Oxidative Stress Control by Apicomplexan Parasites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
Why the –Omic Future of Apicomplexa Should Include Gregarines Julie Boisard, Isabelle Florent
Why the –omic future of Apicomplexa should include Gregarines Julie Boisard, Isabelle Florent To cite this version: Julie Boisard, Isabelle Florent. Why the –omic future of Apicomplexa should include Gregarines. Biology of the Cell, Wiley, 2020, 10.1111/boc.202000006. hal-02553206 HAL Id: hal-02553206 https://hal.archives-ouvertes.fr/hal-02553206 Submitted on 24 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article title: Why the –omic future of Apicomplexa should include Gregarines. Names of authors: Julie BOISARD1,2 and Isabelle FLORENT1 Authors affiliations: 1. Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Département Adaptations du Vivant (AVIV), Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier 75231 Paris Cedex 05, France. 2. Structure et instabilité des génomes (STRING UMR 7196 CNRS / INSERM U1154), Département Adaptations du vivant (AVIV), Muséum National d'Histoire Naturelle, CP 26, 57 rue Cuvier 75231 Paris Cedex 05, France. Short Title: Gregarines –omics for Apicomplexa studies -
Oborník M.& Lukeš, J. (2013) Cell Biology of Chromerids: Autotrophic
CHAPTER EIGHT Cell Biology of Chromerids: Autotrophic Relatives to Apicomplexan Parasites Miroslav Oborník*,†,{,1, Julius Lukeš*,† *Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Cˇ eske´ Budeˇjovice, Czech Republic †Faculty of Science, University of South Bohemia, Cˇ eske´ Budeˇjovice, Czech Republic { Institute of Microbiology, Academy of Sciences of the Czech Republic, Trˇebonˇ, Czech Republic 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction 334 2. Chromerida: A New Group of Algae Isolated from Australian Corals 337 2.1 C. velia: A new alga from Sydney Harbor 338 2.2 V. brassicaformis: An alga from the Great Barrier Reef 343 3. Life Cycle 346 4. Evolution of Exosymbiont 348 5. Evolution of Chromerid Organelles 350 5.1 Evolution of chromerid plastids 350 5.2 Reduced mitochondrial genomes of chromerids 354 5.3 Chromerosome: C. velia as a possible mixotroph 354 6. Metabolism of Chromerids 355 6.1 Unique pathway for tetrapyrrole biosynthesis 355 6.2 Other metabolic features of C. velia 359 7. Chromerids as Possible Symbionts of Corals 361 8. Conclusions 361 Acknowledgments 362 References 362 Abstract Chromerida are algae possessing a complex plastid surrounded by four membranes. Although isolated originally from stony corals in Australia, they seem to be globally dis- tributed. According to their molecular phylogeny, morphology, ultrastructure, structure of organellar genomes, and noncanonical pathway for tetrapyrrole synthesis, these algae are thought to be the closest known phototrophic relatives to apicomplexan par- asites. Here, we summarize the current knowledge of cell biology and evolution of this novel group of algae, which contains only two formally described species, but is appar- ently highly diverse and virtually ubiquitous in marine environments. -
Business Address
ALAN J. GRANT Home Address: 56 Fitchburg Street Department of Immunology and Watertown, MA 02172 Infectious Disease (617) 924-3217 Harvard School of Public Health [email protected] 665 Huntington Ave. (617) 797-3216 (Cellular) Boston, MA 02115 Professional Experience: Visiting Scientist Department of Immunology and 2007-current Infectious Disease Harvard School of Public Health Boston, MA Senior Scientist American Biophysics Corp. 1998-2006 2240 South County Trail East Greenwich, RI Assistant Research Professor 1998 Department of Physiology University of Massachusetts Medical School 55 Lake Street Worcester, MA Senior Research Associate/ Foundation Scholar 1990-1997 Worcester Foundation for Biomedical Research 222 Maple Ave. Shrewsbury, MA Research Associate 1983-1990 Worcester Foundation for Experiment Biology 222 Maple Ave. Shrewsbury, MA Research Entomologist 1980-1982 Agricultural Research Service United States Department of Agriculture Insects Attractants, Behavior and Basic Biology Laboratory Gainesville, FL ALAN J. GRANT Education: Post-Doctoral Research Associate; USDA; Agricultural Research Service 1982-84 Gainesville, Florida Ph.D. College of Environmental Science and Forestry 1982 State University of New York, Syracuse, New York M.S. College of Environmental Science and Forestry 1980 B.S. College of Agriculture and Life Sciences 1976 Cornell University, Ithaca, New York Patent: 5,772,983 - Method of screening for compounds which modulate insect behavior. (with Robert J. O'Connell) Claims allowed: June 1997. Issued June 30, 1998. Selected Invited Symposia: The Ciba Foundation; Mosquito Olfaction and Olfactory-Mediated Mosquito-Host Interactions. Ciba Foundation Symposium No. 200. 1995; London Electrophysiological responses from olfactory receptor neurons in the maxillary palps of mosquitos. The Olfactory Basis of Mosquito-Host Interactions. -
"Plastid Originand Evolution". In: Encyclopedia of Life
CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Queensland eSpace Plastid Origin and Advanced article Evolution Article Contents . Introduction Cheong Xin Chan, Rutgers University, New Brunswick, New Jersey, USA . Primary Plastids and Endosymbiosis . Secondary (and Tertiary) Plastids Debashish Bhattacharya, Rutgers University, New Brunswick, New Jersey, USA . Nonphotosynthetic Plastids . Plastid Theft . Plastid Origin and Eukaryote Evolution . Concluding Remarks Online posting date: 15th November 2011 Plastids (or chloroplasts in plants) are organelles within organisms that emerged ca. 2.8 billion years ago (Olson, which photosynthesis takes place in eukaryotes. The ori- 2006), followed by the evolution of eukaryotic algae ca. 1.5 gin of the widespread plastid traces back to a cyano- billion years ago (Yoon et al., 2004) and finally by the rise of bacterium that was engulfed and retained by a plants ca. 500 million years ago (Taylor, 1988). Photosynthetic reactions occur within the cytosol in heterotrophic protist through a process termed primary prokaryotes. In eukaryotes, however, the reaction takes endosymbiosis. Subsequent (serial) events of endo- place in the organelle, plastid (e.g. chloroplast in plants). symbiosis, involving red and green algae and potentially The plastid also houses many other reactions that are other eukaryotes, yielded the so-called ‘complex’ plastids essential for growth and development in algae and plants; found in photosynthetic taxa such as diatoms, dino- for example, the -
Global Distribution of Babesia Species in Questing Ticks: a Systematic Review and Meta-Analysis Based on Published Literature
pathogens Systematic Review Global Distribution of Babesia Species in Questing Ticks: A Systematic Review and Meta-Analysis Based on Published Literature ThankGod E. Onyiche 1,2 , Cristian Răileanu 2 , Susanne Fischer 2 and Cornelia Silaghi 2,3,* 1 Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria; [email protected] 2 Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; cristian.raileanu@fli.de (C.R.); susanne.fischer@fli.de (S.F.) 3 Department of Biology, University of Greifswald, Domstrasse 11, 17489 Greifswald, Germany * Correspondence: cornelia.silaghi@fli.de; Tel.: +49-38351-7-1172 Abstract: Babesiosis caused by the Babesia species is a parasitic tick-borne disease. It threatens many mammalian species and is transmitted through infected ixodid ticks. To date, the global occurrence and distribution are poorly understood in questing ticks. Therefore, we performed a meta-analysis to estimate the distribution of the pathogen. A deep search for four electronic databases of the published literature investigating the prevalence of Babesia spp. in questing ticks was undertaken and obtained data analyzed. Our results indicate that in 104 eligible studies dating from 1985 to 2020, altogether 137,364 ticks were screened with 3069 positives with an estimated global pooled prevalence estimates (PPE) of 2.10%. In total, 19 different Babesia species of both human and veterinary importance were Citation: Onyiche, T.E.; R˘aileanu,C.; detected in 23 tick species, with Babesia microti and Ixodes ricinus being the most widely reported Fischer, S.; Silaghi, C. -
(PAD) and Post-Translational Protein Deimination—Novel Insights Into Alveolata Metabolism, Epigenetic Regulation and Host–Pathogen Interactions
biology Article Peptidylarginine Deiminase (PAD) and Post-Translational Protein Deimination—Novel Insights into Alveolata Metabolism, Epigenetic Regulation and Host–Pathogen Interactions Árni Kristmundsson 1,*, Ásthildur Erlingsdóttir 1 and Sigrun Lange 2,* 1 Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland; [email protected] 2 Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK * Correspondence: [email protected] (Á.K.); [email protected] (S.L.) Simple Summary: Alveolates are a major group of free living and parasitic organisms; some of which are serious pathogens of animals and humans. Apicomplexans and chromerids are two phyla belonging to the alveolates. Apicomplexans are obligate intracellular parasites; that cannot complete their life cycle without exploiting a suitable host. Chromerids are mostly photoautotrophs as they can obtain energy from sunlight; and are considered ancestors of the apicomplexans. The pathogenicity and life cycle strategies differ significantly between parasitic alveolates; with some causing major losses in host populations while others seem harmless to the host. As the life cycles of Citation: Kristmundsson, Á.; Erlingsdóttir, Á.; Lange, S. some are still poorly understood, a better understanding of the factors which can affect the parasitic Peptidylarginine Deiminase (PAD) alveolates’ life cycles and survival is of great importance and may aid in new biomarker discovery. and Post-Translational Protein This study assessed new mechanisms relating to changes in protein structure and function (so-called Deimination—Novel Insights into “deimination” or “citrullination”) in two key parasites—an apicomplexan and a chromerid—to Alveolata Metabolism, Epigenetic assess the pathways affected by this protein modification. -
Babesia Duncani Are the Main Causative Agents of Human Babesiosis
22 ABSTRACT 23 Babesia microti and Babesia duncani are the main causative agents of human babesiosis 24 in the United States. While significant knowledge about B. microti has been gained over the past 25 few years, nothing is known about B. duncani biology, pathogenesis, mode of transmission or 26 sensitivity to currently recommended therapies. Studies in immunocompetent wild type mice and 27 hamsters have shown that unlike B. microti, infection with B. duncani results in severe pathology 28 and ultimately death. The parasite factors involved in B. duncani virulence remain unknown. 29 Here we report the first known completed sequence and annotation of the apicoplast and 30 mitochondrial genomes of B. duncani. We found that the apicoplast genome of this parasite 31 consists of a 34 kb monocistronic circular molecule encoding functions that are important for 32 apicoplast gene transcription as well as translation and maturation of the organelle’s proteins. 33 The mitochondrial genome of B. duncani consists of a 5.9 kb monocistronic linear molecule with 34 two inverted repeats of 48 bp at both ends. Using the conserved cytochrome b (Lemieux) and 35 cytochrome c oxidase subunit I (coxI) proteins encoded by the mitochondrial genome, 36 phylogenetic analysis revealed that B. duncani defines a new lineage among apicomplexan 37 parasites distinct from B. microti, Babesia bovis, Theileria spp. and Plasmodium spp. Annotation 38 of the apicoplast and mitochondrial genomes of B. duncani identified targets for development of 39 effective therapies. Our studies set the stage for evaluation of the efficacy of these drugs alone or 40 in combination against B. -
PUBLICATIONS Chapters in Books
PUBLICATIONS As of April 2012; 13 Book chapters, 16 invited reviews and 137 peer reviewed journal articles. Note: Morgan and Morgan-Ryan = Ryan Chapters in Books 1 Thompson, R. C. A., Lymbery, A. J., Meloni, B. P., Morgan, U. M., Binz, N., Constantine, C. C. and Hopkins, R. M. (1994). Molecular epidemiology of parasite infections. In: Biology of Parasitism (R. Erlich and A Nieto eds.). pp. 167-185. Ediciones Trilace, Montevideo-Uruguay. 2 Morgan, U. M. and R.C. A. Thompson. (2000). Diagnosis. In: The Molecular epidemiology of Infectious Diseases. (ed R.C.A. Thompson). Arnold, Oxford. p.30-44. 3 Thompson, R. C. A. and Morgan, U. M. (1999). Molecular epidemiology: Applications to current and emerging problems of infectious disease. In: The Molecular epidemiology of Infectious Diseases. (ed R.C.A. Thompson). Arnold, Oxford. p.1-4. 4 Thompson, R. C. A., Morgan, U. M., Hopkins, R. M. and Pallant, L. J. (2000). Enteric protozoan infections. In: The Molecular epidemiology of Infectious Diseases. (ed R.C.A. Thompson). Arnold, Oxford. p. 194-209. 5 Morgan, U. M, Xiao, L., Fayer, R., Lal, A. A and R.C. A. Thompson. (2000). Epidemiology and Strain variation of Cryptosporidium parvum. In: Cryptosporidiosis and Microsporidiosis. Contributions to Microbiology. Vol.6. (ed. F. Petry). Karger, Basel. p116-139. 6 Morgan, U. M, Xiao, L., Fayer, R., Lal, A. A and R.C. A. Thompson. (2001). Molecular epidemiology and systematics of Cryptosporidium parvum. In Cryptosporidium – the analytical challenge. (ed. M. Smith and K.C. Thompson). Royal Society of Chemistry, Cambridge, UK. p.44-50. 7 Ryan, U. -
Single Cell Genomics of Uncultured Marine Alveolates Shows Paraphyly of Basal Dinoflagellates
The ISME Journal (2018) 12, 304–308 © 2018 International Society for Microbial Ecology All rights reserved 1751-7362/18 www.nature.com/ismej SHORT COMMUNICATION Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates Jürgen FH Strassert1,7, Anna Karnkowska1,8, Elisabeth Hehenberger1, Javier del Campo1, Martin Kolisko1,2, Noriko Okamoto1, Fabien Burki1,7, Jan Janouškovec1,9, Camille Poirier3, Guy Leonard4, Steven J Hallam5, Thomas A Richards4, Alexandra Z Worden3, Alyson E Santoro6 and Patrick J Keeling1 1Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada; 2Institute of ̌ Parasitology, Biology Centre CAS, C eské Budějovice, Czech Republic; 3Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA; 4Biosciences, University of Exeter, Exeter, UK; 5Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada and 6Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA Marine alveolates (MALVs) are diverse and widespread early-branching dinoflagellates, but most knowledge of the group comes from a few cultured species that are generally not abundant in natural samples, or from diversity analyses of PCR-based environmental SSU rRNA gene sequences. To more broadly examine MALV genomes, we generated single cell genome sequences from seven individually isolated cells. Genes expected of heterotrophic eukaryotes were found, with interesting exceptions like presence of -
Genes Functioned in Kleptoplastids of Dinophysis Are Derived From
www.nature.com/scientificreports OPEN Genes functioned in kleptoplastids of Dinophysis are derived from haptophytes rather than from Received: 30 October 2018 Accepted: 5 June 2019 cryptophytes Published: xx xx xxxx Yuki Hongo1, Akinori Yabuki2, Katsunori Fujikura 2 & Satoshi Nagai1 Toxic dinofagellates belonging to the genus Dinophysis acquire plastids indirectly from cryptophytes through the consumption of the ciliate Mesodinium rubrum. Dinophysis acuminata harbours three genes encoding plastid-related proteins, which are thought to have originated from fucoxanthin dinofagellates, haptophytes and cryptophytes via lateral gene transfer (LGT). Here, we investigate the origin of these plastid proteins via RNA sequencing of species related to D. fortii. We identifed 58 gene products involved in porphyrin, chlorophyll, isoprenoid and carotenoid biosyntheses as well as in photosynthesis. Phylogenetic analysis revealed that the genes associated with chlorophyll and carotenoid biosyntheses and photosynthesis originated from fucoxanthin dinofagellates, haptophytes, chlorarachniophytes, cyanobacteria and cryptophytes. Furthermore, nine genes were laterally transferred from fucoxanthin dinofagellates, whose plastids were derived from haptophytes. Notably, transcription levels of diferent plastid protein isoforms varied signifcantly. Based on these fndings, we put forth a novel hypothesis regarding the evolution of Dinophysis plastids that ancestral Dinophysis species acquired plastids from haptophytes or fucoxanthin dinofagellates, whereas LGT from cryptophytes occurred more recently. Therefore, the evolutionary convergence of genes following LGT may be unlikely in most cases. Plastids in photosynthetic dinofagellates are classifed into fve types according to their origin1. Plastids in most photosynthetic dinofagellates are bound by three membranes and contain peridinin as the major carotenoid. Although peridinin is considered to have originated from an endosymbiotic red alga1, this hypothesis remains controversial2. -
Light Harvesting Complexes of Chromera Velia, Photosynthetic Relative of Apicomplexan Parasites
Biochimica et Biophysica Acta 1827 (2013) 723–729 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites Josef Tichy a,b, Zdenko Gardian a,b, David Bina a,b, Peter Konik a, Radek Litvin a,b, Miroslava Herbstova a,b, Arnab Pain c, Frantisek Vacha a,b,⁎ a Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic b Institute of Plant Molecular Biology, Biology Centre ASCR, Branisovska 31, 37005 Ceske Budejovice, Czech Republic c Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia article info abstract Article history: The structure and composition of the light harvesting complexes from the unicellular alga Chromera velia Received 19 October 2012 were studied by means of optical spectroscopy, biochemical and electron microscopy methods. Two different Received in revised form 31 January 2013 types of antennae systems were identified. One exhibited a molecular weight (18–19 kDa) similar to FCP Accepted 5 February 2013 (fucoxanthin chlorophyll protein) complexes from diatoms, however, single particle analysis and circular Available online 18 February 2013 dichroism spectroscopy indicated similarity of this structure to the recently characterized XLH antenna of “ ” Keywords: xanthophytes. In light of these data we denote this antenna complex CLH, for Chromera Light Harvesting fi Chromera velia complex. The other system was identi ed as the photosystem I with bound Light Harvesting Complexes FCP (PSI–LHCr) related to the red algae LHCI antennae. The result of this study is the finding that C.