Normal Blood and Bone Marrow Populations

Total Page:16

File Type:pdf, Size:1020Kb

Normal Blood and Bone Marrow Populations 4 CHAPTER 4 Normal Blood and Bone Marrow Populations It is essential to have a sound understanding of the nature of acute leukaemia (AL) blast cells, even if they occur at low and immunophenotypic characteristics of the normal cell frequencies. The sequential expression of antigens during populations encountered in bone marrow and peripheral normal marrow cell maturation and differentiation from a blood. It is also important to have some understanding of common stem cell population is well described in the lymphoid cellular interactions in the normal lymph node literature but needs to be fully understood. and thymus. This process is necessary if we are to under- Normal haematopoietic stem cells (HSC) are CD34+ stand the origin of the myeloid and lymphoid neoplasms (conversely not all leukaemic blasts are CD34+, a com- encountered in routine diagnostic immunophenotyping mon source of confusion) [1]. In normal steady state and helps us understand why certain neoplasms carry a marrow the total CD34+ fraction comprises HSC (early particular repertoire of antigens. It not only helps in progenitor cells; that is, uncommitted cells that can pro- the diagnosis of neoplastic disorders but equally gives duce multiple lineages), myelomonocytic (also CD123+), support to the recognition of reactive phenomena. erythroid (CD71+) and B-cell (CD19+) precursor cells [2]. The populations of cells which inhabit the bone Other antigens expressed by uncommitted HSC include marrow are constantly changing throughout the life of a HLA-DRdim and CD133, with the latter broadly correlat- normal individual. When this environment is challenged ing with CD34 expression. As the HSC population by infection, drugs, intercurrent medical disease and, of differentiates, they gain CD38 expression, a so-called course, primary haematological disease, the populations ‘activation marker’ in conjunction with the early lineage change or can respond and react in a variety of ways. We commitment antigens detailed above. need to be aware of these reactions such that we do not By definition, true HSC lack lineage commitment anti- over or under interpret the findings. This chapter is set gens (i.e. markers of lymphoid or myeloid differentiation), a out as a framework or foundation of normal myeloid and situation often abbreviated to lin–. Furthermore, many lymphoid ontogeny. Our understanding of this process is primitive haematopoietic stem cells are quiescent (out of still incomplete but we can only safely recognize abnor- cell cycle), with absence of both activation markers and mal situations once we are fully familiar with the normal markers of cell division, such as Ki67. These cells comprise resting blood and bone marrow cellular environment. only a very small fraction of total marrow CD34+ cells, how- ever, as this antigen continues to be expressed into the early- committed myeloid and lymphoid progenitor compartments Normal stem and precursor cell before it is lost during further maturation. Despite this populations caveat, CD34 is a very useful surrogate marker for the nor- mal HSC compartment, and it is routinely used for assess- Haematopoietic progenitor cells ment of stem cell harvests in the transplantation setting, for Recognition of the immunophenotypic patterns of matu- example, as well as in stem cell research. CD34+lin+ cells are ration in normal bone marrow facilitates the identification therefore committed progenitors and represent the first Practical Flow Cytometry in Haematology Diagnosis, First Edition. Mike Leach, Mark Drummond and Allyson Doig. © 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd. 31 32 CHAPTER 4 identifiable stage through which cells mature sequentially further complication is that aberrant or asynchronous down a particular differentiation pathway. maturation can be observed in normal situations, for exam- Normal precursor cell populations in the marrow may ple expression of CD56 on granulocyte and monocyte occasionally cause confusion in the diagnosis and monitor- precursor cells in regenerating marrows both with and ing of acute leukaemias. This is largely because they share without G-CSF administration. Furthermore, unusually many antigens of immaturity in common with leukaemic synchronous maturation may be observed in this situation blast cells as well as morphological similarities. One of the (e.g. accumulation of promyelocytes as the regenerating most obvious differences is that AL blasts are usually much cells expand and pass through maturational stages together) more numerous than normal precursors; for the most part, requiring meticulous attention to flow, morphology, genet- progenitor cells in normal steady-state marrow samples are ics as well as the clinical history to avoid erroneous inter- present at low levels. CD34+ cells are generally no more pretation. These situations are little mentioned in the than 1–2% of all marrow cells, while CD117+ cells, an anti- literature but should be recognized relatively easily by an gen that is expressed beyond CD34 in myeloid progenitor experienced cytometrist. cell populations, are generally no more than 2–4% [3–5]. CD45 (a pan-leucocyte antigen) is generally dimly Approximately 25% of CD34+ cells are CD117+ [6]. How- expressed on marrow precursor cells, including myelo- ever, regenerating marrows often express proportionally blasts, monoblasts, precursor B-cells and erythroblasts higher levels of progenitor cell antigens than marrows in [9]. It is, by comparison, bright on mature cells such as steady state, particularly in the case of normal B-cell pre- monocytes, neutrophils and lymphocytes, although it is cursors (haematogones) after chemotherapy or stem cell lost altogether by later erythroid precursors. CD45dim is transplantation for example [7, 8]. In general, for practical therefore a useful feature to allow gating on blast cells of purposes, the authors consider a CD34+ population of ≥ 3% many AL, and it is commonly used in conjunction with or a CD117 population ≥ 5% as significant and worthy of the low SSC that is also seen in precursor cells [10], full characterization, although this is dependent on the redrawn schematically in Figure 4.1. clinical scenario and assessing lower levels than this may be By incorporating CD13, an early marker of myeloid relevant in some circumstances (e.g. post induction therapy differentiation, the following progenitor populations can in AL or distinguishing MDS from aplastic anaemia in a therefore be easily defined in normal marrow: hypoplastic marrow). Particularly at low levels of blast 1 A CD34+CD117+CD45dimCD13+ pattern, which defines numbers, demonstration of an abnormal phenotype is of the normal myeloid/monocytic progenitor population. more significance than accurate quantification in most cir- 2 A CD34+CD117–CD45dimCD13– pattern, which defines cumstances, particularly when the potential pitfalls in blast the normal precursor B-cell population. These cells enumeration are taken into account (see below). One would in addition express B-cell antigens. 103 Bright 102 Dim Lymphocytes Monocytes CD45 Neutrophils 101 Neg Promyelocytes Meta/myelocytes Lymphoblasts Myeloblasts/monoblasts Nucleated erythroid cells Figure 4.1 Distribution of normal bone marrow populations according to CD45 expression and Side scatter side scatter properties. Normal Blood and Bone Marrow Populations 33 For the purposes of further discussion of normal normal counterparts. Knowledge of these differences maturation patterns we will define two major popu- is important in identifying such cells as leukaemic. lations: Variations in antigen intensity also occur during 1 Myeloid (neutrophils, eosinophils, basophils, mono- maturation; for example CD13 and CD33 expression on cytes, erythroid, megakaryocytes, mast cells and dendritic myeloblasts progressively increase in intensity up to and cells) including the promyelocyte stage. This CD33bright popula- 2 Lymphoid (B and T-cells) tion then loses intensity (but remains positive) as matura- It is worth drawing attention to two excellent resources tion to neutrophils takes place. This is in contrast to with regards precursor cells and normal marrow matura- monocyte maturation which is characterized by a contin- tion that are freely available. First, there exist useful ual increase in CD13 and CD33 intensity as cells mature. consensus descriptions of cytology in normal and abnor- Late antigens appearing during the myelocyte-neutrophil mal myelopoiesis which have recently been produced stages include CD15 (which first appears at a late promye- by the International Working Group on Morphology locyte stage) and CD11b [14]; CD16 and CD10 are of Myelodysplastic Syndrome (IWGM-MDS) [11, 12]. expressed from the metamyelocyte/band-form stage Second, is the most recent of several attempts to accu- onwards. Mature neutrophils therefore have a CD45+, rately document the maturation patterns of precursor CD13+, CD33+, CD11b+, CD15+, CD16+ phenotype. CD64 cells in normal marrow. The most comprehensive study to may be expressed on early myeloblasts, but disappears date has been performed on behalf of the European beyond this stage. It may be re-expressed by activated neu- Leukaemia Net (ELN) [13]. This study exhaustively docu- trophils, where bright CD64 expression can be indicative ments scatter plot patterns of antigen expression using of sepsis [15]. A graphic summary of myeloid maturation predefined standard antibody panels, and provides a nor- is shown in Figure 4.2. mal framework upon which abnormal populations
Recommended publications
  • Mass Cytometric Functional Profiling of Acute Myeloid Leukemia Defines Cell-Cycle and Immunophenotypic Properties That Correlate with Known Responses to Therapy
    Published OnlineFirst June 19, 2015; DOI: 10.1158/2159-8290.CD-15-0298 ReseaRch aRticle Mass Cytometric Functional Profiling of Acute Myeloid Leukemia Defines Cell-Cycle and Immunophenotypic Properties That Correlate with Known Responses to Therapy Gregory K. Behbehani1,2,3, Nikolay Samusik1, Zach B. Bjornson1, Wendy J. Fantl1,4, Bruno C. Medeiros2,3, and Garry P. Nolan1 Downloaded from cancerdiscovery.aacrjournals.org on September 25, 2021. © 2015 American Association for Cancer Research. Published OnlineFirst June 19, 2015; DOI: 10.1158/2159-8290.CD-15-0298 abstRact Acute myeloid leukemia (AML) is characterized by a high relapse rate that has been attributed to the quiescence of leukemia stem cells (LSC), which renders them resistant to chemotherapy. However, this hypothesis is largely supported by indirect evidence and fails to explain the large differences in relapse rates across AML subtypes. To address this, bone mar- row aspirates from 41 AML patients and five healthy donors were analyzed by high-dimensional mass cytometry. All patients displayed immunophenotypic and intracellular signaling abnormalities within CD34+CD38lo populations, and several karyotype- and genotype-specific surface marker patterns were identified. The immunophenotypic stem and early progenitor cell populations from patients with clinically favorable core-binding factor AML demonstrated a 5-fold higher fraction of cells in S-phase compared with other AML samples. Conversely, LSCs in less clinically favorable FLT3-ITD AML exhib- ited dramatic reductions in S-phase fraction. Mass cytometry also allowed direct observation of the in vivo effects of cytotoxic chemotherapy. SIGNIFICANCE: The mechanisms underlying differences in relapse rates across AML subtypes are poorly understood.
    [Show full text]
  • 1. Introduction and Literature Review
    1. Introduction and literature review 1.1 Introduction 1.1.1 Defintion of blood Blood is described as a specialized connective tissue,which circulates in a closed system of blood vessels. (Monica.C, 2009) 1.1.2 Blood components Plasma is 55% of the total blood ,plasma cosist of albumin,globulin,water,electrolyte and many other organic and inorganic substances. (Monica.C, 2009) Blood cells is 45% of total blood and encompass;White blood cells(WBCs),Red blood cells(RBCs),and Platelets(Plts). (Monica.C, 2009) 1.1.3 Function of blood -Respiration: transport of oxygen from the lung to tissues and carbon dioxide from tissues to the lungs. -Excreation:transport of metabolic waste to the lungs,kidneys,skin and intestine for removal. - Maintain of normal acid –base balance. -Nutrition of body . -Part of immune system. (Monica.C, 2009) 1 1.1.4 Haemopoiesis Is the general aspect of blood cells formation. (Monica.C, 2009) Haemopoiesis occurs at different anatomical sites the course of development from embryonic life to adult life this site is, up to 2 month of gestation.The haemopoiesis occurs in yolk sac of the embryo.This period called (Myeloblastic period). (Monica.C, 2009) 2-7 month of gestation, this period called (Haepatic period). (Monica.C, 2009) Only important site of all hemopoiesis site after birth,an exception is lymphocyte production which occur in other organ in addition to the bone marrow.This period called(Myeloid period). (Monica.C, 2009) 1.1.5 Development of haemopoiesis The general most commonly accepted view is that blood cells development from small population of stem cells.
    [Show full text]
  • Expression of the Hematopoietic Stem Cell Antigen CD34 on Blood and Bone Marrow Monoclonal Plasma Cells from Patients with Multiple Myeloma
    Bone Marrow Transplantation, (1997) 19, 553–556 1997 Stockton Press All rights reserved 0268–3369/97 $12.00 Expression of the hematopoietic stem cell antigen CD34 on blood and bone marrow monoclonal plasma cells from patients with multiple myeloma T Kimlinger1 and TE Witzig2 1Department of Laboratory Medicine and 2Division of Internal Medicine and Hematology, Mayo Clinic and Mayo Foundation, Rochester, MN, USA Summary: led to strategies to deplete the tumor cells from the harvest product prior to reinfusion of the stem cells. Monoclonal plasma cells (CD38+CD45−/dim) are typi- One of the current attempts at purifying the harvest pro- cally present in the blood of patients with active mye- duct uses antibody to the CD34 antigen to positively select loma and can contaminate stem cell harvests. This has and enrich hematopoietic stem cells and in the process led to strategies that select CD34+ cells for use in auto- purge the stem cell product of tumor cells and T cells.11–13 logous stem cell transplantation with the goal of The CD34 antigen identifies a lymphohematopoietic stem decreasing tumor cell contamination. The aim of this cell, is present on 1–5% of adult bone marrow cells, and study was to learn if the CD34 antigen is expressed on is expressed on early B cells. The characteristics of this monoclonal plasma cells in the blood or marrow of important antigen and its clinical relevance have recently patients with multiple myeloma. We used three-color been reviewed.14 CD34+ hematopoietic cells from blood or flow cytometry (surface CD38;CD45 and cytoplasmic marrow can reconstitute hematopoiesis after high-dose kappa or lambda) to identify monoclonal plasma cells therapy programs.15 The number of CD34+ cells reinfused in the blood (n = 24) and marrow (n = 37) from patients predicts the time to engraftment.16,17 with plasma cell proliferative disorders.
    [Show full text]
  • MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells
    Published OnlineFirst July 18, 2013; DOI: 10.1158/0008-5472.CAN-13-0677 Cancer Tumor and Stem Cell Biology Research MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells Dina Stroopinsky1, Jacalyn Rosenblatt1, Keisuke Ito1, Heidi Mills1, Li Yin2, Hasan Rajabi2, Baldev Vasir2, Turner Kufe1, Katarina Luptakova1, Jon Arnason1, Caterina Nardella1, James D. Levine1, Robin M. Joyce1, Ilene Galinsky2, Yoram Reiter3, Richard M. Stone2, Pier Paolo Pandolfi1, Donald Kufe2, and David Avigan1 Abstract Acute myeloid leukemia (AML) is a malignancy of stem cells with an unlimited capacity for self-renewal. MUC1 is a secreted, oncogenic mucin that is expressed aberrantly in AML blasts, but its potential uses to target AML þ À stem cells have not been explored. Here, we report that MUC1 is highly expressed on AML CD34 /lineage / À CD38 cells as compared with their normal stem cell counterparts. MUC1 expression was not restricted to AML þ À CD34 populations as similar results were obtained with leukemic cells from patients with CD34 disease. Engraftment of AML stem cell populations that highly express MUC1 (MUC1high) led to development of leukemia in NOD-SCID IL2Rgammanull (NSG) immunodeficient mice. In contrast, MUC1low cell populations established normal hematopoiesis in the NSG model. Functional blockade of the oncogenic MUC1-C subunit with the peptide inhibitor GO-203 depleted established AML in vivo, but did not affect engraftment of normal hematopoietic cells. Our results establish that MUC1 is highly expressed in AML stem cells and they define the MUC1-C subunit as a valid target for their therapeutic eradication.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • A Comparative Study of Murine Mast Cell Progenitors
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2001 A Comparative Study of Murine Mast Cell Progenitors Shirley K. DeSimone Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Other Medicine and Health Sciences Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/4529 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Virginia Commonwealth University School of Medicine This is to certifythat the dissertation prepared by Shirley K. DeSimone entitled "A Comparative Study of Murine Mast Cell Progenitors" has been approved by her committee as satisfactory completion of the disse1tation requirement for the degree of Doctor of Philosophy. Francine M. Marciano-Cabral, Ph.D., School of Medicine Jack L. Haar, Ph.D., Dean, School of Graduate Studies A Comparative Study of Murine Mast Cell Progenitors A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University By Shirley K. DeSimone Director: Thomas F. Huff, Ph.D. Professor, Microbiology and Immunology Virginia Commonwealth University Richmond, Virginia May, 2001 11 Acknowledgments I wish to thank my advisor, Dr. Thomas F. Hufffor his insight, guidance, and patience. also which to acknowledge the invaluable, unwavering, and loving support of my husband, friend and companion, Dr. John A. DeSimone. Thanks are also due to the consistently helpful graduate students of Dr.
    [Show full text]
  • WSC 10-11 Conf 7 Layout Master
    The Armed Forces Institute of Pathology Department of Veterinary Pathology Conference Coordinator Matthew Wegner, DVM WEDNESDAY SLIDE CONFERENCE 2010-2011 Conference 7 29 September 2010 Conference Moderator: Thomas Lipscomb, DVM, Diplomate ACVP CASE I: 598-10 (AFIP 3165072). sometimes contain many PAS-positive granules which are thought to be phagocytic debris and possibly Signalment: 14-month-old , female, intact, Boxer dog phagocytized organisms that perhaps Boxers and (Canis familiaris). French bulldogs are not able to process due to a genetic lysosomal defect.1 In recent years, the condition has History: Intestine and colon biopsies were submitted been successfully treated with enrofloxacin2 and a new from a patient with chronic diarrhea. report indicates that this treatment correlates with eradication of intramucosal Escherichia coli, and the Gross Pathology: Not reported. few cases that don’t respond have an enrofloxacin- resistant strain of E. coli.3 Histopathologic Description: Colon: The small intestine is normal but the colonic submucosa is greatly The histiocytic influx is reportedly centered in the expanded by swollen, foamy/granular histiocytes that submucosa and into the deep mucosa and may expand occasionally contain a large clear vacuole. A few of through the muscular wall to the serosa and adjacent these histiocytes are in the deep mucosal lamina lymph nodes.1 Mucosal biopsies only may miss the propria as well, between the muscularis mucosa and lesions. Mucosal ulceration progresses with chronicity the crypts. Many scattered small lymphocytes with from superficial erosions to patchy ulcers that stop at plasma cells and neutrophils are also in the submucosa, the submucosa to only patchy intact islands of mucosa.
    [Show full text]
  • Effects of Heterologous Antineutrophil Serum in Guinea Pigs Hematologic and Ultrastructural Observations
    Effects of Heterologous Antineutrophil Serum in Guinea Pigs Hematologic and Ultrastructural Observations David M. Simpson and Russell Ross Two pools of rabbit anti-guinea pig neutrophil serum (ANS) were prepared using an intravenous (ANS I) or subcutaneous (ANS II) route of immunization with proteose peptone-stimulated peritoneal exudate neutrophils (PMNs) from albino guinea pigs. In vitro, both pools of ANS contained high titers of agglutinating antibodies to neutrophils and lower titers against lymphocytes and red cells. Ag- glutinins against all three cell types could be selectively removed by absorption. The in vivo hematologic effects of both the absorbed and unabsorbed antisera were examined after intraperitoneal administration, and the effects of ANS on neu- trophils in blood, bone marrow, and peritoneal cavity were examined by light and electr microscopy of spleen, liver, lung, lymph node, buffy coat, bone mar- row and pellets of peritoneal cells removed at various time intervals within 24 hours. Injection of either antisera caused a rapid decrase in circulating neu- trophils and lymphocytes, whi reached thefr lowest levels within 12 hours. Neutrophils that disappeared from the circulation were sequestered primarily in liver and spleen where they were phagocytized, as morphologically intact cells, by macrophages and then rapidly digested. Immature bone marow neutrophils as young as early myelocytes were ingested by macrophages in the marrow at 6 hours or later after ANS. Neutrophils that were phagocytized were apparently opsonized by ANS since there was no ultrastructurl evidence of neutrophil lysis in blood or bone manrow after ANS treatment. However, both lysed and ingested neubrophils were observed in the peritoneal cavity.
    [Show full text]
  • Left Shift Cbc Example Foto
    Left Shift Cbc Example Remittent Crawford roughen, his cliffs palms divaricating irreproachably. Timorous and catchweight unheedingly.Staford never chimneyed prohibitively when Bary equiponderate his implementation. Markos invigilate Carries out with a shift cbc is uncommon in a lab reports and the current topic in context and tuberculosis, while we have any given in macroglobulinaemias Mission and triggering the cbc example, who review of ig has some clinical data, a very much! Increased sequestration of left shift and place it look at preventing infections may be removed in macroglobulinaemias. Cells to an anemic animal that is a good example of this. Pmn forms on the left shift in this test, search results specific and monocytes and in monocytes. Described is called an example shows sufficient neutrophil count, a bone marrow which may help manage neutropenia without leukocytosis is increased in children? Categorized into the left shift example of the cells are the possible. Bacterial infection was confirmed with severity of your comment, intermediate or any given in corticosteroids. Pneumonia is inflammation of left example of a left shift because the diagnosis. Connected by means of white blood test and assesses the condition of. Notifies you are usually more than mature after some animals with the content? Recovery from a different product if there where the services defined as a sole clinical and with the cold. Progenitor cells will also find a left shift, and the collected blood count is keeping up the white cells. Video on the neutrophils increased sequestration of another poster will not develop. Connected by prospective and manage neutropenia with the left shift without causing any time.
    [Show full text]
  • Differentiation of Pluripotent Cells Differenzierung Pluripotenter Zellen Différenciation De Cellules Pluripotentes
    (19) TZZ Z_¥_T (11) EP 2 401 364 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 5/0781 (2010.01) C12N 5/071 (2010.01) 22.04.2015 Bulletin 2015/17 (86) International application number: (21) Application number: 10707179.7 PCT/US2010/025776 (22) Date of filing: 01.03.2010 (87) International publication number: WO 2010/099539 (02.09.2010 Gazette 2010/35) (54) DIFFERENTIATION OF PLURIPOTENT CELLS DIFFERENZIERUNG PLURIPOTENTER ZELLEN DIFFÉRENCIATION DE CELLULES PLURIPOTENTES (84) Designated Contracting States: • WANG LISHENG ET AL: "Endothelial and AT BE BG CH CY CZ DE DK EE ES FI FR GB GR hematopoietic cell fate of human embryonic stem HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL cells originates from primitive endothelium with PT RO SE SI SK SM TR hemangioblastic properties" IMMUNITY, CELL PRESS, US LNKD- DOI:10.1016/J.IMMUNI. (30) Priority: 27.02.2009 US 156304 P 2004.06.006, vol. 21, no. 1, 1 July 2004 (2004-07-01), pages 31-41, XP002484358 ISSN: (43) Date of publication of application: 1074-7613 04.01.2012 Bulletin 2012/01 • BHATIA MICKIE: "Hematopoiesis from human embryonic stem cells." ANNALS OF THE NEW (73) Proprietor: Cellular Dynamics International, Inc. YORK ACADEMY OF SCIENCES JUN 2007 LNKD- Madison, WI 53711 (US) PUBMED:17332088, vol. 1106, June 2007 (2007-06), pages 219-222, XP007912752 ISSN: (72) Inventors: 0077-8923 • RAJESH, Deepika • KENNEDY MARION ET AL: "Development of the Madison, WI 53711 (US) hemangioblast defines the onset of • LEWIS, Rachel hematopoiesis in human ES cell differentiation Madison, WI 53711 (US) cultures" BLOOD, AMERICAN SOCIETY OF HEMATOLOGY, US, vol.
    [Show full text]
  • The Term Meaning White Blood Cells Is
    The Term Meaning White Blood Cells Is Micro Angelico still desalinate: venatic and unclimbed Elliot originate quite significatively but globes her proximocracoviennes and admeasuring catechetically. politely. Welsh Hazardableis attritional orand pollened, endows Sherwood voicelessly never as statant comb-outs Ira interpenetrates any output! Trophoblast cells are destined to give rise to many of the extraembryonic tissues. Genetic disorders and blood the cells is a permanent hair shaft, great care provider first line reported by lab technician may be included in circulation, the superficial veins. The part of the brain that controls coordinated movement. What Is A Medical Technologist? Inflammation of the liver. MPV is used along with platelet count to diagnose some diseases. After circulating in the bloodstream for about a day, monocytes enter body tissues to become macrophages, which can destroy some germs by surrounding and digesting them. The legacy of this great resource continues as the Merck Veterinary Manual in the US and Canada and the MSD Manual outside of North America. An abnormal increase in the volume of circulating blood. These small cells seem to sound an alarm when infectious agents invade your blood. Comparisons may be useful for a differential diagnosis. Finally, emotional or physical stress can also cause elevated white blood cell counts. The ability of the body to learn to fight specific infections after being exposed to the germs that cause them. However, you may also visit the Cookie Settings at any time to provide controlled consent, and you can withdraw your consent there. Severe pain that occurs suddenly and usually lasts a short while.
    [Show full text]
  • Interpretation of the Leukocytes Picture
    15/02/1441 Prof. www.scholaridea.comM. YouTube/ Scholar Idea Complete bloodRushdi count 1 www.scholaridea.com2 YouTube/ Scholar Idea 15/02/1441 Types of blood sample Prof.Whole blood Plasma Serum Blood smear www.scholaridea.com3 M. YouTube/ Scholar Idea Rushdi The White blood cells (RBCs) Leucocytes or white blood cells are divided into two main categories: 1.Polymorphonuclear (PMN) leucocytes (granulocytes): Neutrophils, Eosinophils and Basophils (Produced in the bone marrow). 2.Mononuclear leucocytes (agranulocytes): Lymphocytes and Monocytes. 2 www.scholaridea.com4 YouTube/ Scholar Idea 15/02/1441 Granulocytes A. Neutrophils Prof.The 1st line of cellular defense Phagocytosis Band cell Engulf pyogenic bacteria Elaborate powerful proteolytic enzymes www.scholaridea.comM. YouTube/ Scholar Idea PHAGOCYTOSISRushdi A. Chemotaxis ----Lymphokines B. Opsonization C. Ingestion D. Digestion 3 www.scholaridea.com YouTube/ Scholar Idea 15/02/1441 Granulocytes b. Eosinophils Detoxification of protein breaks Neutralize Histamine Prof.down products substances Destroy larval stage of parasite in tissues www.scholaridea.comM. YouTube/ Scholar Idea RushdiGranulocytes C. Basophils Release histamine Release heparin – Stimulate lipoprotein lipase – clearance of Lipemia 4 www.scholaridea.com YouTube/ Scholar Idea 15/02/1441 A. Lymphocytes Agranulocytes Large lymphocyte Prof.Lymphocyte www.scholaridea.comM. YouTube/ Scholar Idea Agranulocytes B. MonocytesRushdi 1- Phagocytosis 2- increase in chronic inflammation and tissue necrosis 5 www.scholaridea.com YouTube/ Scholar Idea 15/02/1441 PARAMETERS OF LEUCOCYTES PICTURE Prof.Total WBCs count Differential LC Hemocytometer Blood film Blood Cell Counter Blood Cell Counter www.scholaridea.comM. YouTube/ Scholar Idea The significanceRushdi of blood smear examination 1. Identification of different animal species. Some animal species can be identified by examination of a blood smear, for example blood cells of camel are oval, the blood cells of equines are rounded and form a network, the blood cells of birds are oval and nucleated.
    [Show full text]