CAS Computer Algebra System

Total Page:16

File Type:pdf, Size:1020Kb

CAS Computer Algebra System Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja Rozwiązywanie układów równań algebraicznych i różniczkowych Prezentacja wyników, interpolacja, aproksymacja Import / eksport danych 2 CAS Politechnika Gdańska 2011 Wspomaganie obliczeń matematycznych Numeryczne obliczenia Matlab Scilab Octave obliczenia w dużej skali algorytmy numeryczne wizualizacja wyników Toolbox’y – Matlab Simulink 3 CAS Politechnika Gdańska 2011 Wspomaganie obliczeń matematycznych CAS – computer algebra system Obliczenia symboliczne Maple Mathematica MathCad Maxima Algorytmy numeryczne, Wizualizacja wyników możliwości składu tekstów matematycznych 4 CAS Politechnika Gdańska 2011 Wspomaganie obliczeń matematycznych Metoda rachunku numeryczny symboliczny Możliwość rozwiązywania trudnych zazwyczaj tak zazwyczaj nie zadań praktycznych Wielość metod o różnej tak tak skuteczności Wymaga wiedzy wykraczającej poza najczęściej tak najczęściej nie rozwiązywane zadanie skończony zestaw liczb wzór lub informacja o Wynik lub rysunek charakterze rozwiązania 5 CAS Politechnika Gdańska 2011 Wspomaganie obliczeń matematycznych Metoda rachunku numeryczny symboliczny Potrafi działać na nie tak abstrakcyjnych obiektach Dobrze radzi sobie z zazwyczaj nie zazwyczaj tak nieskończonościami Dobrze radzi sobie z tak nie mnogością parametrów teoretycznie Precyzja wyniku ograniczona nieskończona Ostateczna jakość niepewna niepewna wyniku 6 CAS Politechnika Gdańska 2011 Zestawienie programów CAS Komercyjne: Algebrator · ClassPad Manager · LiveMath · Magma · Maple · Mathcad · Mathematica · MuPAD · TI InterActive! · WIRIS Open source Axiom · Cadabra · CoCoA · DoCon · Eigenmath · FriCAS · GAP · GiNaC · Macaulay2 · Mathomatic · Maxima · OpenAxiom · PARI/GP · Reduce · Sage · SINGULAR · SymPy · Xcas · Octave · Scilab Free/shareware Fermat Nierozwijane Derive · DCAS · Macsyma · muMATH · Yacas 7 CAS Politechnika Gdańska 2011 Wspomaganie obliczeń matematycznych Środowiska zintegrowane/hybrydowe Matlab Simulink Symbolic Math Toolbox™ (MuPAD) 8 CAS Politechnika Gdańska 2011 Obliczenie numeryczne - Scilab SCILAB I.N.R.I.A. (Institut National de Recherche en Informatique et Automatique) rozwiązywanie układów liniowych, wyznaczanie wartości własnych, wektorów własnych, szybka transformacja Fouriera, rozwiązywanie równań różniczkowych, algorytmy optymalizacji, rozwiązywanie równań nieliniowych, generowanie liczb losowych, 9 CAS Politechnika Gdańska 2011 Scilab Operacje na macierzach • dodawanie, odejmowanie, mnożenie • macierze jednostkowe 10 CAS Politechnika Gdańska 2011 Scilab Rysowanie przebiegów funkcji 2D 11 CAS Politechnika Gdańska 2011 Scilab Rysowanie przebiegów funkcji 3D 12 CAS Politechnika Gdańska 2011 Mathcad – środowisko pracy Mathcad 15.0, Mathcad Prime 1.0 Parametric Technology Corporation's 13 CAS Politechnika Gdańska 2011 Obliczenia symboliczne - Mathcad Rozwiązanie równania kwadratowego Język programowania LISP x = (-B+SQRT(B**2-4*A*C))/(2*A) Arkusz kalkulacyjny =(-B1+PIERWIASTEK(B1*B1-4*A1*C1))/(2*A1) Mathcad 14 CAS Politechnika Gdańska 2011 PTC Mathcad Prime 1.0 Środowisko obliczeń Document-centric Zaawansowane odkrywanie matematyki Biblioteki numeryczne Dynamiczna kontrola jednostek Reverse compatibility Edytor równań WYSIWYG Design of Experiments (DoE) 15 CAS Politechnika Gdańska 2011 Mathcad Prime 1.0 16 CAS Politechnika Gdańska 2011 Mathcad Prime 1.0 17 CAS Politechnika Gdańska 2011 Obliczenia symboliczne - WolframAlpha 18 CAS Politechnika Gdańska 2011 WolframAlpha Rozwiązywanie równań liniowych 19 CAS Politechnika Gdańska 2011 WolframAlpha Rozwiązywanie równań różniczkowych 20 CAS Politechnika Gdańska 2011 WolframAlpha Regresja liniowa 21 CAS Politechnika Gdańska 2011 WolframAlpha Regresja ekspotencjalna 22 CAS Politechnika Gdańska 2011 WolframAlpha Wykresy funkcji 2D 3D 23 CAS Politechnika Gdańska 2011 Wolfram Mathematica 24 dr inż. Michał Michna Wolfram Mathematica 25 dr inż. Michał Michna Maxima Różniczkowanie i całkowanie symboliczne Rozwiązywanie równań i układów równań algebraicznych Rozwiązywanie wybranych typów równań różniczkowych Upraszczanie wyrażeń algebraicznych Tworzenie wykresów 2D i 3D (za pośrednictwem Gnuplota) Szeregi Fouriera Operacje na macierzach Obliczenia dowolnej precyzji Eksport wyników do TeX’a Strukturalny język programowania (+Lisp) Wybrane operacje numeryczne Wybrane operacje statystyczne 26 CAS Politechnika Gdańska 2011 Maxima 1968 MIT Departamentu Energii USA programu Macsyma 1988 GPL 27 CAS Politechnika Gdańska 2011 Maxima Rozwiązywanie równań 28 CAS Politechnika Gdańska 2011 Maxima Wykresy 2D 29 CAS Politechnika Gdańska 2011 Maxima Wykresy 3D 30 CAS Politechnika Gdańska 2011 Maxima Rozwiązywanie równań liniowych 31 CAS Politechnika Gdańska 2011 Maxima Pochodne 32 CAS Politechnika Gdańska 2011 Maxima Funkcje 33 CAS Politechnika Gdańska 2011 Maxima Funkcje 34 CAS Politechnika Gdańska 2011 Maxima Web Maxima, a Computer Algebra System elearning.cerfacs.fr/miscellane ous/tools/maxima/index.p hp 35 CAS Politechnika Gdańska 2011 Analiza i wizualizacja danych AutoSignal DADISP Grapher IRISExplorer MapViewer Origin PeakFit SigmaScan SigmaPlot SigmaStat 36 CAS Politechnika Gdańska 2011 Modelowanie i symulacje Mechatronika SPICE – PSpice, LTSpice MAST/VHDL – SABER Grafy wiązań - 20-Sim Modelica - Dynasim 37 CAS Politechnika Gdańska 2011 .
Recommended publications
  • Using Macaulay2 Effectively in Practice
    Using Macaulay2 effectively in practice Mike Stillman ([email protected]) Department of Mathematics Cornell 22 July 2019 / IMA Sage/M2 Macaulay2: at a glance Project started in 1993, Dan Grayson and Mike Stillman. Open source. Key computations: Gr¨obnerbases, free resolutions, Hilbert functions and applications of these. Rings, Modules and Chain Complexes are first class objects. Language which is comfortable for mathematicians, yet powerful, expressive, and fun to program in. Now a community project Journal of Software for Algebra and Geometry (started in 2009. Now we handle: Macaulay2, Singular, Gap, Cocoa) (original editors: Greg Smith, Amelia Taylor). Strong community: including about 2 workshops per year. User contributed packages (about 200 so far). Each has doc and tests, is tested every night, and is distributed with M2. Lots of activity Over 2000 math papers refer to Macaulay2. History: 1976-1978 (My undergrad years at Urbana) E. Graham Evans: asked me to write a program to compute syzygies, from Hilbert's algorithm from 1890. Really didn't work on computers of the day (probably might still be an issue!). Instead: Did computation degree by degree, no finishing condition. Used Buchsbaum-Eisenbud \What makes a complex exact" (by hand!) to see if the resulting complex was exact. Winfried Bruns was there too. Very exciting time. History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) I tried to do \real mathematics" but Dave Bayer (basically) rediscovered Groebner bases, and saw that they gave an algorithm for computing all syzygies. I got excited, dropped what I was doing, and we programmed (in Pascal), in less than one week, the first version of what would be Macaulay.
    [Show full text]
  • Plotting Direction Fields in Matlab and Maxima – a Short Tutorial
    Plotting direction fields in Matlab and Maxima – a short tutorial Luis Carvalho Introduction A first order differential equation can be expressed as dx x0(t) = = f(t; x) (1) dt where t is the independent variable and x is the dependent variable (on t). Note that the equation above is in normal form. The difficulty in solving equation (1) depends clearly on f(t; x). One way to gain geometric insight on how the solution might look like is to observe that any solution to (1) should be such that the slope at any point P (t0; x0) is f(t0; x0), since this is the value of the derivative at P . With this motivation in mind, if you select enough points and plot the slopes in each of these points, you will obtain a direction field for ODE (1). However, it is not easy to plot such a direction field for any function f(t; x), and so we must resort to some computational help. There are many computational packages to help us in this task. This is a short tutorial on how to plot direction fields for first order ODE’s in Matlab and Maxima. Matlab Matlab is a powerful “computing environment that combines numeric computation, advanced graphics and visualization” 1. A nice package for plotting direction field in Matlab (although resourceful, Matlab does not provide such facility natively) can be found at http://math.rice.edu/»dfield, contributed by John C. Polking from the Dept. of Mathematics at Rice University. To install this add-on, simply browse to the files for your version of Matlab and download them.
    [Show full text]
  • Some Reflections About the Success and Impact of the Computer Algebra System DERIVE with a 10-Year Time Perspective
    Noname manuscript No. (will be inserted by the editor) Some reflections about the success and impact of the computer algebra system DERIVE with a 10-year time perspective Eugenio Roanes-Lozano · Jose Luis Gal´an-Garc´ıa · Carmen Solano-Mac´ıas Received: date / Accepted: date Abstract The computer algebra system DERIVE had a very important im- pact in teaching mathematics with technology, mainly in the 1990's. The au- thors analyze the possible reasons for its success and impact and give personal conclusions based on the facts collected. More than 10 years after it was discon- tinued it is still used for teaching and several scientific papers (most devoted to educational issues) still refer to it. A summary of the history, journals and conferences together with a brief bibliographic analysis are included. Keywords Computer algebra systems · DERIVE · educational software · symbolic computation · technology in mathematics education Eugenio Roanes-Lozano Instituto de Matem´aticaInterdisciplinar & Departamento de Did´actica de las Ciencias Experimentales, Sociales y Matem´aticas, Facultad de Educaci´on,Universidad Complutense de Madrid, c/ Rector Royo Villanova s/n, 28040-Madrid, Spain Tel.: +34-91-3946248 Fax: +34-91-3946133 E-mail: [email protected] Jose Luis Gal´an-Garc´ıa Departamento de Matem´atica Aplicada, Universidad de M´alaga, M´alaga, c/ Dr. Ortiz Ramos s/n. Campus de Teatinos, E{29071 M´alaga,Spain Tel.: +34-952-132873 Fax: +34-952-132766 E-mail: [email protected] Carmen Solano-Mac´ıas Departamento de Informaci´ony Comunicaci´on,Universidad de Extremadura, Plaza de Ibn Marwan s/n, 06001-Badajoz, Spain Tel.: +34-924-286400 Fax: +34-924-286401 E-mail: [email protected] 2 Eugenio Roanes-Lozano et al.
    [Show full text]
  • Performance Analysis of Effective Symbolic Methods for Solving Band Matrix Slaes
    Performance Analysis of Effective Symbolic Methods for Solving Band Matrix SLAEs Milena Veneva ∗1 and Alexander Ayriyan y1 1Joint Institute for Nuclear Research, Laboratory of Information Technologies, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia Abstract This paper presents an experimental performance study of implementations of three symbolic algorithms for solving band matrix systems of linear algebraic equations with heptadiagonal, pen- tadiagonal, and tridiagonal coefficient matrices. The only assumption on the coefficient matrix in order for the algorithms to be stable is nonsingularity. These algorithms are implemented using the GiNaC library of C++ and the SymPy library of Python, considering five different data storing classes. Performance analysis of the implementations is done using the high-performance computing (HPC) platforms “HybriLIT” and “Avitohol”. The experimental setup and the results from the conducted computations on the individual computer systems are presented and discussed. An analysis of the three algorithms is performed. 1 Introduction Systems of linear algebraic equations (SLAEs) with heptadiagonal (HD), pentadiagonal (PD) and tridiagonal (TD) coefficient matrices may arise after many different scientific and engineering prob- lems, as well as problems of the computational linear algebra where finding the solution of a SLAE is considered to be one of the most important problems. On the other hand, special matrix’s char- acteristics like diagonal dominance, positive definiteness, etc. are not always feasible. The latter two points explain why there is a need of methods for solving of SLAEs which take into account the band structure of the matrices and do not have any other special requirements to them. One possible approach to this problem is the symbolic algorithms.
    [Show full text]
  • Luis David Garcıa Puente
    Luis David Garc´ıa Puente Department of Mathematics and Statistics (936) 294-1581 Sam Houston State University [email protected] Huntsville, TX 77341–2206 http://www.shsu.edu/ldg005/ Professional Preparation Universidad Nacional Autonoma´ de Mexico´ (UNAM) Mexico City, Mexico´ B.S. Mathematics (with Honors) 1999 Virginia Polytechnic Institute and State University Blacksburg, VA Ph.D. Mathematics 2004 – Advisor: Reinhard Laubenbacher – Dissertation: Algebraic Geometry of Bayesian Networks University of California, Berkeley Berkeley, CA Postdoctoral Fellow Summer 2004 – Mentor: Lior Pachter Mathematical Sciences Research Institute (MSRI) Berkeley, CA Postdoctoral Fellow Fall 2004 – Mentor: Bernd Sturmfels Texas A&M University College Station, TX Visiting Assistant Professor 2005 – 2007 – Mentor: Frank Sottile Appointments Colorado College Colorado Springs, CO Professor of Mathematics and Computer Science 2021 – Sam Houston State University Huntsville, TX Professor of Mathematics 2019 – 2021 Sam Houston State University Huntsville, TX Associate Department Chair Fall 2017 – 2021 Sam Houston State University Huntsville, TX Associate Professor of Mathematics 2013 – 2019 Statistical and Applied Mathematical Sciences Institute Research Triangle Park, NC SAMSI New Researcher fellowship Spring 2009 Sam Houston State University Huntsville, TX Assistant Professor of Mathematics 2007 – 2013 Virginia Bioinformatics Institute (Virginia Tech) Blacksburg, VA Graduate Research Assistant Spring 2004 Virginia Polytechnic Institute and State University Blacksburg,
    [Show full text]
  • CAS (Computer Algebra System) Mathematica
    CAS (Computer Algebra System) Mathematica- UML students can download a copy for free as part of the UML site license; see the course website for details From: Wikipedia 2/9/2014 A computer algebra system (CAS) is a software program that allows [one] to compute with mathematical expressions in a way which is similar to the traditional handwritten computations of the mathematicians and other scientists. The main ones are Axiom, Magma, Maple, Mathematica and Sage (the latter includes several computer algebras systems, such as Macsyma and SymPy). Computer algebra systems began to appear in the 1960s, and evolved out of two quite different sources—the requirements of theoretical physicists and research into artificial intelligence. A prime example for the first development was the pioneering work conducted by the later Nobel Prize laureate in physics Martin Veltman, who designed a program for symbolic mathematics, especially High Energy Physics, called Schoonschip (Dutch for "clean ship") in 1963. Using LISP as the programming basis, Carl Engelman created MATHLAB in 1964 at MITRE within an artificial intelligence research environment. Later MATHLAB was made available to users on PDP-6 and PDP-10 Systems running TOPS-10 or TENEX in universities. Today it can still be used on SIMH-Emulations of the PDP-10. MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory") which is a system for numerical computation built 15 years later at the University of New Mexico, accidentally named rather similarly. The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a popular copyleft version of Macsyma called Maxima is actively being maintained.
    [Show full text]
  • Axiom / Fricas
    Axiom / FriCAS Christoph Koutschan Research Institute for Symbolic Computation Johannes Kepler Universit¨atLinz, Austria Computer Algebra Systems 15.11.2010 Master's Thesis: The ISAC project • initiative at Graz University of Technology • Institute for Software Technology • Institute for Information Systems and Computer Media • experimental software assembling open source components with as little glue code as possible • feasibility study for a novel kind of transparent single-stepping software for applied mathematics • experimenting with concepts and technologies from • computer mathematics (theorem proving, symbolic computation, model based reasoning, etc.) • e-learning (knowledge space theory, usability engineering, computer-supported collaboration, etc.) • The development employs academic expertise from several disciplines. The challenge for research is interdisciplinary cooperation. Rewriting, a basic CAS technique This technique is used in simplification, equation solving, and many other CAS functions, and it is intuitively comprehensible. This would make rewriting useful for educational systems|if one copes with the problem, that even elementary simplifications involve hundreds of rewrites. As an example see: http://www.ist.tugraz.at/projects/isac/www/content/ publications.html#DA-M02-main \Reverse rewriting" for comprehensible justification Many CAS functions can not be done by rewriting, for instance cancelling multivariate polynomials, factoring or integration. However, respective inverse problems can be done by rewriting and produce human readable derivations. As an example see: http://www.ist.tugraz.at/projects/isac/www/content/ publications.html#GGTs-von-Polynomen Equation solving made transparent Re-engineering equation solvers in \transparent single-stepping systems" leads to types of equations, arranged in a tree. ISAC's tree of equations are to be compared with what is produced by tracing facilities of Mathematica and/or Maple.
    [Show full text]
  • Session Siptool: the 'Signal and Image Processing Tool'
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@CalPoly Session SIPTool: The ‘Signal and Image Processing Tool’ An Engaging Learning Environment Fred DePiero1 Abstract The ‘Signal and Image Processing Tool’ is a With the SIPTool, students create an integrated system multimedia software environment for demonstrating and that includes their processing routine along with developing Signal & Image Processing techniques. It has image/signal acquisition and display. This integrated system been used at CalPoly for three years. A key feature is is a very different result than the ‘haphazard’ line-by-line extensibility via C/C++ programming. The tool has a processing steps that students may or may not successfully minimal learning curve, making it amenable for weekly stumble through in a MatLab environment, as they follow a student projects. The software distribution includes given example. The SIPTool-based implementation is much multimedia demonstrations ready for classroom or more like a complete, commercial product. laboratory use. SIPTool programming assignments strengthen the skills needed for life-long learning by A variety of learning objectives can be readily requiring students to translate mathematical expressions addressed with the SIPTool including: time/frequency into a standard programming language, to create an relationships, 1-D and 2-D Fourier transforms, convolution, integrated processing system (as opposed to simply using correlation, filtering, difference equations, and pole/zero canned processing routines). relationships [1]. Learning objectives associated with image processing can also be presented, such as: gray scale Index Terms Image Processing, Signal Processing, resolution, pixel resolution, histogram equalization, median Software Development Environment, Multimedia Teaching filtering and frequency-domain filtering [2].
    [Show full text]
  • Estimado Profesor
    México, D.F., a 15 de abril de 2016 CURRICULUM VITAE Nombre: RICARDO LÓPEZ BAUTISTA Departamento de Adscripción: CIENCIAS BASICAS, Profesor titular "A", tiempo Completo, definitivo en UAM-Azcapotzalco Correo electrónico: [email protected] Formación Profesional: DOCTOR EN CIENCIAS en la especialidad de Matemáticas por el Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV) con Mención Honorífica. ESTANCIA POSTDOCTORAL Departamento de Matemáticas de la Ohio StateUniversity (USA). 2000 Líneas de investigación: 1) EVALUACIÓN EN LINEA y GENERACIÓN AUTOMATIZADA DE MILLONES DE REACTIVOS CON RETROALIMENTACION AUTOMATICA, PARA BANCOS DE EXÁMENES EN MATEMÁTICAS. a. Experto en plataforma MOODLE- LCMS (Learning Content Management System) b. Programador en diversos CAS (Computer Algebraic System) Axiom, Mathematica, Maple, Mathlab, Geogebra, Magma, SageMath, Maxima, SymPy, Xcas, Yacas, Pari-GP, Octave, GAP, CoCoA, Algebrator, MathCad 2) TEORIA ALGEBRAICA DE NUMEROS, FACTORIZACION DE ENTEROS, SEGURIDAD ELECTRONICA 3) SISTEMAS ALGEBRAICOS COMPUTACIONALES (CAS). a. INVESTIGACIÓN Y APLICACIONES DE CAS EN TEORÍA DE NÚMEROS. b. INVESTIGACIÓN Y APLICACIONES DE CAS EN MODELOS MIXTOS PARA LA EDUCACIÓN Y EVALUACIÓN EN MATEMÁTICAS 4) TECNOMATEMÁTICA EDUCATIVA EN MODELOS PRESENCIALES, NO PRESENCIALES Y MIXTOS. SISTEMAS ALGEBRAICOS COMPUTACIONALES EN LA EDUCACION Y EVALUACION EN MATEMÁTICAS. a. Portales activos para la comunidad en UAM-A: http://galois.azc.uam.mx http://evaluacionenlinea.azc.uam.mx http://matematicas.azc.uam.mx Proyecto CONACyT: Evaluación del aprendizaje en Matemáticas y propuesta de evaluaciones automáticas en línea. Aprobado en 2012, por concluir. 1 Formación de recursos humanos: Tesis de alumna de maestría: Jurado en examen doctoral. Uam Proyectos Terminales en Maestría en Ciencias de la Iztapalapa.
    [Show full text]
  • Arxiv:2102.02679V1 [Cs.LO] 4 Feb 2021 HOL-ODE [10], Which Supports Reasoning for Systems of Ordinary Differential Equations (Sodes)
    Certifying Differential Equation Solutions from Computer Algebra Systems in Isabelle/HOL Thomas Hickman, Christian Pardillo Laursen, and Simon Foster University of York Abstract. The Isabelle/HOL proof assistant has a powerful library for continuous analysis, which provides the foundation for verification of hybrid systems. However, Isabelle lacks automated proof support for continuous artifacts, which means that verification is often manual. In contrast, Computer Algebra Systems (CAS), such as Mathematica and SageMath, contain a wealth of efficient algorithms for matrices, differen- tial equations, and other related artifacts. Nevertheless, these algorithms are not verified, and thus their outputs cannot, of themselves, be trusted for use in a safety critical system. In this paper we integrate two CAS systems into Isabelle, with the aim of certifying symbolic solutions to or- dinary differential equations. This supports a verification technique that is both automated and trustworthy. 1 Introduction Verification of Cyber-Physical and Autonomous Systems requires that we can verify both discrete control, and continuous evolution, as envisaged by the hy- brid systems domain [1]. Whilst powerful bespoke verification tools exist, such as the KeYmaera X [2] proof assistant, software engineering requires a gen- eral framework, which can support a variety of notations and paradigms [3]. Isabelle/HOL [4] is a such a framework. Its combination of an extensible fron- tend for syntax processing, and a plug-in oriented backend, based in ML, which supports a wealth of heterogeneous semantic models and proof tools, supports a flexible platform for software development, verification, and assurance [5,6,7]. Verification of hybrid systems in Isabelle is supported by several detailed li- braries of Analysis, including Multivariate Analysis [8], Affine Arithmetic [9], and arXiv:2102.02679v1 [cs.LO] 4 Feb 2021 HOL-ODE [10], which supports reasoning for Systems of Ordinary Differential Equations (SODEs).
    [Show full text]
  • Using Computer Programming As an Effective Complement To
    Using Computer Programming as an Effective Complement to Mathematics Education: Experimenting with the Standards for Mathematics Practice in a Multidisciplinary Environment for Teaching and Learning with Technology in the 21st Century By Pavel Solin1 and Eugenio Roanes-Lozano2 1University of Nevada, Reno, 1664 N Virginia St, Reno, NV 89557, USA. Founder and Director of NCLab (http://nclab.com). 2Instituto de Matemática Interdisciplinar & Departamento de Didáctica de las Ciencias Experimentales, Sociales y Matemáticas, Facultad de Educación, Universidad Complutense de Madrid, c/ Rector Royo Villanova s/n, 28040 – Madrid, Spain. [email protected], [email protected] Received: 30 September 2018 Revised: 12 February 2019 DOI: 10.1564/tme_v27.3.03 Many mathematics educators are not aware of a strong 2. KAREL THE ROBOT connection that exists between the education of computer programming and mathematics. The reason may be that they Karel the Robot is a widely used educational have not been exposed to computer programming. This programming language which was introduced by Richard E. connection is worth exploring, given the current trends of Pattis in his 1981 textbook Karel the Robot: A Gentle automation and Industry 4.0. Therefore, in this paper we Introduction to the Art of Computer Programming (Pattis, take a closer look at the Common Core's eight Mathematical 1995). Let us note that Karel the Robot constitutes an Practice Standards. We show how each one of them can be environment related to Turtle Geometry (Abbelson and reinforced through computer programming. The following diSessa, 1981), but is not yet another implementation, as will discussion is virtually independent of the choice of a be detailed below.
    [Show full text]
  • Towards a Fully Automated Extraction and Interpretation of Tabular Data Using Machine Learning
    UPTEC F 19050 Examensarbete 30 hp August 2019 Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Per Hedbrant Master Thesis in Engineering Physics Department of Engineering Sciences Uppsala University Sweden Abstract Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Teknisk- naturvetenskaplig fakultet UTH-enheten Motivation A challenge for researchers at CBCS is the ability to efficiently manage the Besöksadress: different data formats that frequently are changed. Significant amount of time is Ångströmlaboratoriet Lägerhyddsvägen 1 spent on manual pre-processing, converting from one format to another. There are Hus 4, Plan 0 currently no solutions that uses pattern recognition to locate and automatically recognise data structures in a spreadsheet. Postadress: Box 536 751 21 Uppsala Problem Definition The desired solution is to build a self-learning Software as-a-Service (SaaS) for Telefon: automated recognition and loading of data stored in arbitrary formats. The aim of 018 – 471 30 03 this study is three-folded: A) Investigate if unsupervised machine learning Telefax: methods can be used to label different types of cells in spreadsheets. B) 018 – 471 30 00 Investigate if a hypothesis-generating algorithm can be used to label different types of cells in spreadsheets. C) Advise on choices of architecture and Hemsida: technologies for the SaaS solution. http://www.teknat.uu.se/student Method A pre-processing framework is built that can read and pre-process any type of spreadsheet into a feature matrix. Different datasets are read and clustered. An investigation on the usefulness of reducing the dimensionality is also done.
    [Show full text]