain 2 Faculty of administrative and social sciences, Autonomous University of Baja California, Tijuana 22890, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +34-959-21-84-78 Academic Editors: Encarna Gómez-Plaza and Rocio Gil-Muñoz Received: 17 June 2020; Accepted: 7 July 2020; Published: 8 July 2020 Abstract: Taste processing is an adaptive mechanism involving complex physiological, motivational and cognitive processes. Animal models have provided relevant data about the neuroanatomical and neurobiological components of taste processing. From these models, two important domains of taste responses are described in this review. The first part focuses on the neuroanatomical and neurophysiological bases of olfactory and taste processing. The second part describes the biological and behavioral characteristics of taste learning, with an emphasis on conditioned taste aversion as a key process for the survival and health of many species, including humans. Keywords: flavour; molecular signalling; olfactory processing; receptors; taste learning; taste processing 1. Introduction Three important sensory systems depend on physical stimuli to initiate their processing. The somatosensory system recognises touch, pain and temperature; the auditory system recognises sound waves and the visual system recognises visual waves, as specific physical modalities. There are two other sensory systems which, however, depend on the stimulation produced by different chemical molecules. Olfactory and taste systems are activated by small particles stimulating specific receptor cells located in the respective membranes of the nose and tongue. -
Prepulse Inhibition During Withdrawal from an Escalating Dosage Schedule of Amphetamine
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Psychopharmacology (2003) 169:340–353 DOI 10.1007/s00213-002-1254-4 ORIGINAL INVESTIGATION Holger Russig · Carol A. Murphy · Joram Feldon Prepulse inhibition during withdrawal from an escalating dosage schedule of amphetamine Received: 6 March 2002 / Accepted: 21 August 2002 / Published online: 12 November 2002 Springer-Verlag 2002 Abstract Rationale: Psychomotor stimulants can induce Keywords Startle · Schizophrenia · Latent inhibition · psychotic states in humans that closely resemble those Sensitization · Rat observed in patients with idiopathic schizophrenia. At- tentional and sensorimotor gating impairments are ob- served in schizophrenic patients using the latent inhibition Introduction (LI) and prepulse inhibition (PPI) behavioral assays, respectively. Our previous studies demonstrated that after Administration of amphetamine (AMPH) can induce 4 days of withdrawal from a period of amphetamine symptoms of psychosis in humans. This outcome is most (AMPH) administration, animals exhibited disrupted LI frequently associated with a chronic high-dose escalating but normal PPI. Objective: The aim of the present study pattern of stimulant abuse (Davis and Schlemmer 1980; was to test PPI in AMPH-withdrawn rats under experi- Angrist 1994). Given that stimulant-induced psychosis in mental conditions similar to those used to best demon- humans closely resembles the psychosis observed in strate locomotor sensitization following AMPH patients with idiopathic schizophrenia (Ellinwood 1967; withdrawal. Methods: We examined the effects on PPI Griffith et al. 1972; Snyder 1973), it has been suggested of (1) pairing drug injections with PPI test-associated that similar neural adaptations could be responsible for cues, (2) administration of a low-dose dopamine agonist the development of these two phenomena. -
Sensory Processing Disorder)
GUIDE TO SPD (Sensory Processing Disorder) www.inha.ie Contents Introduction . .3 What is Sensory Processing Disorder? . .6 Sensory Motor Questionnaire for Parents . .10 Sensory Related Skills . .12 Characteristics of Tactile Dysfunction . .13 Characteristics of Vestibular Dysfunction . .18 Characteristics of Proprioceptive Dysfunction . .21 Characteristics of Visual Dysfunction . .23 Characteristics of the Auditory Sense . .26 Diagnosing the Problem . .28 What can Parents do to help the Sensory Child? . .30 Glossary of Sensory Processing Disorder terms . .39 Recommended Reading . .45 Online Resources . .46 2 Introduction All of us comprehend the world through our senses. We see things, we hear things, we touch things, we experience gravity, and we use our bodies to move around in the world. All the sensory input from the environment and from inside our bodies works together seamlessly so we know what's going on and what to do. Sensory integration is something most of us do automatically. Usually, sensory input registers well and gets processed in the central nervous system, which in turn integrates it smoothly with all the other senses. This process lets us think and behave appropriately in response to what's happening inside and around us. When we look at Development and the process of learning new skills there is a hierarchy of developmental processes which must be developed before the actual skill of for example using a spoon to feed oneself, sit and concentrate in class, tie a shoe lace can be achieved. Sensory experiences are the basis of learning for all Infants Children born prematurely are at increased risk for sensory-based difficulties including Sensory Processing Disorder (SPD). -
Acetylcholine
1 ACETYLCHOLINE MARINA R. PICCIOTTO MEENAKSHI ALREJA AND J. DAVID JENTSCH Acetylcholine (ACh) is critical for communication between lacking the ␣3 (6), ␣4 (7), ␣5 (8), ␣7 (9), ␣9 (10), 2 neurons and muscle at the neuromuscular junction, is in- (11), 3 (12), or 4 (13) subunit of the nAChR have been volved in direct neurotransmission in autonomic ganglia, reported. In addition, mice lacking the M1 (14), M2 (15), and has been implicated in cognitive processing, arousal, and M4 (16) subtypes of the muscarinic receptor have been and attention in the brain (1). Cholinergic transmission can generated. These mice have already been used to demon- occur through muscarinic (G protein-coupled) or nicotinic strate the role of particular receptor subtypes in the physio- (ionotropic) receptors and is terminated by the action of logic effects of ACh in muscle, the peripheral ganglia, and cholinesterases. Seventeen different subunits of the nicotinic the central nervous system (Table 1.1). ACh receptor (nAChR) (2) and five different subtypes of The function of ACh has been best studied at the neuro- the muscarinic receptor (3) have been cloned to date, and muscular junction, where signaling occurs through the mus- a majority of those are known to be expressed in the brain. cle form of the nAChR. In the embryo, the nAChR at the Although the anatomic locations of cholinergic cell bodies neuromuscular junction is a pentamer made up of two ␣, and their projections have been known for some time (Fig. one , one ␥, and one ␦ subunit. After birth, the ␥ subunit 1.1), recent studies using specific cholinotoxins, electro- is replaced by the ⑀ subunit, so that the physiologic proper- physiology, or molecular genetics have altered our view of ties of the receptor are altered.