DDR SDRAM SO-DIMM MODULE, 2.5V 1Gbyte - 128MX72 AVK7228U52C3400K8-AP

Total Page:16

File Type:pdf, Size:1020Kb

DDR SDRAM SO-DIMM MODULE, 2.5V 1Gbyte - 128MX72 AVK7228U52C3400K8-AP DDR SDRAM SO-DIMM MODULE, 2.5V 1GByte - 128MX72 AVK7228U52C3400K8-AP FEATURES JEDEC Compliant DDR 400MHz Version 1.0, Lead Free, RoHS compliant Clock frequency: 200MHz with CAS latency 3 256 byte serial EEPROM Data input and output masking Programmable burst length: 2, 4, 8 Programmable burst type: sequential and interleave Programmable CAS latency: 3 Auto refresh and self refresh capability Gold card edge fingers 8K refresh per 64ms Low active and standby current consumption SSTL-2 compatible inputs and outputs Decoupling capacitors at each memory device Double-sided module 30mm (1.181 inch) height DESCRIPTION The AVK7228U52C3400K8-AP is an Unbuffered DDR SDRAM SODIMM memory module. This module is JEDEC- standard 200-pin, small-outline, dual in-line memory module. A 256 byte serial EEPROM on board can be used to store module information such as timing, configuration, density, etc. The AVK7228U52C3400K8-AP memory module is 1GByte and organized as a 128MX72 array using (18) 64MX8 DDR SDRAMs in lead free BGA packages. All memory modules are fabricated using the latest technology design, six-layer printed circuit board substrate construction with low ESR decoupling capacitors on-board for high reliability and low noise. PHYSICAL DIMENSIONS 67.60 (2.66) 3.50 (0.136) 512Mbit 512Mbit 512Mbit 512Mbit 64Mbx8 64Mbx8 64Mbx8 64Mbx8 DDR DDR DDR DDR SPD BGA SDRAM BGA SDRAM BGA SDRAM BGA SDRAM ) 5 2 . 1 ( 5 512Mbit 7 512Mbit 512Mbit 512Mbit 512Mbit . 1 ) 64Mbx8 64Mbx8 64Mbx8 64Mbx8 64Mbx8 3 7 8 DDR DDR DDR DDR DDR 7 . 0 BGA SDRAM ( BGA SDRAM BGA SDRAM BGA SDRAM BGA SDRAM 0 2 FRONT SIDE 1.00 (0.04) Pin 1 Pin 199 NOTES: 1- All dimensions are in milimeters (inches) 2- The dimensional drawings are for reference only. Refer to the JEDEC document for additional information. 3- All blue ICs are on the front, and all red ICs are on the back side of the module. Avant™ Technology LP. Copyright© Avant™ Technology LP. 2011 828 New Meister Ln,Bldg 10,Suite #300,Pflugerville,TX 78660 All rights reserved Ph (512) 651-5300 Fax (512) 651-5251 Rev A (Feb 2011) Page 1 of 2 AVK7228U52C3400K8-AP.vsd DDR SDRAM SO-DIMM MODULE, 2.5V AVK7228U52C3400K8-AP Avant Ordering Guides AV K 72 28 U 52 C 3 400 K 8 INVENTORY MOD. TYPE ORG. DENSITY PARITY TYPE VOLT. FEATURE SPEED MODE REV Av = AVANT K = 200-PIN SO-DIMM 72=X72 128-128M U=UNBUFFERED 52=16MX8X4 (8K) C = 2.5V 3 = CAS LATENCY 3 400MHz K = DDR REV=X Other options may be available. Call for specific part number information on options not listed. Avant™ Technology LP., reserves the right to change products or specifications without notice. Avant™ Technology LP. Copyright© Avant™ Technology LP. 2011 828 New Meister Ln,Bldg 10,Suite #300,Pflugerville,TX 78660 All rights reserved Ph (512) 651-5300 Fax (512) 651-5251 Rev A (Feb 2011) Page 2 of 2 AVK7228U52C3400K8-AP.vsd.
Recommended publications
  • 2GB DDR3 SDRAM 72Bit SO-DIMM
    Apacer Memory Product Specification 2GB DDR3 SDRAM 72bit SO-DIMM Speed Max CAS Component Number of Part Number Bandwidth Density Organization Grade Frequency Latency Composition Rank 0C 78.A2GCB.AF10C 8.5GB/sec 1066Mbps 533MHz CL7 2GB 256Mx72 256Mx8 * 9 1 Specifications z Support ECC error detection and correction z On DIMM Thermal Sensor: YES z Density:2GB z Organization – 256 word x 72 bits, 1rank z Mounting 9 pieces of 2G bits DDR3 SDRAM sealed FBGA z Package: 204-pin socket type small outline dual in line memory module (SO-DIMM) --- PCB height: 30.0mm --- Lead pitch: 0.6mm (pin) --- Lead-free (RoHS compliant) z Power supply: VDD = 1.5V + 0.075V z Eight internal banks for concurrent operation ( components) z Interface: SSTL_15 z Burst lengths (BL): 8 and 4 with Burst Chop (BC) z /CAS Latency (CL): 6,7,8,9 z /CAS Write latency (CWL): 5,6,7 z Precharge: Auto precharge option for each burst access z Refresh: Auto-refresh, self-refresh z Refresh cycles --- Average refresh period 7.8㎲ at 0℃ < TC < +85℃ 3.9㎲ at +85℃ < TC < +95℃ z Operating case temperature range --- TC = 0℃ to +95℃ z Serial presence detect (SPD) z VDDSPD = 3.0V to 3.6V Apacer Memory Product Specification Features z Double-data-rate architecture; two data transfers per clock cycle. z The high-speed data transfer is realized by the 8 bits prefetch pipelined architecture. z Bi-directional differential data strobe (DQS and /DQS) is transmitted/received with data for capturing data at the receiver. z DQS is edge-aligned with data for READs; center aligned with data for WRITEs.
    [Show full text]
  • Different Types of RAM RAM RAM Stands for Random Access Memory. It Is Place Where Computer Stores Its Operating System. Applicat
    Different types of RAM RAM RAM stands for Random Access Memory. It is place where computer stores its Operating System. Application Program and current data. when you refer to computer memory they mostly it mean RAM. The two main forms of modern RAM are Static RAM (SRAM) and Dynamic RAM (DRAM). DRAM memories (Dynamic Random Access Module), which are inexpensive . They are used essentially for the computer's main memory SRAM memories(Static Random Access Module), which are fast and costly. SRAM memories are used in particular for the processer's cache memory. Early memories existed in the form of chips called DIP (Dual Inline Package). Nowaday's memories generally exist in the form of modules, which are cards that can be plugged into connectors for this purpose. They are generally three types of RAM module they are 1. DIP 2. SIMM 3. DIMM 4. SDRAM 1. DIP(Dual In Line Package) Older computer systems used DIP memory directely, either soldering it to the motherboard or placing it in sockets that had been soldered to the motherboard. Most memory chips are packaged into small plastic or ceramic packages called dual inline packages or DIPs . A DIP is a rectangular package with rows of pins running along its two longer edges. These are the small black boxes you see on SIMMs, DIMMs or other larger packaging styles. However , this arrangment caused many problems. Chips inserted into sockets suffered reliability problems as the chips would (over time) tend to work their way out of the sockets. 2. SIMM A SIMM, or single in-line memory module, is a type of memory module containing random access memory used in computers from the early 1980s to the late 1990s .
    [Show full text]
  • Product Guide SAMSUNG ELECTRONICS RESERVES the RIGHT to CHANGE PRODUCTS, INFORMATION and SPECIFICATIONS WITHOUT NOTICE
    May. 2018 DDR4 SDRAM Memory Product Guide SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other- wise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. © 2018 Samsung Electronics Co., Ltd. All rights reserved. - 1 - May. 2018 Product Guide DDR4 SDRAM Memory 1. DDR4 SDRAM MEMORY ORDERING INFORMATION 1 2 3 4 5 6 7 8 9 10 11 K 4 A X X X X X X X - X X X X SAMSUNG Memory Speed DRAM Temp & Power DRAM Type Package Type Density Revision Bit Organization Interface (VDD, VDDQ) # of Internal Banks 1. SAMSUNG Memory : K 8. Revision M: 1st Gen. A: 2nd Gen. 2. DRAM : 4 B: 3rd Gen. C: 4th Gen. D: 5th Gen.
    [Show full text]
  • Dual-DIMM DDR2 and DDR3 SDRAM Board Design Guidelines, External
    5. Dual-DIMM DDR2 and DDR3 SDRAM Board Design Guidelines June 2012 EMI_DG_005-4.1 EMI_DG_005-4.1 This chapter describes guidelines for implementing dual unbuffered DIMM (UDIMM) DDR2 and DDR3 SDRAM interfaces. This chapter discusses the impact on signal integrity of the data signal with the following conditions in a dual-DIMM configuration: ■ Populating just one slot versus populating both slots ■ Populating slot 1 versus slot 2 when only one DIMM is used ■ On-die termination (ODT) setting of 75 Ω versus an ODT setting of 150 Ω f For detailed information about a single-DIMM DDR2 SDRAM interface, refer to the DDR2 and DDR3 SDRAM Board Design Guidelines chapter. DDR2 SDRAM This section describes guidelines for implementing a dual slot unbuffered DDR2 SDRAM interface, operating at up to 400-MHz and 800-Mbps data rates. Figure 5–1 shows a typical DQS, DQ, and DM signal topology for a dual-DIMM interface configuration using the ODT feature of the DDR2 SDRAM components. Figure 5–1. Dual-DIMM DDR2 SDRAM Interface Configuration (1) VTT Ω RT = 54 DDR2 SDRAM DIMMs (Receiver) Board Trace FPGA Slot 1 Slot 2 (Driver) Board Trace Board Trace Note to Figure 5–1: (1) The parallel termination resistor RT = 54 Ω to VTT at the FPGA end of the line is optional for devices that support dynamic on-chip termination (OCT). © 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries.
    [Show full text]
  • DDR SDRAM SO-DIMM MODULE, 2.5V 128Mbyte - 16MX64 AVK6416U35C5266K0-AP
    DDR SDRAM SO-DIMM MODULE, 2.5V 128MByte - 16MX64 AVK6416U35C5266K0-AP FEATURES JEDEC Standard DDR 266MHz PC2100 Version 1.0, Lead Free, RoHS compliant Clock frequency: 133MHz with CAS latency 2.5 256 byte serial EEPROM Data input and output masking Programmable burst length: 2, 4, 8 Programmable burst type: sequential and interleave Programmable CAS latency: 2.5 Auto refresh and self refresh capability Gold card edge fingers 8K refresh per 64ms Low active and standby current consumption SSTL-2 compatible inputs and outputs Decoupling capacitors at each memory device Double-sided module 30.75mm (1.25 inch) height DESCRIPTION The AVK6416U35C5266K0-AP is an Unbuffered DDR SDRAM SODIMM memory module. This module is JEDEC- standard 200-pin, small-outline, dual in-line memory module. A 256 byte serial EEPROM on board can be used to store module information such as timing, configuration, density, etc. The AVK6416U35C5266K0-AP memory module is 128MByte and organized as a 16MX64 array using (8) 8MX16 DDR SDRAMs in lead free TSSOP II packages. All memory modules are fabricated using the latest technology design, six-layer printed circuit board substrate construction with low ESR decoupling capacitors on-board for high reliability and low noise. PHYSICAL DIMENSIONS 67.60 (2.66) 3.50 (0.14) SPD 128Mbit 128Mbit 128Mbit 128Mbit ) 5 8MbX16 8MbX16 8MbX16 8MbX16 2 . 1 ( DDR DDR DDR DDR 5 7 SDRAM SDRAM SDRAM SDRAM . 1 ) 3 7 8 7 . 0 ( 0 2 FRONT SIDE 1.00 (0.04) Pin 1 Pin 199 NOTES: 1- All dimensions are in milimeters (inches) 2- All blue ICs are on the front, and all red ICs are on the back side of the module.
    [Show full text]
  • DDR3 SODIMM Product Datasheet
    DDR3 SODIMM Product Datasheet 廣 穎 電 通 股 份 有 限 公 司 Silicon Power Computer & Communications Inc. TEL: 886-2 8797-8833 FAX: 886-2 8751-6595 台北市114內湖區洲子街106號7樓 7F, No.106, ZHO-Z ST. NEIHU DIST, 114, TAIPEI, TAIWAN, R.O.C This document is a general product description and is subject to change without notice DDR3 SODIMM Product Datasheet Index Index...................................................................................................................................................................... 2 Revision History ................................................................................................................................................ 3 Description .......................................................................................................................................................... 4 Features ............................................................................................................................................................... 5 Pin Assignments................................................................................................................................................ 7 Pin Description................................................................................................................................................... 8 Environmental Requirements......................................................................................................................... 9 Absolute Maximum DC Ratings....................................................................................................................
    [Show full text]
  • DDR4 2400 R-DIMM / VLP R-DIMM / ECC U-DIMM / ECC SO-DIMM Features
    DDR4 2400 R-DIMM / VLP R-DIMM / ECC U-DIMM / ECC SO-DIMM Available in densities ranging from 4GB to 16GB per module and clocked up to 2400MHz for a maximum 17GB/s bandwidth, ADATA DDR4 server memory modules are all certified Intel® Haswell-EP compatible to ensure superior performance. Products ship in four convenient form factors to accommodate diverse needs and applications: R-DIMM and ECC U-DIMM for servers and enterprises, VLP R-DIMM for high-end blade servers, and ECC SO-SIMM for micro servers. Running at a mere 1.2V, ADATA DDR4 memory modules use 20% less energy than conventional lower-performance DDR3 modules, in effect delivering more computational power for less energy draw. ADATA DDR4 server memory modules are an excellent choice for users looking to balance performance, environmental responsibility, and cost effectiveness. Features ECC U-DIMM High speed up to 2400MHz Transfer bandwidths up to 17GB/s Energy efficient: save up to 20% compared to DDR3 8-layer PCB provides improved signal transfer R-DIMM and system stability PCB gold plating: 30u and up Intel Haswell-EP compatible for extreme performance VLP R-DIMM ECC SO-DIMM Specifications Type ECC-DIMM R-DIMM VLP R-DIMM ECC SO-DIMM Standard Standard Very low profile Standard Form factor (1.18" height) (1.18" height) (0.7" height) (1.18" height) Enterprise servers / Enterprise servers / Suitable for Blade servers Micro servers data centers data centers Interface 288-pin 288-pin 288-pin 260-pin Capacity 4GB / 8GB / 16GB 4GB / 8GB / 16GB 4GB / 8GB /16GB 4GB / 8GB / 16GB Rank
    [Show full text]
  • Datasheet DDR4 SDRAM Revision History
    Rev. 1.1, Apr. 2018 M391A1K43BB1 M391A1K43BB2 M391A2K43BB1 288pin ECC Unbuffered DIMM based on 8Gb B-die 78FBGA with Lead-Free & Halogen-Free (RoHS compliant) datasheet SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other- wise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. © 2018 Samsung Electronics Co., Ltd.GG All rights reserved. - 1 - Rev. 1.1 ECC Unbuffered DIMM datasheet DDR4 SDRAM Revision History Revision No. History Draft Date Remark Editor 0.5 - First SPEC release 15th Nov, 2017 Preliminary J.Y.Bae - Separate ECC and Non ECC datasheets. J.H.Han 1.0 - Final datasheet. 13th Dec, 2017 Final J.Y.Bae - Correct typo. J.H.Han - Correct speed bin table numbering. - Add DRAM Package Electrical Specifications (x4/x8) table.
    [Show full text]
  • Dynamic Random Access Memory Topics
    Dynamic Random Access Memory Topics Simple DRAM Fast Page Mode (FPM) DRAM Extended Data Out (EDO) DRAM Burst EDO (BEDO) DRAM Synchronous DRAM (SDRAM) Rambus DRAM (RDRAM) Double Data Rate (DDR) SDRAM One capacitor and transistor of power, the discharge y Leaks a smallcapacitor amount slowly Simplicit refresh Requires top sk de in ed Us le ti la o v General DRAM Formats • DRAM is produced as integrated circuits (ICs) bonded and mounted into plastic packages with metal pins for connection to control signals and buses • In early use individual DRAM ICs were usually either installed directly to the motherboard or on ISA expansion cards • later they were assembled into multi-chip plug-in modules (DIMMs, SIMMs, etc.) General DRAM formats • Some Standard Module Type: • DRAM chips (Integrated Circuit or IC) • Dual in-line Package (DIP) • DRAM (memory) modules • Single in-line in Package(SIPP) • Single In-line Memory Module (SIMM) • Dual In-line Memory Module (DIMM) • Rambus In-line Memory Module (RIMM) • Small outline DIMM (SO-DIMM) Dual in-line Package (DIP) • is an electronic component package with a rectangular housing and two parallel rows of electrical connecting pins • 14 pins Single in-line in Package (SIPP) • It consisted of a small printed circuit board upon which were mounted a number of memory chips. • It had 30 pins along one edge which mated with matching holes in the motherboard of the computer. Single In-line Memory Module (SIMM) SIMM can be a 30 pin memory module or a 72 pin Dual In-line Memory Module (DIMM) Two types of DIMMs: a 168-pin SDRAM module and a 184-pin DDR SDRAM module.
    [Show full text]
  • SDRAM Memory Systems: Architecture Overview and Design Verification SDRAM Memory Systems: Architecture Overview and Design Verification Primer
    Primer SDRAM Memory Systems: Architecture Overview and Design Verification SDRAM Memory Systems: Architecture Overview and Design Verification Primer Table of Contents Introduction . 3 - 4 DRAM Trends . .3 DRAM . 4 - 6 SDRAM . 6 - 9 DDR SDRAM . .6 DDR2 SDRAM . .7 DDR3 SDRAM . .8 DDR4 SDRAM . .9 GDDR and LPDDR . .9 DIMMs . 9 - 13 DIMM Physical Size . 9 DIMM Data Width . 9 DIMM Rank . .10 DIMM Memory Size & Speed . .10 DIMM Architecture . .10 Serial Presence Detect . .12 Memory System Design . .13 - 15 Design Simulation . .13 Design Verification . .13 Verification Strategy . .13 SDRAM Verification . .14 Glossary . .16 - 19 2 www.tektronix.com/memory SDRAM Memory Systems: Architecture Overview and Design Verification Primer Introduction Memory needs to be compatible with a wide variety of memory controller hubs used by the computer DRAM (Dynamic Random Access Memory) is attractive to manufacturers. designers because it provides a broad range of performance Memory needs to work when a mixture of different and is used in a wide variety of memory system designs for manufacturer’s memories is used in the same memory computers and embedded systems. This DRAM memory system of the computer. primer provides an overview of DRAM concepts, presents potential future DRAM developments and offers an overview Open memory standards are useful in helping to ensure for memory design improvement through verification. memory compatibility. DRAM Trends On the other hand, embedded systems typically use a fixed There is a continual demand for computer memories to be memory configuration, meaning the user does not modify larger, faster, lower powered and physically smaller. These the memory system after purchasing the product.
    [Show full text]
  • Datakommunikasjon Og Maskinvare
    Institutt for økonomi og IT Datakommunikasjon og maskinvare Kompendium til emnet 6105N Windows Server og datanett Jon Kvisli Universitetet i Sørøst-Norge, Januar 2020 © Jon Kvisli, 2020 Windows® og Windows Server® er varemerker registrert av Microsoft Corporation. Det må ikke kopieres fra dette heftet ut over det som er tillatt etter bestemmelser i «Lov om opphavsrett til åndsverk», og avtaler om kopiering inngått med Kopinor. Forsidebilde: Colourbox Sats: Jon Kvisli 2 Innhold 1. GRUNNPRINSIPPER I DATAKOMMUNIKASJON .......................................................................... 4 1.1. Punkt-til-punkt kommunikasjon ................................................................................................................ 4 1.2. Kommunikasjonsbusser ............................................................................................................................. 8 1.3. Signalering ................................................................................................................................................ 10 1.4. Dempning, støy og forvrengning.............................................................................................................. 14 1.5. Digitale og analoge signaler ..................................................................................................................... 16 1.6. Noen kommunikasjonsstandarder ........................................................................................................... 17 1.7. Sammendrag ...........................................................................................................................................
    [Show full text]
  • AN5097, Hardware and Layout Design Considerations for DDR4
    NXP Semiconductors Document Number: AN5097 Application Note Rev. 1, 07/2016 Hardware and Layout Design Considerations for DDR4 SDRAM Memory Interfaces Contents 1 About this document 1 About this document................................................. 1 2 Recommended resources................... ....................... 1 This document provides general hardware and layout considerations and guidelines for hardware engineers 3 DDR4 design checklist................... ..........................2 implementing a DDR4 memory subsystem. 4 Selecting termination resistors......... ........................ 9 The rules and recommendations in this document serve as an 5 Avoiding VREF noise problems........ .......................9 initial baseline for board designers to begin their specific implementations, such as fly-by memory topology. 6 Calculating VTT current.................. ........................ 9 NOTE 7 Layout guidelines for DDR signal It is strongly recommended that the board groups..................................................... ................ 10 designer verifies that all aspects, such as 8 Using simulation models................. .......................15 signal integrity, electrical timings, and so on, are addressed by using simulation 9 Revision history...................................................... 16 models before board fabrication. A LS1088A DDR layout routing break out........................................................................... 17 B DRAM reset signal considerations......................... 23 2 Recommended
    [Show full text]