Endophytic Fungal Entomopathogens with Activity Against Plant Pathogens: Ecology and Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Endophytic Fungal Entomopathogens with Activity Against Plant Pathogens: Ecology and Evolution BioControl (2010) 55:113–128 DOI 10.1007/s10526-009-9241-x Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution Bonnie H. Ownley • Kimberly D. Gwinn • Fernando E. Vega Received: 17 September 2009 / Accepted: 12 October 2009 / Published online: 28 October 2009 Ó International Organization for Biological Control (IOBC) 2009 Abstract Dual biological control, of both insect resistance when endophytically colonized cotton seed- pests and plant pathogens, has been reported for the lings were challenged with a bacterial plant pathogen fungal entomopathogens, Beauveria bassiana (Bals.- on foliage. Species of Lecanicillium are known to Criv.) Vuill. (Ascomycota: Hypocreales) and Lecan- reduce disease caused by powdery mildew as well as icillium spp. (Ascomycota: Hypocreales). However, various rust fungi. Endophytic colonization has been the primary mechanisms of plant disease suppression reported for Lecanicillium spp., and it has been are different for these fungi. Beauveria spp. produce an suggested that induced systemic resistance may be array of bioactive metabolites, and have been reported active against powdery mildew. However, mycopara- to limit growth of fungal plant pathogens in vitro. In sitism is the primary mechanism employed by Lecan- plant assays, B. bassiana has been reported to reduce icillium spp. against plant pathogens. Comparisons of diseases caused by soilborne plant pathogens, such as Beauveria and Lecanicillium are made with Tricho- Pythium, Rhizoctonia, and Fusarium. Evidence has derma, a fungus used for biological control of plant accumulated that B. bassiana can endophytically pathogens and insects. For T. harzianum Rifai (Asco- colonize a wide array of plant species, both monocots mycota: Hypocreales), it has been shown that some and dicots. B. bassiana also induced systemic fungal traits that are important for insect pathogenicity are also involved in biocontrol of phytopathogens. Handling Editor: Helen Roy. Keywords Beauveria bassiana Á Fungal endophyte Á Hypocreales Á Induced systemic B. H. Ownley (&) Á K. D. Gwinn Department of Entomology and Plant Pathology, resistance Á Lecanicillium Á Mycoparasite Á The University of Tennessee, 2431 Joe Johnson Drive, Trichoderma 205 Ellington Plant Sciences Bldg, Knoxville, TN 37996-4560, USA e-mail: [email protected] Introduction K. D. Gwinn e-mail: [email protected] Resource availability can trigger shifts in functional- F. E. Vega ity within a fungal species, thereby changing the Sustainable Perennial Crops Laboratory, ecological role of the organism (Termorshuizen and United States Department of Agriculture, Jeger 2009). Shifts from one resource to another may Agricultural Research Service, Building 001, BARC-West, Beltsville, MD 20705, USA necessitate significant adaptations in metabolism, e-mail: [email protected] particularly if the resources are dissimilar (Leger 123 114 B. H. Ownley et al. et al. 1997). Among members of the Hypocreales, released by a fungal entomopathogen, carbon source animal, fungal, and plant resources are exploited. played a major role in VOC production by B. These fungi gain nutrition in a variety of ways, bassiana. When cultured on glucose-based media, including: saprotrophs that colonize the rhizosphere the VOCs identified were diisopropyl naphthalenes and phyllosphere, endophytic saprotrophs, hemibio- (\50%), ethanol (ca. 10%) and sesquiterpenes (6%), trophs and necrotrophs of plants, entomopathogens, but in media with n-octacosane (an insect-like and mycoparasites. Some of these fungi function in alkane), the primary VOCs were n-decane (84%) more than one econutritional mode. Fungi tradition- and sesquiterpenes (15%) (Crespo et al. 2008). ally known for their entomopathogenic characteris- Enzymes involved in antibiosis are distinctly tics, such as Beauveria bassiana (Bals.-Criv.) Vuill. different from those involved in mycoparasitism of (Ascomycota: Hypocreales) and Lecanicillium spp. plant pathogens. For example, the biocontrol fungus (Ascomycota: Hypocreales), have recently been Talaromyces flavus Tf1 (Klo¨cker) Stolk & Samson shown to engage in plant-fungus interactions (Vega (Ascomycota: Eurotiales) produces the enzyme glu- 2008; Vega et al. 2008), and both have been reported cose oxidase, whose reaction product, hydrogen to effectively suppress plant disease (Goettel et al. peroxide, kills microsclerotia of phytopathogenic 2008; Ownley et al. 2008). Verticillium (Fravel 1988). Fungal biocontrol organisms actively compete against plant pathogens for niche or infection site, Mechanisms of plant disease suppression carbon, nitrogen, and various microelements. The site by biocontrol fungi of competition is often the rhizosphere, phyllosphere, or intercellularly within the plant. Successful com- Biological control of plant pathogens usually refers to petition is often a matter of timing as resources are the use of microorganisms that reduce the disease- likely to go to the initial colonizer. causing activity or survival of plant pathogens. Mycoparasitism is the parasitism of one fungus by Several different biological control mechanisms another. Varying degrees of host specificity are against plant pathogens have been identified. With displayed by mycoparasites. Within a given species some mechanisms, such as antibiosis, competition, of mycoparasite, some isolates may infect a large and parasitism, the biocontrol organism is directly number of taxonomically diverse fungi, while others involved. With other modes of biological control, demonstrate a high level of specificity (Askary et al. such as induced systemic resistance and increased 1998). As reviewed in Harmon et al. (2004), parasit- growth response, endophytic colonization by the ism by the biocontrol fungus Trichoderma (Ascomy- biocontrol organism triggers responses in the plant cota: Hypocreales) begins with detection of the that reduce or alleviate plant disease. fungal host before contact is made. Trichoderma produces low levels of an extracellular exochitinase, which diffuse and catalyze the release of cell-wall Antibiosis, competition, and mycoparasitism oligomers from the target host fungus. This activity induces Trichoderma to release fungitoxic endoch- The mechanism of antibiosis includes production of itinases, which also degrade the fungal host cell wall. antibiotics, bioactive volatile organic compounds Attachment of the mycoparasite to the host fungus is (VOCs), and enzymes. Volatile bioactive compounds mediated by binding of carbohydrates in the Trich- include acids, alcohols, alkyl pyrones, ammonia, oderma cell wall to lectins in the cell wall of the esters, hydrogen cyanide, ketones, and lipids (Ownley fungal host. Upon contact, hyphae of Trichoderma and Windham 2007). The fungal endophyte Muscodor coil around the host fungus and form appressoria. albus Worapong, Strobel & W.M. Hess (Ascomycota: Several lytic enzymes are involved in degradation of Xylariales) produces a mixture of VOCs that are lethal the cell walls of fungal and oomycetous plant to a variety of microorganisms (Strobel et al. 2001; pathogens, including chitinases, ß-1,3 gluconases, Mercier and Jime´nez 2004; Mercier and Smilanick proteases, and lipases. 2005; Strobel 2006), as well as to insects (Riga et al. In many cases, mechanisms of biocontrol are not 2008; Lacey et al. 2009). In the first report of VOCs mutually exclusive, i.e. multiple mechanisms may be 123 Endophytic fungal entomopathogens 115 operating against a specific plant pathogen, or a given 2009). Induction of systemic resistance via the JA/ biocontrol fungus may employ different mechanisms ethylene signaling pathway has been reported pri- against different phytopathogens. For example, con- marily for plant growth-promoting bacteria, however, trol of Botrytis cinerea Pers. (Ascomycota: Heloti- it is also operative for many mycorrhizal fungi ales) on grapes (Vitis) with Trichoderma involves (Gutjahr and Paszkowski 2009) and biocontrol fungi competition for nutrients and mycoparasitism of (Harmon et al. 2004; Vinale et al. 2008). sclerotia, the overwintering, long-term survival struc- ture of Botrytis. Both mechanisms contribute to suppression of the pathogen’s capability to cause Endophytism by fungal entomopathogens and perpetuate disease (Dubos 1987). Following application to leaves as a preventative, Trichoderma Even though the term ‘‘endophyte’’ has several induced resistance to downy mildew, Plasmopara definitions (Hyde and Soytong 2008), it is widely viticola (Berk. & M.A. Curtis) Berl. & De Toni accepted that endophytes are microorganisms present (Oomycota: Peronosporales), in grape (Perazzolli in plant tissues without causing any apparent symp- et al. 2008). Therefore, it is possible that induced toms. Fungal endophytes are widespread and quite systemic resistance may also play a role in biocontrol diverse in nature (Arnold et al. 2000; Arnold 2007). of Botrytis. Induced resistance to Botrytis, following For example, Vega et al. (2009b) reported 257 unique application of T. harzianum T39 Rifai (Ascomycota: ITS genotypes for fungal endophytes isolated from Hypocreales) to roots and leaves of several ecotypes coffee plants in Hawaii, Mexico, Colombia, and of Arabidopsis thaliana (L.) Heynh. has been Puerto Rico. Infection by fungal endophytes can be reported (Korolev et al. 2008). localized (i.e., not systemic; see Saikkonen et al. 1998 and references therein), and establishing a long- term systemic infection with endophytic fungal Induced systemic resistance entomopathogens that can
Recommended publications
  • EVALUATION of SILICON and BIOFUNGICIDE PRODUCTS for MANAGING POWDERY MILDEW CAUSED by Podosphaera Fusca in GERBERA DAISY (Gerbera Jamesonii)
    EVALUATION OF SILICON AND BIOFUNGICIDE PRODUCTS FOR MANAGING POWDERY MILDEW CAUSED BY Podosphaera fusca IN GERBERA DAISY (Gerbera jamesonii) By CATALINA MOYER A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Catalina Moyer 2 To my husband Scott 3 ACKNOWLEDGMENTS Immense appreciation given to Dr. Natalia Peres for her trusts and support. Thanks go out to the staff and faculty at the Gulf Coast Research and Education Center for their assistance. Especially thanks offered to Dr. Steve Mackenzie for his statistical wisdom, for caring about my project and for inspire me as a scientist. Thanks left to my friends in Gainesville in particular Linley for sharing her home and Norma for sharing the good and stressful times as graduate students. Thanks go out to all other members of my committee for their contributions to this project. Bountiful gratitude presented to my husband, for supporting me during the last two years. Thanks sent to my family for inspiring my growth. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 ABSTRACT.....................................................................................................................................9
    [Show full text]
  • Effect of the Native Strain of the Predator Nesidiocoris Tenuis Reuter
    Assadi et al. Egyptian Journal of Biological Pest Control (2021) 31:47 Egyptian Journal of https://doi.org/10.1186/s41938-021-00395-5 Biological Pest Control RESEARCH Open Access Effect of the native strain of the predator Nesidiocoris tenuis Reuter and the entomopathogenic fungi Beauveria bassiana and Lecanicillium muscarium against Bemisia tabaci (Genn.) under greenhouse conditions in Tunisia Besma Hamrouni Assadi1*, Sabrine Chouikhi1, Refki Ettaib1, Naima Boughalleb M’hamdi2 and Mohamed Sadok Belkadhi1 Abstract Background: The misuse of chemical insecticides has developed the phenomenon of habituation in the whitefly Bemisia tabaci (Gennadius) causing enormous economic losses under geothermal greenhouses in southern Tunisia. Results: In order to develop means of biological control appropriate to the conditions of southern Tunisia, the efficacy of the native strain of the predator Nesidiocoris tenuis Reuter (Hemiptera: Miridae) and two entomopathogenic fungi (EPF) Beauveria bassiana and Lecanicillium muscarium was tested against Bemisia tabaci (Gennadius). Indeed, the introduction of N. tenuis in doses of 1, 2, 3, or 4 nymphs per tobacco plant infested by the whitefly led to highly significant reduction in the population of B. tabaci, than the control devoid of predator. The efficacy of N. tenuis was very high against nymphs and adults of B. tabaci at all doses per plant with a rate of 98%. Likewise, B. bassiana and L. muscarium, compared to an untreated control, showed a very significant efficacy against larvae and adults of B. tabaci. In addition, the number of live nymphs of N. tenuis treated directly or introduced on nymphs of B. tabaci treated with the EPF remained relatively high, exceeding 24.8 nymphs per cage compared to the control (28.6).
    [Show full text]
  • PCR Detection of Pseudoperonospora Humuli and Podosphaera Macularis in Humulus Lupulus
    Plant Protect. Sci. Vol. 41, No. 4: 141–149 PCR Detection of Pseudoperonospora humuli and Podosphaera macularis in Humulus lupulus JOSEF PATZAK Hop Research Institute Co., Ltd., Žatec, Czech Republic Abstract PATZAK J. (2005): PCR detection of Pseudoperonospora humuli and Podosphaera macularis in Humulus lupulus. Plant Protect. Sci., 41: 141–149. Hop downy mildew (Pseudoperonospora humuli) and hop powdery mildew (Podosphaera macularis) are the most important pathogens of hop (Humulus lupulus). The early detection and identification of these pathogens are often made difficult by symptomless or combined infection with another pathogens. Molecular analysis of internal transcribed spacer (ITS) regions of rDNA is a novel and very effective method of species determina- tion. Therefore, specific PCR assays were developed to detect the pathogens Pseudoperonospora humuli and Podosphaera macularis in naturally infected hop plants. The specific PCR primer combinations P1 + P2 and S1 + S2 amplified specific fragments from Pseudoperonospora humuli and Podosphaera macularis, respectively, and did not cross-react with hop DNA nor with DNA from other fungi. PCR primer combinations R1 + R2 and R3 + R4 could be used in multiplex PCR detection of Pseudoperonospora humuli, Podosphaera macularis, Verticillium albo-atrum and Fusarium sambucinum. Phylogenetic relationships were inferred for 42 species of the Erysiphales from nuclear rDNA (ITS1, 5.8S, ITS2). The molecular characterisation and phylogenetic analy- ses confirmed the species identification of hop powdery mildew. The PCR assays used in this study proved to be accurate and sensitive for detection, identification, classification and disease-monitoring of the major hop pathogens. Keywords: hop powdery mildew; hop downy mildew; internal transcribed spacers (ITS); PCR detection; phylo- genetic analysis Hop (Humulus lupulus L.) is a dioecious, peren- disease occurring worldwide.
    [Show full text]
  • Spatial and Temporal Dynamics of a Fungal Pathogen Promote Pattern Formation in a Tropical Agroecosystem
    62 The Open Ecology Journal, 2009, 2, 62-73 Open Access Spatial and Temporal Dynamics of a Fungal Pathogen Promote Pattern Formation in a Tropical Agroecosystem Doug Jackson*,1, John Vandermeer1,2 and Ivette Perfecto2 1Department of Ecology and Evolutionary Biology, 2School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA Abstract: Recent studies have shown that the spatial pattern of nests of an arboreal ant, Azteca instabilis (Hymenoptera: Formicidae), in a tropical coffee agroecosystem may emerge through self-organization. The proposed self-organization process involves both local expansion and density-dependent mortality of the ant colonies. We explored a possible mechanism for the density-dependent mortality involving the entomopathogenic fungus Lecanicillium lecanii. L. lecanii attacks a scale insect, Coccus viridis (Coccidae, Hemiptera), which is tended by A. instabilis in a mutualistic association. By attacking C. viridis, L. lecanii may have an indirect, negative effect on ant colony survival. To explore this hypothesis, we conducted investigations into the spatial and temporal distributions of L. lecanii. We measured incidence and severity at 4 spatial scales: (1) throughout a 45 hectare study plot; (2) in two 40 X 50 meter plots; (3) on coffee bushes within 4 m of two ant nests; and (3) on individual branches in a single coffee bush. The plot-level censuses did not reveal a clear spatial pattern, but the finer scale surveys show distinct patterns in the spread of infection over time. We also developed a simple cellular automata model of the coupled ant nest-L. lecanii system which is able to produce spatial patterns qualitatively and quantitatively similar to that found in the field.
    [Show full text]
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • Sub-Lethal Effects of Lecanicillium Lecanii
    agriculture Article Sub-Lethal Effects of Lecanicillium lecanii (Zimmermann)-Derived Partially Purified Protein and Its Potential Implication in Cotton (Gossypium hirsutum L.) Defense against Bemisia tabaci Gennadius (Aleyrodidae: Hemiptera) Yusuf Ali Abdulle 1,†, Talha Nazir 1,2,*,† , Samy Sayed 3 , Samy F. Mahmoud 4 , Muhammad Zeeshan Majeed 5 , Hafiz Muhammad Usman Aslam 6, Zubair Iqbal 7, Muhammad Shahid Nisar 2, Azhar Uddin Keerio 1, Habib Ali 8 and Dewen Qiu 1 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (Y.A.A.); [email protected] (A.U.K.); [email protected] (D.Q.) 2 Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 32200, Pakistan; [email protected] 3 Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] Citation: Abdulle, Y.A.; Nazir, T.; 4 Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Sayed, S.; Mahmoud, S.F.; Majeed, [email protected] M.Z.; Aslam, H.M.U.; Iqbal, Z.; Nisar, 5 Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; M.S.; Keerio, A.U.; Ali, H.; et al. [email protected] 6 Sub-Lethal Effects of Lecanicillium Department of Plant Pathology, Institute of Plant Protection (IPP), MNS-University of Agriculture, lecanii (Zimmermann)-Derived
    [Show full text]
  • The Mitochondrial Genome of the Grape Powdery Mildew Pathogen Erysiphe Necator Is Intron Rich and Exhibits a Distinct Gene Organization Alex Z
    www.nature.com/scientificreports OPEN The mitochondrial genome of the grape powdery mildew pathogen Erysiphe necator is intron rich and exhibits a distinct gene organization Alex Z. Zaccaron1, Jorge T. De Souza1,2 & Ioannis Stergiopoulos1* Powdery mildews are notorious fungal plant pathogens but only limited information exists on their genomes. Here we present the mitochondrial genome of the grape powdery mildew fungus Erysiphe necator and a high-quality mitochondrial gene annotation generated through cloning and Sanger sequencing of full-length cDNA clones. The E. necator mitochondrial genome consists of a circular DNA sequence of 188,577 bp that harbors a core set of 14 protein-coding genes that are typically present in fungal mitochondrial genomes, along with genes encoding the small and large ribosomal subunits, a ribosomal protein S3, and 25 mitochondrial-encoded transfer RNAs (mt-tRNAs). Interestingly, it also exhibits a distinct gene organization with atypical bicistronic-like expression of the nad4L/nad5 and atp6/nad3 gene pairs, and contains a large number of 70 introns, making it one of the richest in introns mitochondrial genomes among fungi. Sixty-four intronic ORFs were also found, most of which encoded homing endonucleases of the LAGLIDADG or GIY-YIG families. Further comparative analysis of fve E. necator isolates revealed 203 polymorphic sites, but only fve were located within exons of the core mitochondrial genes. These results provide insights into the organization of mitochondrial genomes of powdery mildews and represent valuable resources for population genetic and evolutionary studies. Erysiphe necator (syn. Uncinula necator) is an obligate biotrophic ascomycete fungus that belongs to the Ery- siphaceae family (Leotiomycetes; Erysiphales) and causes grape powdery mildew, one of the most widespread and destructive fungal diseases in vineyards across the world1.
    [Show full text]
  • Fungi and Their Potential As Biological Control Agents of Beech Bark Disease
    Fungi and their potential as biological control agents of Beech Bark Disease By Sarah Elizabeth Thomas A thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences Royal Holloway, University of London 2014 1 DECLARATION OF AUTHORSHIP I, Sarah Elizabeth Thomas, hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated. Signed: _____________ Date: 4th May 2014 2 ABSTRACT Beech bark disease (BBD) is an invasive insect and pathogen disease complex that is currently devastating American beech (Fagus grandifolia) in North America. The disease complex consists of the sap-sucking scale insect, Cryptococcus fagisuga and sequential attack by Neonectria fungi (principally Neonectria faginata). The scale insect is not native to North America and is thought to have been introduced there on seedlings of F. sylvatica from Europe. Conventional control strategies are of limited efficacy in forestry systems and removal of heavily infested trees is the only successful method to reduce the spread of the disease. However, an alternative strategy could be the use of biological control, using fungi. Fungal endophytes and/or entomopathogenic fungi (EPF) could have potential for both the insect and fungal components of this highly invasive disease. Over 600 endophytes were isolated from healthy stems of F. sylvatica and 13 EPF were isolated from C. fagisuga cadavers in its centre of origin. A selection of these isolates was screened in vitro for their suitability as biological control agents. Two Beauveria and two Lecanicillium isolates were assessed for their suitability as biological control agents for C.
    [Show full text]
  • Lecanicillium Fungicola 150-1, the Causal Agent of Dry Bubble Disease Downloaded From
    GENOME SEQUENCES crossm Genome Sequence of Lecanicillium fungicola 150-1, the Causal Agent of Dry Bubble Disease Downloaded from Alice M. Banks,a* Farhana Aminuddin,a Katherine Williams,a Thomas Batstone,a Gary L. A. Barker,a Gary D. Foster,a Andy M. Baileya aSchool of Biological Sciences, University of Bristol, Bristol, United Kingdom ABSTRACT The fungus Lecanicillium fungicola causes dry bubble disease in the http://mra.asm.org/ white button mushroom Agaricus bisporus. Control strategies are limited, as both the host and pathogen are fungi, and there is limited understanding of the interac- tions in this pathosystem. Here, we present the genome sequence of Lecanicillium fungicola strain 150-1. ecanicillium fungicola (Preuss) Zare & Gams [synonym: Verticillium fungicola (Preuss) LHassebrauk] (1), an ascomycete fungus of the order Hypocreales, is the causal agent of dry bubble disease of the white button mushroom Agaricus bisporus, as well as of on September 18, 2020 at Imperial College London other commercially cultivated basidiomycetes (2). Dry bubble disease presents symp- toms that include necrotic lesions on mushroom caps, stipe blowout, and undifferen- tiated tissue masses (2). Some factors involved in this interaction have been proposed based on suppression subtractive hybridization (SSH) and expressed sequence tag (EST) data (3). This disease is of economic importance, causing significant yield/quality losses in the mushroom industry (4). Control methods rely on rigorous hygiene procedures and targeted fungicide treatments; however, increased resistance against these fungi- cides has been reported (5, 6). Recent taxonomic revisions place L. fungicola close to several arthropod- and nematode-pathogenic fungi rather than to plant-pathogenic Verticillium spp.
    [Show full text]
  • Diversity of Facultatively Anaerobic Microscopic Mycelial Fungi in Soils A
    ISSN 0026-2617, Microbiology, 2008, Vol. 77, No. 1, pp. 90–98. © Pleiades Publishing, Ltd., 2008. Original Russian Text © A.V. Kurakov, R.B. Lavrent’ev, T.Yu. Nechitailo, P.N. Golyshin, D.G. Zvyagintsev, 2008, published in Mikrobiologiya, 2008, Vol. 77, No. 1, pp. 103–112. EXPERIMENTAL ARTICLES Diversity of Facultatively Anaerobic Microscopic Mycelial Fungi in Soils A. V. Kurakova,1, R. B. Lavrent’evb, T. Yu. Nechitailoc, P. N. Golyshinc, and D. G. Zvyagintsevb a International Biotechnology Center, Moscow State University, Moscow, 119992 Russia b Department of Soil Biology, Faculty of Soil Science, Moscow State University, Moscow, 119992 Russia c National Biotechnology Center, Mascheroder Weg 1, 38124 Braunschweig, Germany Received March 26, 2007 Abstract—The numbers of microscopic fungi isolated from soil samples after anaerobic incubation varied from tens to several hundreds of CFU per one gram of soil; a total of 30 species was found. This group is com- posed primarily of mitotic fungi of the ascomycete affinity belonging to the orders Hypocreales (Fusarium solani, F. oxysporum, Fusarium sp., Clonostachys grammicospora, C. rosea, Acremonium sp., Gliocladium penicilloides, Trichoderma aureoviride, T. harzianum, T. polysporum, T. viride, T. koningii, Lecanicillum leca- nii, and Tolypocladium inflatum) and Eurotiales (Aspergillus terreus, A. niger, and Paecilomyces lilacimus), as well as to the phylum Zygomycota, to the order Mucorales (Actinomucor elegans, Absidia glauca, Mucor cir- cinelloides, M. hiemalis, M. racemosus, Mucor sp., Rhizopus oryzae, Zygorrhynchus moelleri, Z. heterogamus, and Umbelopsis isabellina) and the order Mortierellales (Mortierella sp.). As much as 10–30% of the total amount of fungal mycelium remains viable for a long time (one month) under anaerobic conditions.
    [Show full text]
  • Phylogeny of Podosphaera Sect. Sphaerotheca Subsect
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Schlechtendalia Jahr/Year: 2001 Band/Volume: 7 Autor(en)/Author(s): Braun Uwe, Shishkoff Nina, Takamatsu Susumu Artikel/Article: Phylogeny of Podosphaera sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea auct. s.lat.) inferred from rDNA ITS sequences - a taxonomic interpretation 45-52 ©Institut für Biologie, Institutsbereich Geobotanik und Botanischer Garten der Martin-Luther-Universität Halle-Wittenberg 45 PhylogenyPodosphaera of sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea auct. s.lat.) inferred from rDNA ITS sequences - a taxonomic interpretation Uw e Br a u n, Nin a Sh ish k o f f & Su su mu Ta k a m a t su Abstract: B raun, U., Shishkoff , N. & Takamatsu , S. 2001: PhylogenyPodosphaera of sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea auct. s.lat.) inferred from rDNA ITS sequences - a taxonomic interpretation. Schlechtendalia 7: 45-52. Data of a phylogenetic analysis ofPodosphaera the (Sphaerotheca) fuliginea complex based on rDNA ITS sequences are taxonomically interpreted. Using a morphological species concept, mainly based on the size of the ascomata and the diameter of the thin-walled apical portion of the asci (oculus), combined with biological data, the present taxonomic statusP. ofbalsaminae, P. diclipterae, P. fuliginea, P. intermedia, P. pseudofusca and P. sibirica as separate species has been confirmed. P. fusca emend. as well as P. xanthii emend. are reassessed as complex, compound species.P. euphorbiae-hirtae and P. phaseoli are reduced to synonymyP. withxanthii. Zusammenfassung: B raun, U., Shishkoff , N. & Takamatsu , S. 2001: PhylogenyPodosphaera of sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea auct.
    [Show full text]
  • Michael Fibiger 1945 - 2011
    Esperiana Band 16: 7-38 Schwanfeld, 06. Dezember 2011 ISBN 978-3-938249-01-7 Michael FIBIGER 1945 - 2011 Our dear friend and colleague, Michael FIBIGER, died on 16 February, 2011, peacefully and in the presence of the closest members of his family. For close on 18 months he had battled heroically and with characteristic determination against a particularly unpleasant form of cancer, and continued with his writing and research until close to the end. Michael was born on 29 June, 1945, in Hellerup, a suburb of Copenhagen, and began catching moths at the age of nine, particularly in the vicinity of the summer house where they stayed on the north coast of Zealand. By the time he was 11, he wanted to join the Danish Lepidoptera Society but was told he was too young and must wait “a couple of years”. So, exactly two years later he applied again and was accepted – as the youngest-ever Member of the Society. Michael always knew he wanted to be a teacher, and between 1965 and 1970 he attended training college at Hel- lerup Seminarium. Having graduated, he taught Danish, Biology and Special Education at Gentofte School until 1973. In the meantime, he studied Clinical Psychology at the University of Copenhagen from 1970 to 1976, and from 1973 to 1981 he became School Psychologist for elementary schools and high schools in the municipality of Gentofte, work which involved investigation and testing of children with psychiatric problems, counselling, supervi- sion and therapy. He was also an instructor in drug prevention for the Ministry of Education.
    [Show full text]