The Book on the Technologies of Polymicro

Total Page:16

File Type:pdf, Size:1020Kb

The Book on the Technologies of Polymicro The Book on the technologies of Polymicro • Specialty Optical Fiber • Flexible Fused Silica Capillary Tubing • Fiber Optic and Capillary Assemblies • Fused Silica and Quartz Micro-Components www.polymicro.com Forward Welcome to Polymicro Technologies’ catalog. We pride ourselves on the quality of our products and our service. This catalog represents an effort to provide a tool to aid our customers in understanding our products, the materials with which we work, and the capabilities we can provide. We are unique in our ability to work with the customer from design, to prototype, to large-scale production. We provide a breadth of expertise unparalleled in the industry with custom preform capabilities, tower capabilities to draw fiber and tubing, laser capabilities to create micro-components, and assembly capabilities to put it all together. It is our goal to continually improve our products, our capabilities, and ourselves to meet the challenges of our customers’ technological requirements. Production, Engineering, and Sales at Polymicro are dedicated to your success. We believe firmly in the basic idea that our customers’ success translates to our success. For the latest in new procedures, application notes, and general information visit our website. In spite of our best efforts, this catalog is not perfect. We welcome any recommendations or suggestions. We are here to meet your needs. Thank you THE PEOPLE OF POLYMICRO TECHNOLOGIES Polymicro Technologies, a Subsidiary of Molex 18019 North 25th Avenue Phoenix, Arizona 85023-1200 Phone: (602) 375-4100 Fax: (602) 375-4110 e-mail: [email protected] URL:http://www.polymicro.com Technical Data Disclaimer The information given herein, including drawings, illustrations and schematics (that are intended for illustration purposes only), is believed to be reliable. However, Polymicro Technologies, makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. Polymicro Technologies, only obligation shall be as set forth in Polymicro Technologies, standard terms and conditions of sale for this product and in no way will Polymicro Technologies, be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of Polymicro Technologies, products should make their own evaluation to determine the suitability of each such product for the specific application. © Polymicro Technologies, a Subsidiary of molex. Table of Contents Page# 1 Introduction History - from 3000 BC . .1 - 1 Glass . .1 - 2 Quartz and Synthetic Fused Silica . .1 - 2 Drawn Glass And Glass Tubing . .1 - 3 Physical Properties . .1 - 3 High Technology Synthetic Fused Silica and Common Quartz . .1 - 3 Difference in Types . .1 - 4 Solarized Glass . .1 - 4 2 Fiber Optics and Optical Fiber Optical Concepts . .2 - 1 Light Sources and Distributions . .2 - 1 Getting Light Where You Want It . .2 - 2 The Science of Optical Fiber . .2 - 2 Total Internal Reflection . .2 - 2 Numerical Aperture . .2 - 3 Input-Output Phenomena . .2 - 4 Tapered Fibers . .2 - 5 Matching Numerical Apertures . .2 - 5 Fiber Types & Modes of Transmission . .2 - 7 Dispersion . .2 - 9 Bandwidth . .2 - 9 Focal Ratio Degradation (FRD) . .2-10 Attenuation & Transmission . .2-10 Low -OH and High -OH Optical Fiber . .2 - 11 Internal & External Losses . .2 - 11 Bend Radius - Optical Effect . .2-12 Evanescent Wave Losses in Small Diameter Fibers . .2-12 Power Transmission . .2-13 Fluorescence in Fiber Optical Materials . .2-14 UV Fiber Performance Solarization . .2-14 Infrared Waveguides . .2-16 Coatings and Buffers . .2-16 Broadband Fiber (FBP) . .2-17 Mechanical and Environmental . .2-18 Mechanical Stress and Fiber Strength . .2-18 Radiation Resistance . .2-20 3 Flexible Fused Silica Capillary Tubing What is a Capillary? . .3 - 1 Applications Employing Capillary . .3 - 1 Characteristics Offered by Capillary . .3 - 2 Gas Chromatography . .3 - 2 Capillary Electrophoresis . .3 - 3 Capillary Liquid Chromatography . .3 - 3 Mass Flow Control . .3 - 4 Other Uses for Synthetic Fused Silica Capillary Tubing . .3 - 4 Capillary Products . .3 - 5 Cutting and Cleaving Capabilities . .3 - 5 Coupling and Connecting Capillary . .3 - 6 Pressure Handling Capabilities . ..
Recommended publications
  • Thermal Shock
    TEACHER INSTRUCTIONS Thermal Shock Objective: To illustrate thermal expansion and thermal shock. Background Information: In physics, thermal expansion is the tendency of matter to increase in volume or pressure when heated. For liquids and solids, the amount of expansion will normally vary depending on the material’s coefficient of thermal expansion. When materials contract, tensile forces are created. When things expand, compressive forces are created. Thermal shock is the name given to cracking as a result of rapid temperature change. From the laboratory standpoint, there are three main types of glass used today: borosilicate, quartz, and soda lime or flint glass. Borosilicate glass is made to withstand thermal shock better than most other glass through a combination of reduced expansion coefficient and greater strength, though fused quartz outperforms it in both respects. Some glass-ceramic materials include a controlled proportion of material with a negative expansion coefficient, so that the overall coefficient can be reduced to almost exactly zero over a reasonably wide range of temperatures. Improving the shock resistance of glass and ceramics can be achieved by improving the strength of the materials or by reducing its tendency to uneven expansion. One example of success in this area is Pyrex, the brand name that is well known to most consumers as cookware, but which is also used to manufacture laboratory glassware. Pyrex traditionally is made with a borosilicate glass with the addition of boron, which prevents shock by reducing the tendency of glass to expand. Demo description: Three different types of glass rods will be heated so that students can observe the amount of thermal shock that occurs.
    [Show full text]
  • Reference Guide on Optical Interconnects for High Performance Compute (HPC) Systems
    Reference Guide on Optical Interconnects For High Performance Compute (HPC) Systems Prepared by: Nathan Harff, James Kruchowski, Mark Nelson, Brian Shamblin, and Vladimir Sokolov Special Purpose Processor Development Group Mayo Clinic Rochester, MN 55905 Phone: (507)284-4056 October 2009 Mayo-R-09-39-R1 Table of Contents Table of Contents................................................................................................................. i List of Figures ................................................................................................................... vii List of Tables ................................................................................................................... xii Acknowledgements........................................................................................................... xv 1 Basic Theory........................................................................................................1-1 1.1 Generic Electro-Optic Link......................................................................1-1 1.2 Guided Light............................................................................................1-2 1.2.1 Light Transmission in Free Space Versus an Optical Waveguide1-2 1.2.2 Types of Optical Waveguides......................................................1-2 1.2.3 Single-Mode and Multimode Optical Fibers ...............................1-4 1.2.4 Attenuation in Optical Fibers.......................................................1-4 1.2.5 Dispersion in Optical Fibers
    [Show full text]
  • Ultradeep Fused Silica Glass Etching with an HF- Resistant Photosensitive Resist for Optical Imaging Applications
    Ultradeep fused silica glass etching with an HF- resistant photosensitive resist for optical imaging applications John M Nagarah and Daniel A Wagenaar Broad Fellows Program and Division of Biology California Institute of Technology 1200 E. California Blvd. MC 216-76 Pasadena, CA 91125 [email protected] [email protected] Abstract Microfluidic and optical sensing platforms are commonly fabricated in glass and fused silica (quartz) because of their optical transparency and chemical inertness. Hydrofluoric acid (HF) solutions are the etching media of choice for deep etching into silicon dioxide substrates, but processing schemes become complicated and expensive for etching times greater than 1 hour due to the aggressiveness of HF migration through most masking materials. We present here etching into fused silica more than 600 μm deep while keeping the substrate free of pits and maintaining a polished etched surface suitable for biological imaging. We utilize an HF-resistant photosensitive resist (HFPR) which is not attacked in 49% HF solution. Etching characteristics are compared for substrates masked with the HFPR alone and the HFPR patterned on top of Cr/Au and polysilicon masks. We used this etching process to fabricate suspended fused silica membranes, 8–16 μm thick, and show that imaging through the membranes does not negatively affect image quality of fluorescence microscopy of biological tissue. Finally, we realize small through-pore arrays in the suspended membranes. Such devices will have applications in planar electrophysiology platforms, especially where optical imaging is required. 1. Introduction Glass and fused silica are appealing materials for constructing microelectromechanical systems (MEMS), lab-on-a-chip, and microfluidic platforms due to their chemical inertness, biocompatibility, optical transparency, mechanical rigidity, high melting point, electrical insulation, gas impermeability, and ability to bond to silicon, glass, and polydimethylsiloxane (PDMS) [1-3].
    [Show full text]
  • Investigation of Light Output Uniformity and Performance Using a UV
    Investigation of light output uniformity and performance using a UV transmitting glass optic to improve cure quality Brian Jasenak, Rachel Willsey, Adam Willsey, James Forish Kopp Glass 2108 Palmer Street Pittsburgh, PA 15218 ABSTRACT Ultraviolet light-emitting diode (UV LED) adoption is accelerating; they are being used in new applications such as UV curing, germicidal irradiation, nondestructive testing, and forensic analysis. In many of these applications, it is critically important to produce a uniform light distribution and consistent surface irradiance. Flat panes of fused quartz, silica, or glass are commonly used to cover and protect multi-UV LED arrays. However, they don’t offer the advantages of an optical lens design. An investigation was conducted to determine the effect of a secondary glass optic on the uniformity of the light distribution and irradiance. Glass optics capable of transmitting UV-A, UV-B, and UV-C wavelengths can improve light distribution and intensity. In this study, a UV transmitting glass formulation and secondary linear optic were designed and manufactured to demonstrate their effects on achievable irradiance intensity and uniformity. Prismatic patterning on the light source surface of the lens was used to minimize reflection losses on the incident surface of the glass. Fresnel optics were molded into the opposite side of the UV transmitting glass to control the refraction of the light and to gain the desired light intensity distribution from two multi-UV LED arrays. A 20% increase in relative irradiance was observed while maintaining the same coverage area. This work discusses the optical design and the resulting benefits of controlled light output on UV LED systems, which include reduced driving current, decreased thermal deterioration, improved energy efficiency, and longer LED lifetime.
    [Show full text]
  • VSMOW Triple Point of Water Cells: Borosilicate Versus Fused-Quartz
    VSMOW Triple Point of Water Cells: Borosilicate versus Fused- Quartz M. Zhao1,3 and G. F. Strouse 2 1 Fluke Corporation, Hart Scientific Division, American Fork, Utah 84003, U.S.A. 2 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, U.S.A. 3 To whom correspondence should be addressed. E-mail: [email protected] ABSTRACT To investigate an ideal container material for the triple point of water (TPW) cell, and reduce the influence to the triple-point temperature due to the deviation of the isotopic composition of the water, we developed and tested both borosilicate and fused-quartz glass shelled TPW cells with isotopic composition substantially matching that of Vienna Standard Mean Ocean Water (VSMOW). Through a specially designed manufacturing system, the isotopic composition, δD and δ18O, of the water in the TPW cell could be controlled within ±10‰ (per mil) and ±1.5‰ respectively, resulting in control of the isotopic temperature correction to better than ±8 µK. Through an ampoule attached to the cell, the isotopic composition of the water in the cell could be analyzed individually. After manufacture, the initial triple-point temperature of the two types of cell were measured and compared to assess the quality of the cells and manufacturing process. Cells fabricated with the new system agree to within 50 µK. Two innovatively-designed borosilicate and fused-quartz TPW cells were made, each with six attached ampoules. We removed one ampoule every six months to track any changes in purity of the water over time. KEY WORDS: isotopic composition; ITS-90, TPW cell; Vienna standard mean ocean water; VSMOW; water impurities; water triple point.
    [Show full text]
  • Specialty Glass Technical Capabilities
    SpecialtySpecialty GlassGlass TechnicalTechnical CapabilitiesCapabilities 07/1307/13 Web: www.abrisatechnologies.com - E–mail: [email protected] - Tel: (877) 622-7472 Page 1 Specialty Glass Products Technical Reference Document 07/13 It all starts with the basic element, the glass. Each substrate has unique and specific qualities which are matched to the application and specifications that your unique project requires. Abrisa Technologies offers: High Ion-Exchange (HIE) Thin Glass High Ion-Exchange (HIE) Aluminosilicate Thin Glass - (Page 3) Asahi Dragontrail™ - (Pages 4 & 5) Corning® Gorilla® Glass - (Pages 6 & 7) SCHOTT Xensation™ Cover Glass - (Page 8) Soda-Lime Soda-Lime (Clear & Tinted) - (Page 9) Soda-Lime (Low Iron) - (Page 10) Soda-Lime (Anti-Glare Reducing Etched Glass) - (Page 11) Patterned Glass for Light Control - (Page 12 & 13) Soda-Lime Low Emissivity (Low-E) Glass - (Page 14) Soda-Lime (Heat Absorbing Float Glass) - (Page 15) Borosilicate SCHOTT BOROFLOAT® 33 Multi-functional Float Glass - (Pages 16 & 17) SCHOTT BOROFLOAT Infrared (IRR) - (Page 18) SCHOTT SUPREMAX® Rolled Borosilicate - (Pages 19 & 20) SCHOTT D263 Colorless Thin Glass - (Pages 21 & 22) SCHOTT Duran® Lab Glass - (Pages 24 & 25) Ceramic/Glass SCHOTT Robax® Transparent Ceramic Glass - (Page 26) SCHOTT Pyran® Fire Rated Glass Ceramic - (Page 27) Quartz/Fused Silica Corning® 7980 Fused Silica - (Page 28) GE 124 Fused Quartz - (Page 309 Specialty Glass Corning® Eagle XG LCD Glass Free of Heavy Metals - (Page 30 & 31) Laminated Glass - Safety Glass - (Page 32) SCHOTT Superwhite B270® Flat Glass - (Page 33) Weld Shield - (Page 354 White Flashed Opal - (Page 35) X-Ray Glass (Radiation Shielding Glass) - (Page 376 Web: www.abrisatechnologies.com - E–mail: [email protected] - Tel: (877) 622-7472 Page 2 Specialty Glass Products Technical Reference Document 07/13 High Ion-Exchange (HIE) High Ion-Exchange (HIE) Chemically Strengthened Aluminosilicate Thin Glass High Ion-Exchange (HIE) thin glass is strong, lightweight and flexible.
    [Show full text]
  • SUPTEV007 Poster Submission.Pdf
    Development of a system for coating SRF cavities using Remote Plasma CVD (Chemical Vapor Deposition) Gabriel Gaitan, Zeming Sun, Adam Holic, Gregory Kulina, Matthias Liepe, James Sears, Paul Bishop (CLASSE) Setup Background • Samples are loaded on Moly boats and • Thin-film surfaces employing Nb3Sn, NbN, NbTiN, and introduced in the system for other compound superconductors are destined to annealing/CVD Clean Room allow reaching superior RF performance levels in SRF • Fused Quartz tube suitable to 1100C Turbopump cavities • An RF source will create plasma from the & VQM • Optimized, advanced deposition processes are precursors and this will reduce processing Quartz tube required to enable high-quality films of such materials temperature and promote precursor on large and complex shaped cavities. In doing this, decomposition Cornell University is developing a remote plasma- • Clean room is used for minimizing enhanced chemical vapor deposition (CVD) system contaminants in the furnace Furnace Furnace that facilitates coating on complicated geometries • Heat shields protect the O-rings on the controls with a high deposition rate. end flanges from overheating. Plasma source Cold trap Furnace offers independent control of heating for all 3 • Loading and unloading system is being designed to allow processing of small VQM is important for monitoring carbon and hydrogen zones of the furnace. Maximum furnace temperature samples and cavities of 2.6GHz and 3.9GHz. contamination that might affect cavity performance 1500C. Moly boats Maximum safe
    [Show full text]
  • Quartz Properties
    Quartz Properties http://www.quartz.com/mpmdata.html Fused Quartz Properties & Usage Guide MPM Type 214, 214LD and 124 Momentive Quartz Plant - Willoughby, OH Properties Index Material Types ... Use Guidelines ... Physical Properties ... Chemical Composition ... Electrical Properties ... Mechanical Properties ... Permeability ... Thermal Properties ... Trace Elements ... Optical Properties ... Semiconductor Grade Fused Quartz Tubing In the semiconductor industry a combination of extreme purity and excellent high temperature properties make fused quartz tubing an ideal furnace chamber for processing silicon wafers. The material can tolerate the wide temperature gradients and high heat rates of the process. And its purity creates the low contamination environment required for achieving high wafer yields. The advent of eight inch wafers combined with today's smaller chip sizes has increased chip production by a factor of four compared to technology in place just a few years ago. These developments have impacted heavily on quartz produced, requiring both large diameter tubing and significantly higher levels of purity. GE Quartz. has responded on both counts. Quartz tubing is available in a full range of sizes, including diameters of 400mm and larger. Diameter and wall thickness dimensions are tightly controlled. Special heavy wall thicknesses are available on request. By finding new and better sources of raw material, expanding and modernizing our production facilities, and upgrading our quality control functions, GE has reduced contaminants levels in its fused quartz tubing to less than 25 ppm, with alkali levels below 1 ppm. Grade 214LD This is the large diameter grade of industry standard 214 quartz tubing. For all but the highly specialized operations, this low cost tubing offers the levels of purity, sag resistance, furnace life and other properties that diffusion and CVD processes require.
    [Show full text]
  • Observing Photons in Space
    —1— Observing photons in space For the truth of the conclusions of physical science, observation is the supreme court of appeals Sir Arthur Eddington Martin C.E. HuberI, Anuschka PauluhnI and J. Gethyn TimothyII Abstract This first chapter of the book ‘Observing Photons in Space’ serves to illustrate the rewards of observing photons in space, to state our aims, and to introduce the structure and the conventions used. The title of the book reflects the history of space astronomy: it started at the high-energy end of the electromagnetic spectrum, where the photon aspect of the radiation dominates. Nevertheless, both the wave and the photon aspects of this radiation will be considered extensively. In this first chapter we describe the arduous efforts that were needed before observations from pointed, stable platforms, lifted by rocket above the Earth’s atmosphere, became the matter of course they seem to be today. This exemplifies the direct link between technical effort — including proper design, construction, testing and calibration — and some of the early fundamental insights gained from space observations. We further report in some detail the pioneering work of the early space astronomers, who started with the study of γ- and X-rays as well as ultraviolet photons. We also show how efforts to observe from space platforms in the visible, infrared, sub-millimetre and microwave domains developed and led to today’s emphasis on observations at long wavelengths. The aims of this book This book conveys methods and techniques for observing photons1 in space. ‘Observing’ photons implies not only detecting them, but also determining their direction at arrival, their energy, their rate of arrival, and their polarisation.
    [Show full text]
  • Showcasing III-V Success
    Volume 23 Issue 1 JANUARY / FEBRUARY 2017 @compoundsemi www.compoundsemiconductor.net Turbo-charging LiFi with semi-polar lasers Removing thermal barriers to GaN HEMTs Trumping incumbents with quantum dot lasers Uniting III-V tunnel FETs with silicon substrates Niobium nitride enables epitaxial lift-off of GaN IEDM Showcasing III-V success News Review, News Analysis, Features, Research Review, and much more... inside Free Weekly E News round up go to: www.compoundsemiconductor.net Front Cover CSv2RS.indd 1 30/01/2017 14:40 Untitled-5 1 29/06/2016 15:50 Viewpoint By Dr Richard Stevenson, Editor III-Vs get out and about THE PHRASE “electron devices” strikes me as a little odd. It University claimed a record seems to speak of a bygone era, when key building blocks for on-current for any III-V or electrical engineers included various forms of vacuum tube. silicon MOSFET. Their device Today, what we tend to talk about is the electronic device, sports indium-rich nanowires sometimes prefaced with the term solid-state. with a benefi cial distribution of interface states. Where the phrase “electron devices” does crop up is in the title to the annual IEEE Electron Devices Meeting, often referred to Northrop Grumman are as IEDM. It has been running for well over fi fty years. renowned for their pioneering efforts in InP terahertz I have no idea what technologies dominated the proceedings of technology, and at the latest the early meetings, but in the ten or more years that I’ve been IEDM Bill Deal claimed that following the papers given at IEDM silicon has been dominant.
    [Show full text]
  • 5. Astronomy Through the Atmosphere
    5. Astronomy Through the Atmosphere Ground based observations are affected by: • absorption • refraction • scattering • scintillation In this section we will briefly consider some of the effects of these four phenomena. 1 Absorption The Earth’s atmosphere is opaque to E-M radiation, apart from two windows: in the optical and radio regions of the E-M spectrum. X-rays UV Visible Infrared sub mm Radio mm & microwave hard soft EUV (FIR) Completely opaque Optical window Radio window Molecular transitions (inc. H2O) 0 Ionisation of air molecules (starting with ozone) Ionosphere reflective Fraction of energy absorbed 1 1nm 10nm 100nm 1mm 10mm 100mm 1mm 1cm 10cm 1m 10m2 100m Completely transparent Wavelength Absorption Between the optical and radio windows there are numerous absorption bands due to molecular transitions (mainly of water). It is possible to get above the clouds containing this water vapour because of the 4 temperature structure (km) of the atmosphere. Above about 2 km there can be a thin inversion Altitude 2 layer, where the temperature Inversion increases with height. Clouds layer form at the base of the inversion layer, leaving generally clear, dry 020 Temperature (C) air above. 3 Absorption The world’s best observatories (e.g. La Palma, Hawaii, La Silla, Paranal) are all at altitudes and locations which place them above inversion layers. 4 Absorption How does absorption in the atmosphere affect the apparent brightness of objects? We model the atmosphere as a series of plane-parallel slabs. Consider a thin slab of thickness d
    [Show full text]
  • Fiber Optic Glossary
    Fiber Optic Glossary 837 Industry Drive • Tukwila, WA 98188 (206) 575-0404 • 1 (800) 451-7128 [email protected] www.lightbrigade.com © 2017 The Light Brigade, Inc. Fiber Optic Glossary Glossary of Terms µm Aerial cables A micron; a millionth of a meter. Common unit of Cables that are designed to handle environmental concerns measurement of optical fibers. such as wind and ice loading, pollution, UV radiation, thermal cycling, stress, and aging in aerial placements. Abrasion resistance There are several variations of aerial cables including A cable’s ability to resist surface wear. OPGW and ADSS. Absorption Caused by impurities introduced during the manufacturing Air blown fiber (ABF) process, absorption creates loss in a fiber by turning light An installation technique developed by British Telecom energy into heat. The amount of absorption is determined where micro ducts or “pipe cables” are installed, and then by the wavelength and depends upon the composition of optical fibers or fiber bundles are blown into the cable with the glass or plastic. Absorption and scattering are the two spans reaching 10,000 feet. causes of intrinsic attenuation in an optical fiber. Air handling plenum Acceptance angle A space within a building designed for the movement of See Critical angle. environmental air, e.g., a space above a suspended ceiling or below an access floor. Acceptance test A test to confirm that an optical cable or link meets Air polish established performance specifications. The first polish of a ferrule or termini after the fiber has been cleaved. The lapping film is passed over the connector Active device endface in the air to polish the fiber stub just above the An active device is a device that requires electrical power.
    [Show full text]