Ponencia Algebra Computacional.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Ponencia Algebra Computacional.Pdf DESARROLLO DEL ALGEBRA ELEMENTAL A TRAVÉS DE LOS SISTEMAS DE COMPUTACIÓN SIMBÓLICO Rene Viveros Gutierrez Universidad Surcolombiana QUE ES LA COMPUTACIÓN SIMBÓLICA? • Intuitivamente hablando se puede decir que la computación simbólica consiste en el desarrollo de algoritmos que permiten manipular expresiones y símbolos matemáticos, tal y como se suele hacer en papel. Esta metodología de computación ha dado lugar a un campo interdisciplinar de investigación que, como resultado de su evolución y éxitos alcanzados, proporciona herramientas algorítmicas y métodos que, por una parte, sirven de apoyo para la enseñanza y comprensión de las Matemáticas y, por otra, contribuyen a la resolución de aspectos computacionales que surgen en investigación. COMO NACE LA COMPUTACION SIMBOLICA? En 1955, John McCarthy acuñó el término "Inteligencia Artificial" en su propuesta para el "Darmouth Summer Research Conference on Artificial Intelligence", un evento organizado por el propio McCarthy, Marvin Minsky, Nathalien Rochester y Claude Shannon fue un adelantado a su tiempo y gran parte de sus contribuciones forman parte de los pilares básicos de la Inteligencia Artificial. McCarthy lideró la investigación en lógica matemática para la Inteliencia Artificial. De hecho, en 1958, en su artículo "Programs with Common Sense" [McCarthy 1958], propuso la utilización de la lógica para representar la información en una computadora. En este artículo, McCarthy proponía "...programas que manipulen en un lenguaje formal (a ser posible una parte del cálculo de predicados) instrucciones comunes. El programa básico será capaz de extraer conclusiones automáticas a partir de una serie de premisas. Estas conclusiones serán o bien declarativas o bien sentencias imperativas. Cuándo se deduzca una sentencia imperativa, el programa realizará la acción correspondiente a la misma". Este trabajo seminal inspiraría una gran cantidad de trabajo posterior en "question-answering" y programación lógica.. • 1958 - El primer lenguaje funcional en aparecer fue LISP, diseñado en 1958 por John McCarthy en el entorno de la computación simbólica. A este lenguaje siguieron otros como ML, el Miranda y el Haskell. • En 1960, publicó la especificación del lenguaje LISP ("List Processing Language")[McCarthy 1960], un lenguaje basado en el Cálculo Lambda y que fue, durante muchos años, un lenguaje de referencia para las aplicaciones de Inteligencia Artificial. De hecho LISP se sigue utilizando todavía hoy en muchos sitios, siendo el segundo lenguaje de programación de alto nivel en uso más viejo, después de Fortran. Como ejemplo de uso,Emacs, uno de los editores de textos más conocidos y populares, sobre todo en ámbitos Unix, está enteramente programado en LISP. APARICION DE LOS SISTEMAS DE COMPUTACION SIMBOLICA Los sistemas de álgebra computacional aparecieron al principio de la década de los 70, y evolucionaron a partir de la investigación en inteligencia artificial, aunque hoy en día constituyen campos ampliamente separados. Los primeros trabajos fueron dirigidos por el Premio Nobel Martin Veltman, quien diseñó en 1963 un programa para matemática simbólica, llamado Schoonship, especializado en Física de Altas Energías. Los primeros sistemas populares fueron Reduce y Macsyma. Hoy en día, una versión copyleft de Macsyma llamada Maxima es mantenida activamente. LOS PRIMEROS • REDUCE es un programa de uso general de álgebra computacional (CAS) encaminado hacia usos en física. Comenzó a ser desarrollado desde la década de 1960 por Anthony Hearn, desde entonces, muchos científicos de todo el mundo han contribuido a su desarrollo. Está escrito completamente en su propio dialecto del lenguaje de programación LISP, llamado Standard LISP, sus sintaxis llamada RLISP es similar a Algol • muMATH es un programa de álgebra computacional desarrollado a finales de la década de 1970, y principios de la década de 1980, por Albert Rich y David Stoutemyer en la empresa Soft Warehouse en Honolulu, Hawaii, EE. UU. Fue creado en el lenguaje de programación muSIMP, el cual a su vez fue diseñado basándose en un dialecto de LISP, llamado muLISP. Las plataformas soportadas eran CP/M y TRS- DOS (desde muMATH-79), Apple II (desde muMATH-80) y MS-DOS (en muMATH-83, la última versión) • Maple es un programa matemático de propósito general capaz de realizar cálculos simbólicos, algebraicos y de álgebra computacional. Fue desarrollado originalmente en 1981 por el Grupo de Cálculo Simbólico en la Universidad de Waterloo en Waterloo, Ontario, Canadá. Maple 13: Abril, 2009 Maple V R3: Marzo, 1994 Maple 3.0: Mayo, 1983 Maple 12: Junio, 2008 Maple V R2: Noviembre 1992 Maple 2.2: Diciembre, 1982 Maple 11: Febrero, 2007 Maple V: Agosto, 1990 Maple 2.15: Agosto, 1982 Maple 10: Mayo, 2005 Maple 4.3: Marzo, 1989 Maple 2.1: Junio, 1982 Maple 9.5: Abril, 2004 Maple 4.2: Diciembre, 1987 Maple 2.0: Mayo, 1982 Maple 9: Junio, 2003 Maple 4.1: Mayo, 1987 Maple 1.1: Enero, 1982 Maple 8: Abril, 2002 Maple 4.0: Abril, 1986 Maple 1.0: Enero, 1982 Maple 7: Julio, 2001 Maple 3.3: Marzo, 1985 (primera Maple 6: Diciembre, 1999 versión disponible públicamente) Maple V R5: Noviembre, 1997 Maple 3.2: Abril, 1984 Maple V R4: Enero, 1996 Maple 3.1: Octubre, 1983 • Mathematica es un programa utilizado en áreas científicas, de ingeniería, matemáticas y áreas computacionales. Originalmente fue concebido por Stephen Wolfram quien continua siendo el líder del grupo de matemáticos y programadores que desarrollan el producto en Wolfram Research, compañía ubicada en Champaign, Illinois. Comúnmente considerado como un sistema de álgebra computacional, Mathematica es también un poderoso lenguaje de programación de propósito general. La primera versión de Mathematica fue liberada en 1988. La versión 7, la más reciente fue liberada el 18 de noviembre de 2008 y se encuentra disponible para una gran variedad de sistemas operativos. • Wolfram ha lanzado al mercado las siguientes versiones: [2] Mathematica 1.0 (1988) Mathematica 4.1 (2000) [3] Mathematica 1.2 (1989) Mathematica 4.2 (2002)[9] [4] Mathematica 2.0 (1991) Mathematica 5.0 (2003)[10] [5] Mathematica 2.1 (1992) Mathematica 5.1 (2004)[11] [6] Mathematica 2.2 (1993) Mathematica 5.2 (2005)[12] [7] Mathematica 3.0 (1996) Mathematica 6.0 (2007)[13] [8] Mathematica 4.0 (1999) Mathematica 7.0 (2008)[14 • Derive fue un programa de álgebra computacional (CAS) desarrollado como un sucesor de muMATH por Soft Warehouse en Honolulu, Hawaii, EE. UU., actualmente es propiedad de Texas Instruments. Derive fue creado en muLISP. La primera versión en el mercado fue en 1988. • En la evolución de DERIVE a TI-CAS, pasó de ser una aplicación de ordenador a estar incluido en las calculadoras TI-89 y TI-Nspire CAS de Texas Instruments. • Derive se encuentra disponible para las plataformas Windows y DOS, y es usado ampliamente con propósitos educativos. • A fecha de 2009, la última versión es Derive 6.5. • Actualmente Texas Instruments ya no comercializa Derive, cuyo desarrollo paso ahora como un nuevo producto el TI-Nspire CAS • MATLAB (abreviatura de MATrix LABoratory, "laboratorio de matrices") es un software matemático que ofrece un entorno de desarrollo integrado (IDE) con un lenguaje de programación propio (lenguaje M). Está disponible para las plataformas Unix, Windows y Apple Mac OS X. • Entre sus prestaciones básicas se hallan: la manipulación de matrices, la representación de datos y funciones, la implementación de algoritmos, la creación de interfaces de usuario (GUI) y la comunicación con programas en otros lenguajes y con otros dispositivos hardware. El paquete MATLAB dispone de dos herramientas adicionales que expanden sus prestaciones, a saber, Simulink (plataforma de simulación multidominio) y GUIDE (editor de interfaces de usuario - GUI). Además, se pueden ampliar las capacidades de MATLAB con las cajas de herramientas (toolboxes); y las de Simulink con los paquetes de bloques (blocksets). [1] Nombre de Versión Año la versión MATLAB 5.2 R10 MATLAB 7.0.4 R14SP2 1998 2005 MATLAB 1.0 R? 1984 MATLAB 5.2.1 R10.1 MATLAB 7.1 R14SP3 MATLAB 2 R? 1986 MATLAB 5.3 R11 MATLAB 7.2 R2006a 1999 2006 MATLAB 3 R? 1987 MATLAB 5.3.1 R11.1 MATLAB 7.3 R2006b MATLAB 3.5 R? 1990 MATLAB 6.0 R12 2000 MATLAB 7.4 R2007a 2007 MATLAB 4 R? 1992 MATLAB 6.1 R12.1 2001 MATLAB 7.5 R2007b MATLAB 4.2c R7 1994 MATLAB 6.5 R13 2002 MATLAB 7.6 R2008a 2008 MATLAB 5.0 R8 1996 MATLAB 6.5.1 R13SP1 MATLAB 7.7 R2008b 2003 MATLAB 5.1 R9 MATLAB 6.5.2 R13SP2 MATLAB 7.8 R2009a 2009 MATLAB 1997 MATLAB 7 R14 R9.1 2004 5.1.1 MATLAB 7.0.1 R14SP1 ESPECIALIZADOS EN ALGEBRA • MAXIMA es un programa para Álgebra (Matemáticas) que te permite crear fórmulas matemáticas, gráficos y realizar múltiples operaciones inclusive con símbolos, desde polinomios hasta análisis de Fourier por ejemplo. Se puede crear gráficos 2D y 3D. Usa la interfaz llamada wxMaxima que brinda el uso de menús y cuadros. Las fórmulas se guardan en formato TeX o como imagen; las gráficas en formato postscript. • Lo mejor de todo es gratuito (GPL). College Algebra Solved! • Este Programa te resuelve de una manera sencilla ejercicios del álgebra dándote como resultado todo el procedimiento del ejercicio ya resuelto.Soluciona su ejercicios más difíciles de álgebra, proporcionando las respuestas que usted quiere con todo el procedimiento, paso a paso y explicaciones que usted necesita.así de fácil podrás resolver todo de una manera fácil y sencilla, una versión mas reciente la 2008 • ALGEBRATOR Programa que resuelve ecuaciones matemáticas, desigualdades, logarítmica y exponencial compleja. El cálculo es desglosado paso a paso para que el estudiante pueda entender como se resuelve dicho problema.
Recommended publications
  • Some Reflections About the Success and Impact of the Computer Algebra System DERIVE with a 10-Year Time Perspective
    Noname manuscript No. (will be inserted by the editor) Some reflections about the success and impact of the computer algebra system DERIVE with a 10-year time perspective Eugenio Roanes-Lozano · Jose Luis Gal´an-Garc´ıa · Carmen Solano-Mac´ıas Received: date / Accepted: date Abstract The computer algebra system DERIVE had a very important im- pact in teaching mathematics with technology, mainly in the 1990's. The au- thors analyze the possible reasons for its success and impact and give personal conclusions based on the facts collected. More than 10 years after it was discon- tinued it is still used for teaching and several scientific papers (most devoted to educational issues) still refer to it. A summary of the history, journals and conferences together with a brief bibliographic analysis are included. Keywords Computer algebra systems · DERIVE · educational software · symbolic computation · technology in mathematics education Eugenio Roanes-Lozano Instituto de Matem´aticaInterdisciplinar & Departamento de Did´actica de las Ciencias Experimentales, Sociales y Matem´aticas, Facultad de Educaci´on,Universidad Complutense de Madrid, c/ Rector Royo Villanova s/n, 28040-Madrid, Spain Tel.: +34-91-3946248 Fax: +34-91-3946133 E-mail: [email protected] Jose Luis Gal´an-Garc´ıa Departamento de Matem´atica Aplicada, Universidad de M´alaga, M´alaga, c/ Dr. Ortiz Ramos s/n. Campus de Teatinos, E{29071 M´alaga,Spain Tel.: +34-952-132873 Fax: +34-952-132766 E-mail: [email protected] Carmen Solano-Mac´ıas Departamento de Informaci´ony Comunicaci´on,Universidad de Extremadura, Plaza de Ibn Marwan s/n, 06001-Badajoz, Spain Tel.: +34-924-286400 Fax: +34-924-286401 E-mail: [email protected] 2 Eugenio Roanes-Lozano et al.
    [Show full text]
  • CAS (Computer Algebra System) Mathematica
    CAS (Computer Algebra System) Mathematica- UML students can download a copy for free as part of the UML site license; see the course website for details From: Wikipedia 2/9/2014 A computer algebra system (CAS) is a software program that allows [one] to compute with mathematical expressions in a way which is similar to the traditional handwritten computations of the mathematicians and other scientists. The main ones are Axiom, Magma, Maple, Mathematica and Sage (the latter includes several computer algebras systems, such as Macsyma and SymPy). Computer algebra systems began to appear in the 1960s, and evolved out of two quite different sources—the requirements of theoretical physicists and research into artificial intelligence. A prime example for the first development was the pioneering work conducted by the later Nobel Prize laureate in physics Martin Veltman, who designed a program for symbolic mathematics, especially High Energy Physics, called Schoonschip (Dutch for "clean ship") in 1963. Using LISP as the programming basis, Carl Engelman created MATHLAB in 1964 at MITRE within an artificial intelligence research environment. Later MATHLAB was made available to users on PDP-6 and PDP-10 Systems running TOPS-10 or TENEX in universities. Today it can still be used on SIMH-Emulations of the PDP-10. MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory") which is a system for numerical computation built 15 years later at the University of New Mexico, accidentally named rather similarly. The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a popular copyleft version of Macsyma called Maxima is actively being maintained.
    [Show full text]
  • An Overview of the Evolution of the Devices Running Computer Algebra Systems and Their Educational Implications
    Electrical & Electronic Technology Open Access Journal Short Communication Open Access An overview of the evolution of the devices running computer algebra systems and their educational implications Abstract Volume 1 Issue 1 - 2017 Only back in late 60’s and early 70’s powerful computers were required to run the Eugenio Roanes-Lozano then just released computer algebra systems (brand new software mainly designed as Instituto de Matemática Interdisciplinar & Depto de Álgebra, a specialized aid for astronomy and high energy physics). In the late 80’s they could Universidad Complutense de Madrid, Spain be run in standard computers. And in 1995 the first calculator including a computer algebra system was released. Now some of these pieces of software are freely available Correspondence: Eugenio Roanes-Lozano, Instituto de for Smartphones. That this software has been ported to these electronic devices is a Matemática Interdisciplinar & Depto de Álgebra, Universidad challenge to different aspects of mathematical and physics education, like: problem Complutense de Madrid, c/ Rector Royo Villanova s/n, solving, assessment and standardized assessment. 28040-Madrid, Spain, Tel 913-946-248, Fax 913-944-662, Email [email protected] Keywords: computer algebra systems, computers, calculators, smartphones, mathematical education Received: May 05, 2017 | Published: June 20, 2017 Introduction symbolic manipulations such as symbolic differentiation and integra- tion can be implemented. The incredible increase of microprocessors 1 Computer algebra systems have two main differences w.r.t. clas- power makes it possible to have CAS available for Smartphones. This sic computer languages: induces serious challenges in teaching mathematics as well and in the a) They perform numerical computations in exact arithmetic (by assessment of this subject.
    [Show full text]
  • Using a Small Algebraic Manipulation System to Solve Differential and Integral Equations by Variational and Approximation Techniques
    J. Symbolic Computation (1987) 3, 291-301 Using a Small Algebraic Manipulation System to Solve Differential and Integral Equations by Variational and Approximation Techniques R. D. MILLS Computing Science Department. University of Glasgow, Glasgow, UK (Received 2 December 1985) The microcomputer algebraic manipulation system MUMATH is used to implement the classical variational, Galerkin and least-squares techniques for solving boundary-value problems in differential equations and also for solving Fredhohn integral equations. Examples are given which extend the precision of known results. The technique is presented as a general algorithm which can readily be implemented on other algebraic manipulation systems. 1. Introduction Computer programs have been in existence since the fifties to manipulate polynomials, differentiate functions and solve equations. By the late sixties and early seventies programs were written which could integrate functions analytically. The late seventies saw the development of programs for the symbolic solution of differential and integral equations (see Golden, 1977; Stoutemyer, 1977; Bogen, 1979). Large and complex algebraic manipulation systems were devised to implement the algorithms which effect these processes, the best known being FORMAC, REDUCE2, MACSYMA and SCRATCHPAD. There then opened up the exciting possibility of tackling many problems in applied mathematics and engineering which could be solved approximately by analytical methods but which require very large amounts of algebraic manipulation. The Rayleigh-Ritz, Galerkin and least-squares methods for solving boundary-value problems in differential equations are typical examples. For early work using computer algebra in these methods, see Miola (1974) and Andersen & Noor (1977). This application area involves the interaction of numerical and algebraic computation (see Ng, 1979).
    [Show full text]
  • Computational Mathematics with Sagemath, by Paul Zimmermann
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 57, Number 3, July 2020, Pages 515–521 https://doi.org/10.1090/bull/1690 Article electronically published on January 24, 2020 Computational Mathematics with SageMath, by Paul Zimmermann, Alexandre Cas- amayou, Nathann Cohen, Guillaume Connan, Thierry Dumont, Laurent Fousse, Fran¸cois Maltey, Matthias Meulien, Marc Mezzarobba, Cl´ement Pernet, Nico- las M. Thi´ery, Erik Bray, John Cremona, Marcelo Forets, Alexandru Ghitza, and Hugh Thomas, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, 2018, xiv+464 pp., ISBN 978-1-611975-45-1, US$69.00 It is no exaggeration to say that in the past 40 years computer algebra systems (CAS) have changed the everyday practice of mathematics immensely. In general terms, CAS all deal with mathematical objects represented in symbolic form. Some, but not all, also provide interfaces to routines for numerical computation; some, but again not all, provide interfaces to graphical routines for visualization of math- ematical objects. Almost all of them provide programming languages to allow users to extend the packages’ functionality. All of them aim, in one way or another, to be “systems for doing mathematics by computer” as Stephen Wolfram’s Mathematica package [15] boldly proclaims. 1. Historical development of CAS The following discussion is meant to illustrate the range of such systems that have been created. It does not aim to be exhaustive, and the author apologizes in advance to anyone whose contributions have been omitted or overlooked. The first computer algebra systems in effect grew out of artificial intelligence research starting in the 1960s, but connections with that side of computer sci- ence have lessened over time.
    [Show full text]
  • Introduction to System Simulation Techniques and Applications
    JWST357-c01 JWST357-Xue Printer: Yet to Come August 8, 2013 8:51 Trim: 7in × 10in 1 Introduction to System Simulation Techniques and Applications 1.1 Overview of System Simulation Techniques Systems are the integrated wholes composed of interrelated and interacting entities; these could be engineering systems or non-engineering systems. Engineering systems are the whole composed of interacting components such that certain system objectives can be achieved. For instance, motor drive systems are composed of an actuating component, a power transfer component and a signal measurement component, so as to control the motor speed or position, among other objectives. The field of non-engineering systems is much wider. From universe to micro world, any integrated whole can also be regarded as a system, since there are interrelated and interacting relationships. In order to quantitatively study the behavior of a system, the internal characteristics and interacting relationship should be extracted, to construct a model of the system. System models can be classified as physical models and mathematical models. Following the rapid development and utilization of computer technology, the application of mathematical models is more and more popular. A mathematical model of a system is a mathematical expression describing the dynamical behavior of the system. They can be used to describe the relationship of quantities in the system and they are the basis of system analysis and design. From the viewpoint of the type of mathematical model, systems can be classified as continuous-time systems, discrete-time systems, discrete event systems and hybrid systems. Systems can also be classified as subclasses of linear, nonlinear, time invariant, time varying, lumped parameters, distributed parameters, deterministic and stochastic systems.
    [Show full text]
  • The Role of Computer Algebra Systems in Mathematics Teaching at Upper Secondary School
    Edith Cowan University Research Online Theses : Honours Theses 1990 The role of computer algebra systems in mathematics teaching at upper secondary school Wendy Johnstone Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Instructional Media Design Commons Recommended Citation Johnstone, W. (1990). The role of computer algebra systems in mathematics teaching at upper secondary school. https://ro.ecu.edu.au/theses_hons/178 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/178 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. USE OF THESIS The Use of Thesis statement is not included in this version of the thesis. WESTERN AUSTRALIAN COLLEGE OF ADVANCED EDUCATION THE ROLE OF COMPUTER ALGEBRA SYSTEMS IN MATHEMATICS TEACHING AT UPPER SECONDARY SCHOOL A T.HESIS SUBMITTED TO THE SCHOOL OF EDUCATION IN CANDIDACY FOR THE DEGREE OF BACHELOR OF EDUCATION WITH HONOURS DEPARTMENT OF MATHEMATICS AND COMPUTER EDUCATION BY WENDY JOHNSTONE PERTH, WESTERN AUSTRALIA FEBRUARY 1990 ABSTRACT Computer algebra systems are programs that manipulate both symbols and numbers and so can reduce the tedium of algebra in the same way calculators can reduce the time and work involved in arithmetic.
    [Show full text]
  • The Effects of Computer Algebra Systems On
    THE EFFECTS OF COMPUTER ALGEBRA SYSTEMS ON STUDENTS’ ACHIEVEMENT IN MATHEMATICS A dissertation submitted to the Kent State University College and Graduate School of Education, Health and Human Services in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Christopher L. Tokpah August, 2008 © Copyright by Christopher L. Tokpah, 2008 All Rights Reserved ii A dissertation written by Christopher L. Tokpah B. Sc., University of Liberia, 1989 M.B.A., Kent State University, 2002 Ph.D., Kent State University, 2008 Approved by _________________________________________, Director, Doctoral Dr. Shawn M. Fitzgerald Dissertation Committee _________________________________________, Member, Doctoral Dr. Tricia M. Niesz Dissertation Committee _________________________________________, Member, Doctoral Dr. Karen Swan Dissertation Committee Accepted by ______________________________________, Interim Chairperson, Department of Dr. Melody Tankersley Educational Foundations and Special Services ______________________________________, Dean, College and Graduate School of Dr. Daniel F. Mahony Education, Health, and Human Services iii TOKPAH, CHRISTOPHER L. PHD., August 2008 EVALUATION AND MEASUREMENT THE EFFECTS OF COMPUTER ALGEBRA SYSTEMS ON STUDENTS’ ACHIEVEMENT IN MATHEMATICS (131pp.) Director of Dissertation: Shawn M. Fitzgerald, Ph.D. This meta-analysis sought to investigate the overall effectiveness of computer algebra systems (CAS) instruction, in comparison to non-CAS instruction, on students’ achievement in mathematics
    [Show full text]
  • Implementing a Computer Algebra System in Haskell
    Applied Mathematics and Computation 192 (2007) 120–134 www.elsevier.com/locate/amc Implementing a computer algebra system in Haskell Jose´ Romildo Malaquias a, Carlos Roberto Lopes b,* a Departamento de Computac¸a˜o, Universidade Federal de Ouro Preto, Ouro Preto, Brazil b Faculdade de Computac¸a˜o, Universidade Federal de Uberlaˆndia, Uberlaˆndia, Brazil Abstract There are basically two kinds of mathematical computation, numerical and symbolic. Numerical algorithms are usually implemented in strongly typed languages, and compiled with a view to efficiency. Symbolic algorithms are mostly written for interpreters in untyped languages. Therefore, symbolic mathematics is usually slow, and bug ridden. Since symbolic algorithms are usually more difficult to implement, there are also very few computer algebra systems. This paper presents a computer algebra system that is both fast, and implemented in a strongly typed language, and designed to accept com- piled extensions. The authors describe a scheme to achieve these goals without creating difficulties for the end-user. The reason for creating this new computer algebra system is to make feasible mixed computation, i.e., programming software that needs both numerical computation and computer algebra. For instance, Finite Element Methods require a lot of num- ber crunching as well as computer algebra to perform triangularization, manipulating shape functions, etc. Mixed compu- tation requires speed and safety that interpreted computer algebra cannot provide. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Computer algebra; Mixed computation; Functional programming; Haskell 1. Introduction Computers have been used for numerical computations since their beginning. These general purpose machines can also be used for transforming and combining symbolic expressions as well.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, som e thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. ProQuest Information and teaming 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 ® UMI THE ELECTRONIC “OTHER’: A STUDY OF CALCULATOR-BASED SYMBOLIC MANIPULATION UTILITIES WITH SECONDARY SCHOOL MATHEMATICS STUDENTS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Michael Todd Edwards, B.A., B.S., M.A., M.S., M.Ed.
    [Show full text]
  • Sampling Techniques for Computational Statistical Physics
    S and/or limiting cases of the Hamiltonian dynamics; Sampling Techniques for Computational and (3) deterministic dynamics on an extended phase Statistical Physics space. Benedict Leimkuhler1 and Gabriel Stoltz2 1Edinburgh University School of Mathematics, Edinburgh, Scotland, UK Description 2Universite´ Paris Est, CERMICS, Projet MICMAC Ecole des Ponts, ParisTech – INRIA, Marne-la-Vallee,´ Applications of sampling methods arise most com- France monly in molecular dynamics and polymer modeling, but they are increasingly encountered in fluid dynamics and other areas. In this article, we focus on the treat- ment of systems of particles described by position and Mathematics Subject Classification momentum vectors q and p, respectively, and modeled by a Hamiltonian energy H D H.q;p/. 82B05; 82-08; 65C05; 37M05 Macroscopic properties of materials are obtained, according to the laws of statistical physics, as the average of some function with respect to a proba- Short Definition bility measure describing the state of the system ( Calculation of Ensemble Averages): The computation of macroscopic properties, as pre- Z dicted by the laws of statistical physics, requires sam- E.A/ D A.q; p/ .dq dp/: (1) pling phase-space configurations distributed according E to the probability measure at hand. Typically, approx- imations are obtained as time averages over trajecto- In practice, averages such as (1) are obtained by gener- ries of discrete dynamics, which can be shown to be ating, by an appropriate numerical method, a sequence i i ergodic in some cases. Arguably, the greatest interest of microscopic configurations .q ;p /i0 such that is in sampling the canonical (constant temperature) ensemble, although other distributions (isobaric, mi- n1 Z 1 X crocanonical, etc.) are also of interest.
    [Show full text]
  • TI-Nspire CAS = Successor of Derive!? P33
    THE DERIVE - NEWSLETTER #67 ISSN 1990-7079 THE BULLETIN OF THE USER GROUP C o n t e n t s: 1 Letter of the Editor 2 Editorial - Preview Nils Hahnfeld & Josef Böhm 3 Conics Made Easy 8 User Forum Josef Lechner 10 All bodies are falling equally fast? Albert Rich 19 A Repository of Mathematical Knowledge MacDonald Phillips 21 Actuarial Math on the Handheld Bernhard Kutzler 33 TI-NSpire-CAS = Successor of DERIVE!? David Sjöstrand 39 Points of Interest in a Triangle Johann Wiesenbauer 46 Titbits 34 – Polynomial Arithmetic for the Advanced Josef Böhm 51 Surfaces from the Newspaper (2) 53 First Announcement of TIME 2008 & another Conference September 2007 D-N-L#67 Book Shelf D-N-L#67 Nachhaltige CAS-Konzepte für den Unterricht Eberhard Lehmann Vorwort – Inhaltsverzeichnis 1. Der Start in das CAS 2. CAS-Konzepte 3. Hand contra CAS 4. Visualisieren und Animieren 5. Families 6. Modules (Bausteine) - modulare Kompetenzen 7. CAS-Projekte - Modellieren mit CAS-Hilfe 8. Mathematik mit und auf Bildern 9. Das CAS macht es möglich 10. Erstellen von CAS-Aufgaben – Klassenarbeiten / Klausuren / Hausaufgaben 12. Zentralabitur mit CAS 13. CAS-Werkzeugkompetenzen 14. Empfehlungen für ein CAS-Schulcurriculum Sammlung von CAS-Beispielen in dem Buch Sachverzeichnis Bestellung des Buches bei: Dr. Eberhard Lehmann [email protected], 030-7112420, www.snafu.de/~mirza 20 Euro + Verpackung/Porto auf Rechnung Another new publication is: Günter Scheu u.a., ABITUR – Prüfungsaufgaben mit Lösungen, Mathematik CAS, Gymnasium Baden-Württemberg, STARK Verlag If you know about CAS- related publications then please inform me. Books dealing with the use of technology in math education in general are also interesting.
    [Show full text]