On the Schlafli Symbol of Chiral Extensions of Polytopes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Lifts of Polytopes
Lecture 5: Lifts of polytopes and non-negative rank CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Lifts of polytopes 1.1 Polytopes and inequalities Recall that the convex hull of a subset X n is defined by ⊆ conv X λx + 1 λ x0 : x; x0 X; λ 0; 1 : ( ) f ( − ) 2 2 [ ]g A d-dimensional convex polytope P d is the convex hull of a finite set of points in d: ⊆ P conv x1;:::; xk (f g) d for some x1;:::; xk . 2 Every polytope has a dual representation: It is a closed and bounded set defined by a family of linear inequalities P x d : Ax 6 b f 2 g for some matrix A m d. 2 × Let us define a measure of complexity for P: Define γ P to be the smallest number m such that for some C s d ; y s ; A m d ; b m, we have ( ) 2 × 2 2 × 2 P x d : Cx y and Ax 6 b : f 2 g In other words, this is the minimum number of inequalities needed to describe P. If P is full- dimensional, then this is precisely the number of facets of P (a facet is a maximal proper face of P). Thinking of γ P as a measure of complexity makes sense from the point of view of optimization: Interior point( methods) can efficiently optimize linear functions over P (to arbitrary accuracy) in time that is polynomial in γ P . ( ) 1.2 Lifts of polytopes Many simple polytopes require a large number of inequalities to describe. -
Arxiv:Math/9906062V1 [Math.MG] 10 Jun 1999 Udo Udmna Eerh(Rn 96-01-00166)
Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices ∗ Michel DEZA CNRS and Ecole Normale Sup´erieure, Paris, France Mikhail SHTOGRIN Steklov Mathematical Institute, 117966 Moscow GSP-1, Russia Abstract We review the regular tilings of d-sphere, Euclidean d-space, hyperbolic d-space and Coxeter’s regular hyperbolic honeycombs (with infinite or star-shaped cells or vertex figures) with respect of possible embedding, isometric up to a scale, of their skeletons into a m-cube or m-dimensional cubic lattice. In section 2 the last remaining 2-dimensional case is decided: for any odd m ≥ 7, star-honeycombs m m {m, 2 } are embeddable while { 2 ,m} are not (unique case of non-embedding for dimension 2). As a spherical analogue of those honeycombs, we enumerate, in section 3, 36 Riemann surfaces representing all nine regular polyhedra on the sphere. In section 4, non-embeddability of all remaining star-honeycombs (on 3-sphere and hyperbolic 4-space) is proved. In the last section 5, all cases of embedding for dimension d> 2 are identified. Besides hyper-simplices and hyper-octahedra, they are exactly those with bipartite skeleton: hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-, 5-space (only two, {4, 3, 5} and {4, 3, 3, 5}, of those 11 have compact both, facets and vertex figures). 1 Introduction arXiv:math/9906062v1 [math.MG] 10 Jun 1999 We say that given tiling (or honeycomb) T has a l1-graph and embeds up to scale λ into m-cube Hm (or, if the graph is infinite, into cubic lattice Zm ), if there exists a mapping f of the vertex-set of the skeleton graph of T into the vertex-set of Hm (or Zm) such that λdT (vi, vj)= ||f(vi), f(vj)||l1 = X |fk(vi) − fk(vj)| for all vertices vi, vj, 1≤k≤m ∗This work was supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach) and Russian fund of fundamental research (grant 96-01-00166). -
Can Every Face of a Polyhedron Have Many Sides ?
Can Every Face of a Polyhedron Have Many Sides ? Branko Grünbaum Dedicated to Joe Malkevitch, an old friend and colleague, who was always partial to polyhedra Abstract. The simple question of the title has many different answers, depending on the kinds of faces we are willing to consider, on the types of polyhedra we admit, and on the symmetries we require. Known results and open problems about this topic are presented. The main classes of objects considered here are the following, listed in increasing generality: Faces: convex n-gons, starshaped n-gons, simple n-gons –– for n ≥ 3. Polyhedra (in Euclidean 3-dimensional space): convex polyhedra, starshaped polyhedra, acoptic polyhedra, polyhedra with selfintersections. Symmetry properties of polyhedra P: Isohedron –– all faces of P in one orbit under the group of symmetries of P; monohedron –– all faces of P are mutually congru- ent; ekahedron –– all faces have of P the same number of sides (eka –– Sanskrit for "one"). If the number of sides is k, we shall use (k)-isohedron, (k)-monohedron, and (k)- ekahedron, as appropriate. We shall first describe the results that either can be found in the literature, or ob- tained by slight modifications of these. Then we shall show how two systematic ap- proaches can be used to obtain results that are better –– although in some cases less visu- ally attractive than the old ones. There are many possible combinations of these classes of faces, polyhedra and symmetries, but considerable reductions in their number are possible; we start with one of these, which is well known even if it is hard to give specific references for precisely the assertion of Theorem 1. -
A Tourist Guide to the RCSR
A tourist guide to the RCSR Some of the sights, curiosities, and little-visited by-ways Michael O'Keeffe, Arizona State University RCSR is a Reticular Chemistry Structure Resource available at http://rcsr.net. It is open every day of the year, 24 hours a day, and admission is free. It consists of data for polyhedra and 2-periodic and 3-periodic structures (nets). Visitors unfamiliar with the resource are urged to read the "about" link first. This guide assumes you have. The guide is designed to draw attention to some of the attractions therein. If they sound particularly attractive please visit them. It can be a nice way to spend a rainy Sunday afternoon. OKH refers to M. O'Keeffe & B. G. Hyde. Crystal Structures I: Patterns and Symmetry. Mineral. Soc. Am. 1966. This is out of print but due as a Dover reprint 2019. POLYHEDRA Read the "about" for hints on how to use the polyhedron data to make accurate drawings of polyhedra using crystal drawing programs such as CrystalMaker (see "links" for that program). Note that they are Cartesian coordinates for (roughly) equal edge. To make the drawing with unit edge set the unit cell edges to all 10 and divide the coordinates given by 10. There seems to be no generally-agreed best embedding for complex polyhedra. It is generally not possible to have equal edge, vertices on a sphere and planar faces. Keywords used in the search include: Simple. Each vertex is trivalent (three edges meet at each vertex) Simplicial. Each face is a triangle. -
Regular Polyhedra Through Time
Fields Institute I. Hubard Polytopes, Maps and their Symmetries September 2011 Regular polyhedra through time The greeks were the first to study the symmetries of polyhedra. Euclid, in his Elements showed that there are only five regular solids (that can be seen in Figure 1). In this context, a polyhe- dron is regular if all its polygons are regular and equal, and you can find the same number of them at each vertex. Figure 1: Platonic Solids. It is until 1619 that Kepler finds other two regular polyhedra: the great dodecahedron and the great icosahedron (on Figure 2. To do so, he allows \false" vertices and intersection of the (convex) faces of the polyhedra at points that are not vertices of the polyhedron, just as the I. Hubard Polytopes, Maps and their Symmetries Page 1 Figure 2: Kepler polyhedra. 1619. pentagram allows intersection of edges at points that are not vertices of the polygon. In this way, the vertex-figure of these two polyhedra are pentagrams (see Figure 3). Figure 3: A regular convex pentagon and a pentagram, also regular! In 1809 Poinsot re-discover Kepler's polyhedra, and discovers its duals: the small stellated dodecahedron and the great stellated dodecahedron (that are shown in Figure 4). The faces of such duals are pentagrams, and are organized on a \convex" way around each vertex. Figure 4: The other two Kepler-Poinsot polyhedra. 1809. A couple of years later Cauchy showed that these are the only four regular \star" polyhedra. We note that the convex hull of the great dodecahedron, great icosahedron and small stellated dodecahedron is the icosahedron, while the convex hull of the great stellated dodecahedron is the dodecahedron. -
15 BASIC PROPERTIES of CONVEX POLYTOPES Martin Henk, J¨Urgenrichter-Gebert, and G¨Unterm
15 BASIC PROPERTIES OF CONVEX POLYTOPES Martin Henk, J¨urgenRichter-Gebert, and G¨unterM. Ziegler INTRODUCTION Convex polytopes are fundamental geometric objects that have been investigated since antiquity. The beauty of their theory is nowadays complemented by their im- portance for many other mathematical subjects, ranging from integration theory, algebraic topology, and algebraic geometry to linear and combinatorial optimiza- tion. In this chapter we try to give a short introduction, provide a sketch of \what polytopes look like" and \how they behave," with many explicit examples, and briefly state some main results (where further details are given in subsequent chap- ters of this Handbook). We concentrate on two main topics: • Combinatorial properties: faces (vertices, edges, . , facets) of polytopes and their relations, with special treatments of the classes of low-dimensional poly- topes and of polytopes \with few vertices;" • Geometric properties: volume and surface area, mixed volumes, and quer- massintegrals, including explicit formulas for the cases of the regular simplices, cubes, and cross-polytopes. We refer to Gr¨unbaum [Gr¨u67]for a comprehensive view of polytope theory, and to Ziegler [Zie95] respectively to Gruber [Gru07] and Schneider [Sch14] for detailed treatments of the combinatorial and of the convex geometric aspects of polytope theory. 15.1 COMBINATORIAL STRUCTURE GLOSSARY d V-polytope: The convex hull of a finite set X = fx1; : : : ; xng of points in R , n n X i X P = conv(X) := λix λ1; : : : ; λn ≥ 0; λi = 1 : i=1 i=1 H-polytope: The solution set of a finite system of linear inequalities, d T P = P (A; b) := x 2 R j ai x ≤ bi for 1 ≤ i ≤ m ; with the extra condition that the set of solutions is bounded, that is, such that m×d there is a constant N such that jjxjj ≤ N holds for all x 2 P . -
Reconstructing Detailed Dynamic Face Geometry from Monocular Video
Reconstructing Detailed Dynamic Face Geometry from Monocular Video Pablo Garrido1 ∗ Levi Valgaerts1 † Chenglei Wu1,2 ‡ Christian Theobalt1 § 1Max Planck Institute for Informatics 2Intel Visual Computing Institute Figure 1: Two results obtained with our method. Left: The input video. Middle: The tracked mesh shown as an overlay. Right: Applying texture to the mesh and overlaying it with the input video using the estimated lighting to give the impression of virtual face make-up. Abstract Links: DL PDF WEB VIDEO 1 Introduction Detailed facial performance geometry can be reconstructed using dense camera and light setups in controlled studios. However, Optical performance capture methods can reconstruct faces of vir- a wide range of important applications cannot employ these ap- tual actors in videos to deliver detailed dynamic face geometry. proaches, including all movie productions shot from a single prin- However, existing approaches are expensive and cumbersome as cipal camera. For post-production, these require dynamic monoc- they can require dense multi-view camera systems, controlled light ular face capture for appearance modification. We present a new setups, active markers in the scene, and recording in a controlled method for capturing face geometry from monocular video. Our ap- studio (Sec. 2.2). At the other end of the spectrum are computer proach captures detailed, dynamic, spatio-temporally coherent 3D vision methods that capture face models from monocular video face geometry without the need for markers. It works under un- (Sec. 2.1). These captured models are extremely coarse, and usually controlled lighting, and it successfully reconstructs expressive mo- only contain sparse collections of 2D or 3D facial landmarks rather tion including high-frequency face detail such as folds and laugh than a detailed 3D shape. -
1 More Background on Polyhedra
CS 598CSC: Combinatorial Optimization Lecture date: 26 January, 2010 Instructor: Chandra Chekuri Scribe: Ben Moseley 1 More Background on Polyhedra This material is mostly from [3]. 1.1 Implicit Equalities and Redundant Constraints Throughout this lecture we will use affhull to denote the affine hull, linspace to be the linear space, charcone to denote the characteristic cone and convexhull to be the convex hull. Recall n that P = x Ax b is a polyhedron in R where A is a m n matrix and b is a m 1 matrix. f j ≤ g × × An inequality aix bi in Ax b is an implicit equality if aix = bi x P . Let I 1; 2; : : : ; m be the index set of≤ all implicit≤ equalities in Ax b. Then we can partition8 2 A into⊆A= fx b= andg A+x b+. Here A= consists of the rows of A with≤ indices in I and A+ are the remaining≤ rows of A. Therefore,≤ P = x A=x = b=;A+x b+ . In other words, P lies in an affine subspace defined by A=x = b=. f j ≤ g Exercise 1 Prove that there is a point x0 P such that A=x0 = b= and A+x0 < b+. 2 Definition 1 The dimension, dim(P ), of a polyhedron P is the maximum number of affinely independent points in P minus 1. n Notice that by definition of dimension, if P R then dim(P ) n, if P = then dim(P ) = 1, and dim(P ) = 0 if and only if P consists of a⊆ single point. -
Designing Modular Sculpture Systems
Bridges 2017 Conference Proceedings Designing Modular Sculpture Systems Christopher Carlson Wolfram Research, Inc 100 Trade Centre Drive Champaign, IL, 61820, USA E-mail: [email protected] Abstract We are interested in the sculptural possibilities of closed chains of modular units. One such system is embodied in MathMaker, a set of wooden pieces that can be connected end-to-end to create a fascinating variety of forms. MathMaker is based on a cubic honeycomb. We explore the possibilities of similar systems based on octahedral- tetrahedral, rhombic dodecahedral, and truncated octahedral honeycombs. Introduction The MathMaker construction kit consists of wooden parallelepipeds that can be connected end-to-end to make a great variety of sculptural forms [1]. Figure 1 shows on the left an untitled sculpture by Koos Verhoeff based on that system of modular units [2]. MathMaker derives from a cubic honeycomb. Each unit connects the center of one cubic face to the center of an adjacent face (Figure 1, center). Units connect via square planar faces which echo the square faces of cubes in the honeycomb. The square connecting faces can be matched in 4 ways via 90° rotation, so from any position each adjacent cubic face is accessible. A chain of MathMaker units jumps from cube to adjacent cube, adjacent units never traversing the same cube. A variant of MathMaker called “turned cross mitre” has units whose square cross-sections are rotated 45° about their central axes relative to the standard MathMaker units (Figure 1, right). Although the underlying cubic honeycomb structure is the same, the change in unit yields structures with strikingly different visual impressions. -
Wythoffian Skeletal Polyhedra
Wythoffian Skeletal Polyhedra by Abigail Williams B.S. in Mathematics, Bates College M.S. in Mathematics, Northeastern University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 14, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Dedication I would like to dedicate this dissertation to my Meme. She has always been my loudest cheerleader and has supported me in all that I have done. Thank you, Meme. ii Abstract of Dissertation Wythoff's construction can be used to generate new polyhedra from the symmetry groups of the regular polyhedra. In this dissertation we examine all polyhedra that can be generated through this construction from the 48 regular polyhedra. We also examine when the construction produces uniform polyhedra and then discuss other methods for finding uniform polyhedra. iii Acknowledgements I would like to start by thanking Professor Schulte for all of the guidance he has provided me over the last few years. He has given me interesting articles to read, provided invaluable commentary on this thesis, had many helpful and insightful discussions with me about my work, and invited me to wonderful conferences. I truly cannot thank him enough for all of his help. I am also very thankful to my committee members for their time and attention. Additionally, I want to thank my family and friends who, for years, have supported me and pretended to care everytime I start talking about math. Finally, I want to thank my husband, Keith. -
Arxiv:1501.06198V1 [Math.MG]
EMBEDDED FLEXIBLE SPHERICAL CROSS-POLYTOPES WITH NON-CONSTANT VOLUMES ALEXANDER A. GAIFULLIN Abstract. We construct examples of embedded flexible cross-polytopes in the spheres of all dimensions. These examples are interesting from two points of view. First, in dimensions 4 and higher, they are the first examples of embedded flexible polyhedra. Notice that, unlike in the spheres, in the Euclidean spaces and the Lobachevsky spaces of dimensions 4 and higher, still no example of an embedded flexible polyhedron is known. Second, we show that the volumes of the constructed flexible cross-polytopes are non- constant during the flexion. Hence these cross-polytopes give counterexamples to the Bellows Conjecture for spherical polyhedra. Earlier a counterexample to this conjecture was built only in dimension 3 (Alexandrov, 1997), and was not embedded. For flexible polyhedra in spheres we suggest a weakening of the Bellows Conjecture, which we call the Modified Bellows Conjecture. We show that this conjecture holds for all flexible cross-polytopes of the simplest type among which there are our counterexamples to the usual Bellows Conjecture. By the way, we obtain several geometric results on flexible cross-polytopes of the simplest type. In particular, we write relations on the volumes of their faces of codimensions 1 and 2. To Nicolai Petrovich Dolbilin on the occasion of his seventieth birthday 1. Introduction Let Xn be one of the three n-dimensional spaces of constant curvature, that is, the Euclidean space En or the sphere Sn or the Lobachevsky space Λn. For convenience, we shall always normalize metrics on the sphere Sn and on the Lobachevsky space Λn so that their curvatures are equal to 1 and 1 respectively. -
Download Paper
Hyperseeing the Regular Hendecachoron Carlo H. Séquin Jaron Lanier EECS, UC Berkeley CET, UC Berkeley E-mail: [email protected] E-mail: [email protected] Abstract The hendecachoron is an abstract 4-dimensional polytope composed of eleven cells in the form of hemi-icosahedra. This paper tries to foster an understanding of this intriguing object of high symmetry by discussing its construction in bottom-up and top down ways and providing visualization by computer graphics models. 1. Introduction The hendecachoron (11-cell) is a regular self-dual 4-dimensional polytope [3] composed from eleven non-orientable, self-intersecting hemi-icosahedra. This intriguing object of high combinatorial symmetry was discovered in 1976 by Branko Grünbaum [3] and later rediscovered and analyzed from a group theoretic point of view by H.S.M. Coxeter [2]. Freeman Dyson, the renowned physicist, was also much intrigued by this shape and remarked in an essay: “Plato would have been delighted to know about it.” Figure 1: Symmetrical arrangement of five hemi-icosahedra, forming a partial Hendecachoron. For most people it is hopeless to try to understand this highly self-intersecting, single-sided polytope as an integral object. In the 1990s Nat Friedman introduced the term hyper-seeing for gaining a deeper understanding of an object by viewing it from many different angles. Thus to explain the convoluted geometry of the 11-cell, we start by looking at a step-wise, bottom-up construction (Fig.1) of this 4- dimensional polytope from its eleven boundary cells in the form of hemi-icosahedra. But even the structure of these single-sided, non-orientable boundary cells takes some effort to understand; so we start by looking at one of the simplest abstract polytopes of this type: the hemicube.