Mississauga, Canada Axiomatic Introduces a Line of Rugged Protocol

Total Page:16

File Type:pdf, Size:1020Kb

Mississauga, Canada Axiomatic Introduces a Line of Rugged Protocol PRESS RELEASE October 15, 2013 – Mississauga, Canada Axiomatic introduces a line of rugged protocol converters to interface between CAN- based diesel engine networks or automotive LIN networks. SAE J1939, SAE J1587, CANopen®, Modbus RTU, LIN and Power Line Communications (SAE J2497) gateways are compact and designed for the harsh operating environments of land and marine power generator set, automotive, truck, bus, off-highway, and agricultural equipment. Simulink® block libraries allow OEM designers to program the device for specific applications. Features: Up to 2 Isolated CAN ports (SAEJ1939, CANopen®) 1 Isolated SAE J1587 (SAE J1708) port Interface with LIN networks in automotive systems Convert SAE J2497 messages over Power Line Communications (a bidirectional, serial communications link over the vehicle power supply line) 12V, 24VDC nominal input power Compact, IP67 packaging, Integrated Deutsch IPD connector CE mark EMC Compliant RoHS/REACH Compliant MTBF reliability data available User programmable functionality (Electronic Assistant®) Simulink® block library available Software modifications provided to meet specific requirements Functions: Connect legacy fieldbuses to modern SAE J1939 networked equipment Transfer and monitor engine data Communicate between tractors and trailers Monitor batteries in automotive control systems Axiomatic designs and manufactures electronic machine controls, power converters, gateways and motor controls for the off-highway, on-highway, bus, electric vehicle, military, power generation, material handling, industrial and alternate energy markets. We provide efficient, innovative solutions that focus on adding value for our customers. We emphasize service and partnership with our customers, suppliers, and employees to build long term relationships and mutual trust. Notes: Electronic Assistant® is a registered US trademark of Axiomatic Technologies Corporation. CANopen® is a registered community trade mark of CAN in Automation e.V. Simulink® is a registered trademark of The Mathworks, Inc. Contact: Amanda Wilkins, Marketing Manager TEL:1-905-602-9270x224 Email:[email protected] .
Recommended publications
  • Modbus TCP Master (OPC) User's Manual
    Station Automation COM600 3.4 Modbus TCP Master (OPC) User's Manual 1MRS756445 Station Automation COM600 3.4 Issued: 21.12.2007 Version: D/06.11.2009 Modbus TCP Master (OPC) User's Manual Contents: 1. About this manual .................................................................................. 7 1.1. Copyrights ...................................................................................... 7 1.2. Trademarks .................................................................................... 7 1.3. General .......................................................................................... 7 1.4. Document conventions .................................................................. 8 1.5. Use of symbols .............................................................................. 9 1.6. Terminology .................................................................................... 9 1.7. Abbreviations ............................................................................... 11 1.8. Related documents ...................................................................... 12 1.9. Document revisions ..................................................................... 12 2. Introduction ........................................................................................... 13 2.1. Functional overview ..................................................................... 13 2.2. Modbus OPC Server features ...................................................... 14 3. Configuration .......................................................................................
    [Show full text]
  • Modbus Instruction Manual For
    Instruction manual Modbus slave interface for digital Mass Flow / Pressure instruments Doc. no.: 9.17.035AC Date: 28-07-2021 ATTENTION Please read this instruction manual carefully before installing and operating the instrument. Not following the guidelines could result in personal injury and/or damage to the equipment. BRONKHORST® Disclaimer The information in this manual has been reviewed and is believed to be wholly reliable. No responsibility, however, is assumed for inaccuracies. The material in this manual is for information purposes only. Copyright All rights reserved. This documentation is protected by copyright. Subject to technical and optical changes as well as printing errors. The information contained in this document is subject to change at any time without prior notification. Bronkhorst High-Tech B.V. reserves the right to modify or improve its products and modify the contents without being obliged to inform any particular persons or organizations. The device specifications and the contents of the package may deviate from what is stated in this document. Symbols Important information. Discarding this information could cause injuries to people or damage to the Instrument or installation. Helpful information. This information will facilitate the use of this instrument. Additional info available on the internet or from your local sales representative. Warranty Bronkhorst® products are warranted against defects in material and workmanship for a period of three years from the date of shipment, provided they are used in accordance with the ordering specifications and the instructions in this manual and that they are not subjected to abuse, physical damage or contamination. Products that do not operate properly during this period may be repaired or replaced at no charge.
    [Show full text]
  • SAE J1587 (2002 Standard).Pdf
    SURFACE REV. VEHICLE J1587 FEB2002 RECOMMENDED Issued 1988-01 400 Commonwealth Drive, Warrendale, PA 15096-0001 PRACTICE Revised 2002-02 Superseding J1587 JUL1998 Electronic Data Interchange Between Microcomputer Systems in Heavy-Duty Vehicle Applications 1. Scope—This SAE Recommended Practice defines a document for the format of messages and data that is of general value to modules on the data communications link. Included are field descriptions, size, scale, internal data representation, and position within a message. This document also describes guidelines for the frequency of and circumstances in which messages are transmitted. In order to promote compatibility among all aspects of electronic data used in heavy-duty applications, it is the intention of the SAE Truck and Bus Low Speed Communications Network Subcommittee (formerly Data Format Subcommittee) (in conjunction with other industry groups) to develop recommended message formats for: a. Vehicle and Component Information—This includes all information that pertains to the operation of the vehicle and its components (such as performance, maintenance, and diagnostic data). b. Routing and Scheduling Information—Information related to the planned or actual route of the vehicle. It includes current vehicle location (for example, geographical coordinates) and estimated time of arrival. c. Driver Information—Information related to driver activity. Includes driver identification, logs, (for example, DOT), driver expenses, performance, status, and payroll data. d. Freight Information—Provides data associated with cargo being shipped, picked up, or delivered. Includes freight status, overage, shortage and damage reporting, billing and invoice information as well as customer and consignee data. This document represents the recommended formats for basic vehicle and component identification and performance data.
    [Show full text]
  • MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1B3
    MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3 CONTENTS 1 Introduction ...................................................................................................................... 2 1.1 Scope of this document ........................................................................................... 2 2 Abbreviations ................................................................................................................... 2 3 Context ............................................................................................................................. 3 4 General description .......................................................................................................... 3 4.1 Protocol description ................................................................................................. 3 4.2 Data Encoding ......................................................................................................... 5 4.3 MODBUS Data model .............................................................................................. 6 4.4 MODBUS Addressing model .................................................................................... 7 4.5 Define MODBUS Transaction .................................................................................. 8 5 Function Code Categories .............................................................................................. 10 5.1 Public Function Code Definition ............................................................................. 11
    [Show full text]
  • SAE International® PROGRESS in TECHNOLOGY SERIES Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015
    Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Connectivity and the Mobility Industry Edited by Dr. Andrew Brown, Jr. SAE International® PROGRESS IN TECHNOLOGY SERIES Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Connectivity and the Mobility Industry Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Other SAE books of interest: Green Technologies and the Mobility Industry By Dr. Andrew Brown, Jr. (Product Code: PT-146) Active Safety and the Mobility Industry By Dr. Andrew Brown, Jr. (Product Code: PT-147) Automotive 2030 – North America By Bruce Morey (Product Code: T-127) Multiplexed Networks for Embedded Systems By Dominique Paret (Product Code: R-385) For more information or to order a book, contact SAE International at 400 Commonwealth Drive, Warrendale, PA 15096-0001, USA phone 877-606-7323 (U.S. and Canada) or 724-776-4970 (outside U.S. and Canada); fax 724-776-0790; e-mail [email protected]; website http://store.sae.org. Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Connectivity and the Mobility Industry By Dr. Andrew Brown, Jr. Warrendale, Pennsylvania, USA Copyright © 2011 SAE International. eISBN: 978-0-7680-7461-1 Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 400 Commonwealth Drive Warrendale, PA 15096-0001 USA E-mail: [email protected] Phone: 877-606-7323 (inside USA and Canada) 724-776-4970 (outside USA) Fax: 724-776-0790 Copyright © 2011 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, distributed, or transmitted, in any form or by any means without the prior written permission of SAE.
    [Show full text]
  • Modbus Signal Output Adapter Quick Start Guide
    TM Modbus Signal Output Adapter Quick Start Guide Mini USB Connector Adapter Used to configure adapter settings, provide power to the adapter, and passthrough Overview: communication to the attached sonde. See page 4 for USB passthrough info. Supply Power, 12VDC Provided from external regulated power source (not included). Delivering quality data Modbus I/O Terminal Use either 485 (default) Status LED where and when you or RS-232 terminals. See page 2 for need it most. status indications. Introduction: The 599825 is a communication adapter Safety: for the EXO multiparameter sonde platform. It converts the proprietary Refer to EXO system signal from the water quality sonde into manual for complete safety a Modbus protocol over either RS-232 documentation associated with or RS-485 signals. The adapter simplifies the EXO system. (Available at integration into 3rd party SCADA systems, EXOwater.com) and also features a USB port that Follow all applicable code and supports passthrough communication Magnetic Read Switch directly to the connected sonde. This regulations subject to electrical Used to rediscover feature allows configuration, calibration, wiring and operation of attached sonde. and data transfer without having to the system. disconnect the field cabling. Specifications What’s Included: You’ll also need: Supply Voltage: 9 - 16 VDC or USB 5 VDC Your new 599825 EXO Communication • Flat blade screwdriver for Current Draw Adapter: Adapter comes with: terminal blocks ~20mA typical (@12VDC) • (1) Modbus Adapter • Phillip’s screwdriver
    [Show full text]
  • Modbus RTU SSW900-CRS485-W
    Motors | Automation | Energy | Transmission & Distribution | Coatings Modbus RTU SSW900-CRS485-W User’s Guide Modbus RTU User’s Guide Series: SSW900 Software version: 1.2X Language: English Document: 10004628707 / 02 Build 5251 Publication Date: 01/2019 Summary of Revisions The information below describes the reviews made in this manual. Version Revision Description V1.0X R00 First edition V1.1X R01 General revision V1.2X R02 General revision Contents CONTENTS ABOUT THE MANUAL ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 6 ABBREVIATIONS AND DEFINITIONS :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 6 NUMERICAL REPRESENTATION ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 6 DOCUMENTS :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 6 1 MAIN CHARACTERISTICS :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 7 2 MODBUS COMMUNICATION INTRODUCTION :::::::::::::::::::::::::::::::::::::::: 8 2.1 MESSAGE STRUCTURE ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 8 2.2 MODBUS RTU ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 9 3 INTERFACE DESCRIPTION::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 3.1 RS485 ACCESSORY :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 3.2 CONNECTOR ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • CAN-To-Flexray Gateways and Configuration Tools
    CAN-to-Flexray gateways Device and confi guration tools lexray and CAN net- Listing bus data traffic toring channels it is possi- power management func- Fworks will coexists in (tracing) ble to compare timing rela- tionality offers configurable the next generation or pas- Graphic and text displays tionships and identify timing sleep, wake-up conditions, senger cars. Flexray orig- of signal values problems. and hold times. The data inally designed for x-by- Interactive sending of GTI has developed a manipulation functionality wire applications gains mar- pre-defined PDUs und gateway, which provides has been extended in or- ket acceptance particular- frames two CAN and two Flexray der to enable the user to ap- ly in driver assistance sys- Statistics on nodes and ports. It is based on the ply a specific manipulation tems. Nevertheless, Flexray messages with the Clus- MPC5554 micro-controller. function several times. Also applications need informa- ter Monitor The gateway is intended to available for TTXConnexion tion already available in ex- Logging messages for be used for diagnostic pur- is the PC tool TTXAnalyze, isting CAN in-vehicle net- later replay or offline poses, generating start-up/ which allows simultaneous works. Therefore, CAN-to- evaluation sync frames, and it can be viewing of traffic, carried on Flexray gateways are nec- Display of cycle multi- used with existing software the various bus systems. essary. Besides deeply em- plexing, in-cycle rep- tools. The Flexray/CAN bedded micro-controller etition and PDUs in the The TTXConnexion by gateway by Ixxat is a with CAN and Flexray inter- analysis windows TTControl is a gateway tool configurable PC application faces, there is also a need Agilent also provides an combining data manipula- allowing Flexray messag- for gateway devices as in- analyzing tool for Flexray tion, on-line viewing, and es and signals to be trans- terface modules for system and CAN.
    [Show full text]
  • CAN / RS485 Interface Adapter for SHP Series
    Technical Reference Note CAN / RS485 Interface Adapter For SHP Series Total Power: < 1 Watts Input Voltage: 5V Internal Outputs: CAN, RS485, USB, I2C Special Features Product Description The new SHP Extension adapter enables both USB and Controller Area Network (CAN) or RS485 Bus connectivity, providing a complete interface between the • Input Protocols: SHP device and the I2C bus with a simple command set which enables the 1) RS485 using Modbus highest levels of configuration flexibility. 2) CAN using modified Modbus The CAN/RS485 to I2C interface adapter modules connect with CAN Bus • Output Protocol: architectures through CaseRx/CaseTx interfaces found on the SHP case. The I2C with SMBus Support modules communicate with on-board I2C Bus via MODbus Protocol for RS485 Bus and modified MODbus for CANbus. The new adapters now enable the SHP to be used in a host of new ruggedized applications including automotive networks, industrial networks, medical equipment and building automation systems. The RS485/CAN-to-I2C uses 2 Input Protocols and 1 Output Protocol. The Input Protocols used are: RS485 using Modbus (Command Index: 0x01), and CAN using modified Modus (Command Index: 0x02). The Output Protocol use is: I2C with SMBus support (Command Index: 0x80). www.solahd.com [email protected] Technical Reference Note Table of Contents 1. Model Number ………………………….………………………………………………………………. 4 2. General Description ……………………………………………………………………………………. 5 3. Electrical Specifications ……………………………………………………………………………..… 6 4. Mechanical Specification …………………………………………………….….…………………….. 9 5. Hardware Interfaces ………………………………………………………….……………………..... 12 6. Software Interfaces ……………………………………………………………................................ 13 6.1 Adapter Protocol Overview ……………………………………………………………………… 13 6.2 Protocol Transaction …………………………………………………………………………….. 13 6.3 Adapter Command and Response Packets …………………………………………….…..… 14 6.4 Adapter Control Commands ……………………………………………………………..……..
    [Show full text]
  • Table of Contents
    Table of Contents Chapter 1 Bus Decode -------------------------------------------------------------- 1 Basic operation --------------------------------------------------------------------------------------------- 1 Add a Bus Decode ----------------------------------------------------------------------------------------------------- 1 Advance channel setting ---------------------------------------------------------------------------------------------- 2 Specially Bus Decode: ------------------------------------------------------------------------------------------------ 4 1-Wire ------------------------------------------------------------------------------------------------------------------- 7 3-Wire ------------------------------------------------------------------------------------------------------------------- 9 7-Segment -------------------------------------------------------------------------------------------------------------- 11 A/D Converter--------------------------------------------------------------------------------------------------------- 14 AcceleroMeter -------------------------------------------------------------------------------------------------------- 17 AD-Mux Flash -------------------------------------------------------------------------------------------------------- 19 Advanced Platform Management Link (APML) ---------------------------------------------------------------- 21 BiSS-C------------------------------------------------------------------------------------------------------------------ 23 BSD ---------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • Of Fieldbus Signals Physical Integrity Testing
    RS 232 Link & MODBUS Protocol Checking the Quality of Fieldbus Signals Physical integrity testing Fieldbuses correspond to a series of electrical wires which convey information in digital form between 2 remote devices. A large number Industry of bus protocols are used in the field, in a wide variety of sectors: industry, automotive, building automation, hospitals, etc. Frequently-encountered bus protocols include KNX, DALI, CAN, LIN, FlexRay™, AS-i, Profibus®, RS 485, RS 232, ETHERNET, etc. Automotive In computer networks, the physical layer is the first layer in the OSI (Open Systems Interconnection) model and it is responsible for effective transmission of the electrical or optical signals between devices. It is useful to measure this electrical physical level in order to optimize communication and draw up a diagnosis: change of Building cable, verification of chassis-earth, termination, etc. Automation We are going to look at the details of a test on an RS232 link between a multimeter and a PC with an oscilloscope offering the physical test in accordance with the applicable standards. LOGO METRIX Checking the Quality of Fieldbus Signals Practical case: Physical integrity test of an RS232 bus between a multimeter and the COM1 port of a PC Equipment used • SCOPIX BUS OX 7204: oscilloscope bus analyser • HX0130 probe: voltage probe • HX0190 DB9 board: RS 232 communication board for training purposes • MTX 3283: 100,000-count on-site digital multimeter • SX DMM: data retrieval software for the MTX 3283 Did you know? The MODBUS protocol is a dialogue protocol based on a hierarchical structure involving several devices. Step 1 Step 2 The MTX Mobile MTX 3283 multimeter is connected using an You plug the HX0190 DB9 RS232 link, set to 9,600 bauds with the MODBUS protocol by connection board into the PC’s using the SX-DMM multimeter data processing software.
    [Show full text]
  • Surface Vehicle Standard
    SURFACE J1939-01 VEHICLE Issued 2000-09 STANDARD Submitted for recognition as an American National Standard Recommended Practice for Control and Communications Network for On-Highway Equipment Foreword—This series of SAE Recommended Practices have been developed by the Truck and Bus Control and Communications Network Subcommittee of the Truck and Bus Electrical and Electronics Committee. The objectives of the subcommittee are to develop information reports, recommended practices and standards concerned with the requirements design and usage of devices which transmit electrical signals and control information among vehicle components. The usage of these recommended practices is not limited to truck and bus applications, other applications may utilize them as long as they adhere to the recommended practices listed herein. These SAE Recommended Practices are intended as a guide toward standard practice and are subject to change so as to keep pace with experience and technical advances. As described in the parent document, SAE J1939, there are a minimum of five documents required to fully define a complete version of this network. This particular document, SAE J1939-01, identifies one such complete network by specifying the particular set of SAE J1939 documents which define the Truck and Bus Control and Communications Vehicle Network as it applies to on-highway equipment. Table of Contents 1 Scope ......................................................................................................................................2 1.1 Degree
    [Show full text]