The Decision to Seed Hurricanes

Total Page:16

File Type:pdf, Size:1020Kb

The Decision to Seed Hurricanes Reprinted from 16 June 1972, Volume 176, pp. 1191-1202 SCIENCE The Decision to Seed Hurricanes R. A. Howard, J. E. Matheson, D. W. North Reproduced with permission. Readers may view, browse, or download material for temporary copying purposes only, providing these uses are for noncommercial purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher/copyright owner. Copyright© 1972 by the American Association for the Advancement of Science http://www.sciencemag.org time. It is also addressed to the experi- mental question: What would be the value of expanding research in hurricane modification, and, specifically, what would be the value of conducting additional field experiments such as the seedings of Hurricane Debbie in 1969? The Decision to Seed Hurricanes Our approach was to consider a rep- resentative severe hurricane bearing down on a coastal area and to analyze the On the basis of present information, the probability of decision to seed or not to seed this " nominal" hurricane. The level of the severe damage is less if a hurricane is seeded. analysis was relatively coarse, because for the policy decision we did not have to R. A. Howard, J. E. Matheson, D. W. North consider many geographical and meteorological details that might in- fluence the tactical decision to seed. We described the hurricane by a single measure of intensity, its maximum sus- The possibility of mitigating the de- ESSA, both in its technical operations tained surface wind speed, since it is structive force of hurricanes by seeding and in its management and planning this characteristic that seeding is ex- them with silver iodide was suggested function. At the suggestion of Myron pected to influence (7). The surface winds, by R.H.. Simpson in 1961. Early exper- Tribus, Assistant Secretary of Com- directly and indirectly (through the storm iments on hurricanes Esther (1961) and merce for Science and Technology, we tide), are the primary cause of the Beulah (1963) were encouraging (1), but decided to focus the study on the de- destruction wrought by most hurricanes strong evidence for the effectiveness of cision problems inherent in hurricane (8). The direct consequence of a decision for seeding was not obtained until the 1969 modification (6). or against seeding a hurricane is considered experiments on Hurricane Debbie (2). The objective of the present U.S. gov- to be the property damage caused by Debbie was seeded with massive amounts ernment program in hurricane modifica- that hurricane. (Injuries and loss of life of silver iodide on 18 and 20 August tion, Project Stormfury, is strictly scien- are often dependent on the issuance and 1969. Reductions of 31 and 15 percent in tific : to add to man's knowledge about effectiveness of storm warnings; they peak wind speed were observed after the hurricanes. Any seeding of hurricanes were not explicitly included in our seedings. that threaten inhabited coastal areas is analysis.) Over the last 10 years property dam- prohibited. According to the policy cur- However, property damage alone is age caused by hurricanes has averaged rently in force, seeding will be carried not sufficient to describe the consequence $440 million annually. Hurricane Betsy out only if there is less than a 10 per- of the decision. There are indirect legal (1965) and Hurricane Camille (1969) cent chance of the hurricane center and social effects that arise from the fact each caused property damage of ap- coming within 50 miles of a populated that the hurricane is known to have been proximately $1.5 billion. Any means of land area within 18 hours after seeding. seeded. For example, the government reducing the destructive force of hur- If the seeding of hurricanes threaten- might have some legal responsibility for ricanes would therefore have great eco- ing inhabited coastal areas is to be un- the damage caused by a seeded hurricane nomic implications. dertaken, it will be necessary to modify (9). Even if legal action against the the existing policies. The purpose of our government were not possible, a strong analysis is to examine the circumstances public outcry might result if a seeded Decision to Permit Operational Seeding that bear on the decision to change or hurricane caused an unusual amount of not to change these existing policies. damage. Nearly all the government In the spring of 1970 Stanford Re- The decision to seed a hurricane hurricane meteorologists that we search Institute began a small study for threatening a coastal area should there- questioned said they would seed a the Environmental Science Service fore be viewed as a two-stage process: (i) hurricane threatening their homes and Administration (ESSA) (3) to explore a decision is taken to lift the present families-if they could be freed from areas in which decision analysis (4, 5) prohibition against seeding threatening professional liability. might make significant contributions to hurricanes and (ii) a decision is taken The importance of the indirect effects to seed a particular hurricane a few stems in large part from uncertainty hours before that hurricane is expected to Dr. Matheson and Dr. North are with the decision about the consequences of taking either analysis group, Stanford Research Institute, Menlo Park, strike the coast. Our study is con- decision. A hurricane is complex and California 94025. Dr. Howard is with the department of centrated on the policy decision rather engineering economic systems, Stanford University, highly variable, and at present meteor- Stanford, California 94305, and is a consultant to the than on the tactical decision to seed a decision analysis group, Stanford Research Institute. particular hurricane at a particular in hurricane wind speeds with time, a probability distribution for wind changes could have been based largely on these past data. Wind-change data were not available, but data were available for Fig. 1. Maximum sus- tained winds over time. changes over time in the central pres- sure of hurricanes. The central pressure and the maximum wind speed of a hur- ricane are closely related; Holliday has shown that the available data can be summarized fairly well by a linear rela- tion (10). We combined this relation with observations of the change in central pressure over a 12-hour period, using the ologists cannot predict accurately how the sequences are uncertain for both alterna- assumption that the discrepancies from behavior of a hurricane will evolve over tives; the decision-maker does not know the Holliday relation are independent over time. The effect of seeding is uncertain what amount of property damage will be a 12-hour period and independent of also; consequently, the behavior of a sustained if the hurricane is seeded or is the change in central pressure. These hurricane that is seeded will be a not seeded. We may illustrate the assumptions imply a probability combination of two uncertain effects: situation facing him in the form of a distribution on wind changes over a 12- natural changes and the changes in- decision tree, as shown in Fig. 2. The hour period that is normal with a mean duced by seeding. decision-maker must select one of the two of zero and a standard deviation of 15.6 The seeding decision would remain alternatives, seeding or not seeding. The percent (11). difficult even if the uncertainty were decision cannot be avoided for inaction Therefore, present information is removed. Suppose that, if the hurricane is is equivalent to selecting the alternative consistent with rather large natural changes not seeded, the surface wind intensifies of not seeding. Each alternative leads to a in hurricane intensity over a 12-hour as shown by the curve w(t) in Fig. 1 and set of possible consequences: property period. There is about one chance in six that, if the hurricane is seeded, the damage caused by the hurricane and the that a hurricane whose maximum behavior of the wind is that shown by the responsibility incurred by the sustained wind speed is 100 miles per curve w'(t). The effect of the seeding has government. These consequences are, in hour will intensify over a 12hour period been to diminish the wind, thus reducing turn, related to the intensity of the to a maximum wind speed of over 115 miles per hour; there is also about one property damage, yet the wind speed w'(t1) hurricane and whether or not it was when the hurricane strikes land at time t is seeded. The consequences for each chance in six that the winds would 1 higher than the wind speed when the alternative are uncertain at the time the naturally diminish to less than 85 miles per hour. In assessing these probabilities seeding was initiated at time to. Even if the decision is made; the uncertainty will only general historical and meteorological decision maker were certain of w(t 1) and be resolved after the decision-maker information has been used. In a specific w'(t 1), he would still have a difficult choice.selects his choice. This decision under If he chooses not to seed, the citizens uncertainty may be examined according hurricane situation additional may have more property damage. On the to the usual procedures of a decision meteorological information might indicate other hand, if he chooses to seed, the analysis. We use the information that is that the hurricane would be more likely citizens may not perceive themselves as currently available to develop a to intensify or more likely to diminish. better off because of his decision. probability distribution over changes in Instead, they may perceive only that the the intensity of the hurricane as measured storm became worse after the seeding and by its maximum sustained surface wind Effect of Seeding they may blame the decision-maker for speed for each of the two decision his choice.
Recommended publications
  • B-133202 Need for a National Weather Modification Reseach Program
    B-i33202 Multiagency UN1 STA rUG.23~976 I .a COMPTROLLER GENERAL OF THE UNITED STATES WASHINGTON. D.C. 20546 B-133202 To the Speaker of the House of Representatives and the President pro tempore of the Senate This is our rep,ort entitled “Need for a National Weather Modification Research Program. Weather modification research activities are ad- ministered by the Departments of Commerce and the Interior, the National Science Foundation, and other agencies. Our review was made pursuant to the Budget and Accounting Act, 1921 (31 u. s. c. 53), and the Accounting and Auditing Act of 1950 (31 U. S. C. 67). We are sending copies of this report to the Director, Office of Management and Budget; the Secretary of Agriculture; the Secretary of Commerce; the Secretary of Defense; the Secretary of the Interior; the Secretary of Transportation; the Director, National Science Founda- tion; and the Administrator, National Aeronautics and Space Administration. Comptroller General of the United States APPENDIX Page VII Letter dated‘september 12, 1973, from the Associate Director, Office of Management and Budget 54 VIII Letter dated September 27, 1973, from the As- sistant Secretary for Administration, Department of Transportation 60 Ii Principal officials of the departments and agen- cies responsible for administering activities discussed in this report 61 ABBREVIATIONS GAO General Accounting Office ICAS Interdepartmental Committee for Atmospheric Sciences NACOA National Advisory Committee on Oceans and Atmosphere NAS National Academy of Sciences NOAA National Oceanic and Atmospheric Administration NSF National Science Foundation OMB Office of Management and Budget Contents Page DIGEST i CHAPTER 1 INTRODUCTION .1 Scope 2.
    [Show full text]
  • Project Stormfury: Status and Prospects
    Robert M. White Project Stormfury: Chief, U. S. Weather Bureau and R. A. Chandler, Captain, USN status and prospects Director, Naval Weather Service Because of the general interest within the scientific com- The investment in these experiments is a "sure" thing munity and on the part of the general public in Project in the sense that, at the very least, an increased under- Stormfury we have felt that a report at this time describ- standing of the dynamics and structure of these storms ing the present status of the project and plans for the will result, and through such understanding our ability next hurricane season would be valuable in placing in to predict their future course will improve. The benefits some meaningful perspective our agency objectives, the from even a small measure of improved prediction will accomplishments of the project and the prospects for the far outweigh the cost of undertaking such research even future. if modification of such storms ultimately proves to be Project Stormfury is an interagency cooperative effort impossible by the techniques, devices and approaches between the U. S. Navy and the Weather Bureau. It has that are being used in the Stormfury project. been in progress since 1962, at which time some early It should be clearly stated that Project Stormfury offers funding support from the National Science Foundation no immediate prospect of practical modification, nor has helped to initiate the project. Its primary objective is to it in fact been demonstrated that such a goal is attain- explore the structure and dynamics of hurricanes through able.
    [Show full text]
  • Observed Relationships Between Total Lightning Information and Doppler Radar Data During Two Recent Tropical Cyclone Tornado Events in Florida
    OBSERVED RELATIONSHIPS BETWEEN TOTAL LIGHTNING INFORMATION AND DOPPLER RADAR DATA DURING TWO RECENT TROPICAL CYCLONE TORNADO EVENTS IN FLORIDA Scott M. Spratt, David W. Sharp, and Stephen J. Hodanish NOAA/NWS Melbourne, Florida 1. INTRODUCTION The presence of a unique (total) lightning detection network and a nearby WSR-88D radar within east central Florida has afforded many opportunities to investigate the structure and life cycle of convective cells in great detail. Until now, these studies have focused on two main areas: the apparent relationships between excessive lightning and subsequent severe weather during "warm season" pulse storms (e.g. Hodanish et al., 1998) and the more dynamic storms of the "cool season" (e.g. Williams et al., 1998), and the identification of signatures prior to cloud to ground lightning initiation and cessation (Forbes et al., 1996). This paper will delve into a new topic by providing an initial examination of observed relationships between total lightning signatures and Doppler radar data of tornadic cells within tropical cyclone (TC) outer rainbands. While research of cloud to ground (CG) lightning within tropical cyclones can be considered relatively unexplored (Samsury et al., 1997), examination of the total lightning signal within tropical cyclone rainbands has never been studied, until now. Previous TC CG lightning studies have shown that the amount of discharges to the surface vary considerably from TC to TC, but contain very little CG lightning overall relative to mid latitude mesoscale convective systems (Samsury and Orville, 1994). The literature also agrees that most observed CG lightning occurred within outer convective bands, rather than within inner bands and stratiform precipitation regions.
    [Show full text]
  • A Statistical Technique for Evaluating Hurricane Modification Experiments
    QC NOAA Technical Memorandum ERL WMPO-29 U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Environmental Research Laboratories A STATISTICAL TECHNIQUE FOR EVALUATING HURRICANE MODIFICATION EXPERIMENTS Richard W. Knight Glenn W. Brier Weather Modification Program Office Boulder, Colo. May 1976 QC 'U. to wS -wo.^ NOAA Technical Memorandum ERL WMPO-29 A STATISTICAL TECHNIQUE FOR EVALUATING HURRICANE MODIFICATION EXPERIMENTS Richard W. Knight Glenn W. Brier National Hurricane and Experimental Meteorology Laboratory Coral Gables, Florida Weather Modification Program Office Boulder, Colo. May 1976 LIBRARY JUL 20 1976 N.QAA. U* S. Dept, of Commerce ATMOsp^ UNITED STATES NATIONAL OCEANIC AND Environmental Research DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Laboratories Elliot L. Richardson, Secretary Robert M White, Administrator Wilmot N Hess Director Of °C lb 29/6 CONTENTS Page ILLUSTRATIONS .. iv TABLES.. v ABSTRACT 1 1. INTRODUCTION 1 2. GENERAL DESCRIPTION 2 3. EXAMPLE OF THE B-SCORE COMPUTATION FROM A HYPOTHETICAL CASE 6 4. DATA REQUIREMENTS FOR THE COMPUTATION OF THE B-SCORE 9 5. SUMMARY AND CONCLUSIONS 9 6. REFERENCES 11 iii ILLUSTRATIONS Figure Page Three forecast functions making up a forecast period 1. ℓ and having a monitoring increment period of length Δ. 3 The total monitoring period T, the forecast period 2. ℓ, and the monitoring increment number T1 to T99+m. 5 3. Pressure, temperature, and dew point observed at a hypothetical station during a month. 7 TABLES Table Page 1. Example of matrix of observed and forecast events arranged for comparison and computation of scores 4 2. Array of indices used for B-Score computation 5 3.
    [Show full text]
  • Not Only Have Scientists Perfected Techniques To
    SWATI SAXENA Story Cover Not only have scientists perfected China has played with creating artificial rain for a long time. In the United techniques to create Arab Emirates too artificial cloud seeding clouds to bring on has created rainstorms in the Dubai and Abu Dhabi deserts. In fact, faced with hard rain or snowfall, and extreme weather conditions, humans N the year 2008, the opening ceremony have often resorted to weather modification they have now even Iof the 29th Olympic Games to be held in various parts of the world. Common developed techniques in Beijing, China was threatened with rain. examples of weather modification include The observatory had given a rainy weather producing rain or snow in drought stricken that allow them to forecast, monitoring 90% of humidity rate. areas, suppressing hail that can ruin crops, prevent rainfall! How But Beijing fired over 1,000 rain dispersal or weakening hurricanes and tornados that rockets an evening before to blow away might cause great loss of lives and property. have they achieved this the rain clouds paving the way for a Weather modification can also grand opening ceremony and a four-hour be used as a tactic in war to enhance feat? extravaganza that dazzled the world! damaging weather in the enemy territory. SCIENCE REPORTER, JULY 2013 8 Cover Story From left: James Espy; Bernard Vonnegut in his lab; John Aiken; and Vince Schaefer (right) who discovered cloud seeding using a cold chamber, a deep freezer lined with black velvet In fact, Sydney Sheldon, in his 2004 thriller In 1875, the Frenchman Coulier box several times until the air was saturated novel, Are You Afraid of the Dark?, talks showed that particles floating in air served with the moisture from his lungs.
    [Show full text]
  • Geoengineering: Parts I, Ii, and Iii
    GEOENGINEERING: PARTS I, II, AND III HEARING BEFORE THE COMMITTEE ON SCIENCE AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED ELEVENTH CONGRESS FIRST SESSION AND SECOND SESSION NOVEMBER 5, 2009 FEBRUARY 4, 2010 and MARCH 18, 2010 Serial No. 111–62 Serial No. 111–75 and Serial No. 111–88 Printed for the use of the Committee on Science and Technology ( GEOENGINEERING: PARTS I, II, AND III GEOENGINEERING: PARTS I, II, AND III HEARING BEFORE THE COMMITTEE ON SCIENCE AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED ELEVENTH CONGRESS FIRST SESSION AND SECOND SESSION NOVEMBER 5, 2009 FEBRUARY 4, 2010 and MARCH 18, 2010 Serial No. 111–62 Serial No. 111–75 and Serial No. 111–88 Printed for the use of the Committee on Science and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PRINTING OFFICE 53–007PDF WASHINGTON : 2010 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE AND TECHNOLOGY HON. BART GORDON, Tennessee, Chair JERRY F. COSTELLO, Illinois RALPH M. HALL, Texas EDDIE BERNICE JOHNSON, Texas F. JAMES SENSENBRENNER JR., LYNN C. WOOLSEY, California Wisconsin DAVID WU, Oregon LAMAR S. SMITH, Texas BRIAN BAIRD, Washington DANA ROHRABACHER, California BRAD MILLER, North Carolina ROSCOE G. BARTLETT, Maryland DANIEL LIPINSKI, Illinois VERNON J. EHLERS, Michigan GABRIELLE GIFFORDS, Arizona FRANK D. LUCAS, Oklahoma DONNA F. EDWARDS, Maryland JUDY BIGGERT, Illinois MARCIA L. FUDGE, Ohio W.
    [Show full text]
  • The National Hurricane Center-Past, Present, and Future
    VOL. 5, No.2 WEATHER AND FORECASTING JUNE 1990 The National Hurricane Center-Past, Present,and Future ROBERTC. SHEETS National Hurricane Center. Coral Gables. Florida (Manuscript received5 January 1990,in final fonn 15 February 1990) ABSTRACf The National Hunicane Center (NHC) is one of three national centersoperated by the National Weather Service(NWS). It has national and international responsibilitiesfor the North Atlantic and eastern North Pacifictropical and subtropicalbelts (including the Gulf of Mexico and the CaribbeanSea) for tropical analyses, marine and aviation forecasts,and the tropical cyclone forecastand warning programsfor the region. Its roots date back to the I 870s,and it is now in the forefront of the NWS modernizationprogram. Numerouschanges and improvements have taken place in observationaland forecastguidance tools and in the warning and responseprocess over the years. In spite of all theseimprovements, the loss of property and the potential for lossof life due to tropical cyclonescontinues to increaserapidly. Forecastsare improving, but not nearly as fast as populationsare increasingin hunicane prone areassuch as the United StatesEast and Gulf Coast banier islands.The result is that longer and longer lead times are required for communities to preparefor hunicanes. The sealand over lake surgefrom hurricanes(SLOSH) model is usedto illustrate areasofinnudation for the Galveston/Houston,Texas; New Orleans,Louisiana; southwestRorida; and the Atlantic City, New Jersey areasunder selectedhunicane scenarios.These results
    [Show full text]
  • Project Stormfury Annual Report 1969
    U.S. DEPARTMENT OF THE NAVY U.S. DEPAR-.MENT OF COMMERCE J.H. CHAFEE.vStcrttory M.H. STANS.Stcntary Naval Weather Service Command Environmental Scienco Services Adminittration ET. HARDING, Captain, USN, Commander Pi FV ^- RM. WHITE,AdminiiTrator l~J i-J ><.> * ■ r*. .-I,! 1 i iv Reproduced by MIAMI, FLORIDA NATIONAL TECHNICAL / INFORMATION SERVICE MAY 1970 Springfield, Va. 22151 IQOC i* üaÜmi'isd, —.*if an I. Report No. 3. Gwu ActttMca 3. Rrcipicni's Catalog No. STANDARD TITLE PACE ESSA-SP-NHRL-71-08 FOR TECHNICAL RESORTS rt*,*^_,^<^^~~tT, 4. Tide sod Subfide 5. Report Date Project Stormfury - Annual Report 1969 May 1970 6. Hcrforoinjt Organization Code 7. Auhor(s) U.S. Naval Weather Service Command and NQAA, National 8- Performing Organizaiioo Repc. Hurricane Research Laboratory No. 9. Perfofming 0f„at.i2ation Name and Addxea» . ' , , 10. Project/Task/Woik Unit No. Department of the Navy Environmental Science Services Adm, Washington Navy Yard P.O. Box 8265 and 11. Contract/Gram'No. Wcshington.D.C. 20390 University 9f Miami Branch Coral Gables, Florida 33124 IZ Sponsoring Agency Name and Addrcas IX Type of Report & Period Covered 14. Sponsoring Ageocy Code 15. Supplementary Note« Also supported by National Science Foundation under Grant NSF-G-17993 1«. Abu»«. project STORMFURI is a joint ESSA-Navy program of scientific experiments de- signed to explore the sJtructire and dynamio of tropical storms and hurricanes and their potential for modification, It was established in 1962 with the principal objective of testing a physical model of the hurricane's energy exchange by strategic seeping With silvpr iodide crystals.
    [Show full text]
  • National Weather Service in Guam and the University of Guam Release Typhoon Soudelor Wind Assessment for Saipan, CNMI
    Contact: Chip Guard, National Weather Service-Guam FOR IMMEDIATE RELEASE Office: (671) 472-0946 Cell: (671) 777-244 National Weather Service in Guam and the University of Guam Release Typhoon Soudelor Wind Assessment for Saipan, CNMI Contact: Mark A. Lander, University of Guam Office: (671) 735-2695 Contact: Chip Guard, National Weather Service-Guam SUPPLEMENTAL RELEASE Office: (671) 472-0946 Cell: (671) 777-2447 National Weather Service in Guam and the University of Guam Supplemental Release Typhoon Soudelor Wind Assessment for Saipan, CNMI This document is a supplement to the press release of 20 August 2015 made by the Soudelor on Saipan assessment team of Charles P. Guard and Mark A. Lander. In the earlier assessment, Soudelor was ranked as a high Category 3 tropical cyclone, with peak over-water wind speed of 110 kts with gusts to 130 kts (127 mph with gusts to 150 mph). As noted in the first press release, some of the damage on Saipan was consistent with even stronger gusts to at-or-above the Category 4 threshold of 115kt with gusts to 140 kt (130 mph with gusts to 160 mph). After considering the hundreds of damage pictures obtained on-site by the team and a careful analysis of the other factors relating to typhoon intensity, such as the measurements of the minimum central pressure and the characteristics of Soudelor’s eye on satellite imagery, the team has now raised it’s estimate of Soudelor equivalent over-water intensity to the 115 kt (130 mph) sustained wind threshold of a Category 4 tropical cyclone.
    [Show full text]
  • Diverse Contributions of Robert H. Simpson and Joanne Simpson To
    DIVERSEDIVERSE CONTRIBUTIONSCONTRIBUTIONS OFOF ROBERTROBERT H.H. SIMPSONSIMPSON ANDAND JOANNEJOANNE SIMPSONSIMPSON TOTO SCIENCESCIENCE ANDAND SOCIETYSOCIETY By Roger A. Pielke Sr. Colorado State University Department of Atmospheric Science Fort Collins, CO 80523 Robert H. Simpson From: Naples Daily News, Wed. May 30, 2001 Roger A. Pielke Sr., CSU, Atmos. Science, Ft. Collins, CO 2 Director of the National Hurricane Research Project In 1955, Congress authorized additional funding for the United States Weather Bureau (USWB) to create the National Hurricane Research Project (NHRP), which was to conduct research into hurricanes in hopes of improving scientific understanding of them, which in turn would improve forecasting. Robert Simpson was appointed Director of the twenty-two person Project and in one year he had the operational headquarters set up at the West Palm Beach, Florida airport. The USAF loaned three aircraft and their crews to the effort, and on August 13, 1956 the first NHRP flight was made into Hurricane Betsy off the Turks and Caicos Islands. 1958 was the most productive year of this era, with twenty-three missions being flown, and important papers being published on mean atmospheric soundings, hurricane rainfall distributions, storm surge surveys, and radar descriptions of hurricane structure. Roger A. Pielke Sr., CSU, Atmos. Science, Ft. Collins, CO 3 Director of Project STORMFURY Dr. Simpson left the Directorship of the National Hurricane Research Project to become Director of Project Stormfury. Project Stormfury, a new cloud seeding process, was born in 1962. It was a significant development in the area of storm modification and energized the quest to weaken and eradicate the hurricane.
    [Show full text]
  • Plains of the United States (National Hail Research Experiment
    zu INTERIM REPORT: State-of-the-Art in Weather Modification in the Pacific Southwest TASK FORCE Herbert B. Osborn, USDA, Chairman Curtis W. Bowser, USBR 01 in H. Foehner, USBR David P. Hale, New Mexico Interstate Stream Commission Harold Meyer, USBR James Sears, Corps of Engrs. INTRODUCTION Wendall A. Mordy, Center for the Study of Democratic Institutions and the Center for the Future, Santa Barbara, California, presented a paper at the IUGG general assembly in France in August, 1974, summarizing weather modification efforts from 1971 through 1974. His summary of current research efforts in weather modification is as follows: "Current weather modification research is aimed at hazard mitigation, precipitation modifications, and the understanding of inadvertent weather and climate changes. Much of it in the United States in the 1970's has been concentrated on five major efforts, with the following objectives: (1) to determine whether hailstorms can be modified to suppress hail damage in the high plains of the United States (National Hail Research Experiment, directed by the National Center for Atmospheric Research and sponsored by the National Science Foundation); (2) to determine whether the maximum wind speeds in tropical cyclones (hurricanes) can be modified by cloud seeding and thus reduce the damage potential (Project Stormfury, sponsored by the U.S. Department of Commerce, NOAA); (3)'to determine whether practical benefits from increased precipitation or snowfall displacement can be secured* with existing weather modification technology or by development of ' improved technology (Project Skywater, sponsored by the U.S. Department of Interior, Bureau of Reclamation); (4) to determine whether mesoscale precipitation bands entering the West Coast can be seeded to produce substantial increases in precipitation (Santa Barbara Project, sponsored by the U.S.
    [Show full text]
  • The Hurricane Modification Project: Past Results and Future Prospects
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Embry-Riddle Aeronautical University The Space Congress® Proceedings 1970 (7th) Technology Today and Tomorrow Apr 1st, 8:00 AM The Hurricane Modification Project: Past Results and Future Prospects R. C. Gentry DI rector, Project STORMFURY, National Hurricane Research Laboratory, Atlantic Oceanographic and Meteorological Laboratories, ESSA Research Laboratories Miami, Florida Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Gentry, R. C., "The Hurricane Modification Project: Past Results and Future Prospects" (1970). The Space Congress® Proceedings. 3. https://commons.erau.edu/space-congress-proceedings/proceedings-1970-7th/session-11/3 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. THE HURRICANE MODIFICATION PROJECT: PAST RESULTS AND FUTURE PROSPECTS Dr. R. Cecil Gentry DI rector, Project STORMFURY National Hurricane Research Laboratory Atlantic Oceanographic and Meteorological Laboratories ESSA Research Laboratories Miami, Florida ABSTRACT Modification experiments on Hurricane Debble on 18 iodide generators were developed by St. Amand and and 20 August 1969 were conducted by Project his group before the 1969 hurricane season. The STORMFURY, a cooperative effort of the Departments frustration of waiting 4 years without opportuni­ of Defense and Commerce. The hurricane decreased ties for experimentation May not, therefore, have in intensity following the "seedings" on each of been in vain. The succession of apparently Minor the days.
    [Show full text]