Sampling Techniques for Computational Statistical Physics

Total Page:16

File Type:pdf, Size:1020Kb

Sampling Techniques for Computational Statistical Physics S and/or limiting cases of the Hamiltonian dynamics; Sampling Techniques for Computational and (3) deterministic dynamics on an extended phase Statistical Physics space. Benedict Leimkuhler1 and Gabriel Stoltz2 1Edinburgh University School of Mathematics, Edinburgh, Scotland, UK Description 2Universite´ Paris Est, CERMICS, Projet MICMAC Ecole des Ponts, ParisTech – INRIA, Marne-la-Vallee,´ Applications of sampling methods arise most com- France monly in molecular dynamics and polymer modeling, but they are increasingly encountered in fluid dynamics and other areas. In this article, we focus on the treat- ment of systems of particles described by position and Mathematics Subject Classification momentum vectors q and p, respectively, and modeled by a Hamiltonian energy H D H.q;p/. 82B05; 82-08; 65C05; 37M05 Macroscopic properties of materials are obtained, according to the laws of statistical physics, as the average of some function with respect to a proba- Short Definition bility measure describing the state of the system ( Calculation of Ensemble Averages): The computation of macroscopic properties, as pre- Z dicted by the laws of statistical physics, requires sam- E.A/ D A.q; p/ .dq dp/: (1) pling phase-space configurations distributed according E to the probability measure at hand. Typically, approx- imations are obtained as time averages over trajecto- In practice, averages such as (1) are obtained by gener- ries of discrete dynamics, which can be shown to be ating, by an appropriate numerical method, a sequence i i ergodic in some cases. Arguably, the greatest interest of microscopic configurations .q ;p /i0 such that is in sampling the canonical (constant temperature) ensemble, although other distributions (isobaric, mi- n1 Z 1 X crocanonical, etc.) are also of interest. Focusing on lim A.qi ;pi / D A.q; p/ .dq dp/: (2) n!C1 n E the case of the canonical measure, three important iD0 types of methods can be distinguished: (1) Markov chain methods based on the Metropolis–Hastings algo- The Canonical Case rithm; (2) discretizations of continuous stochastic dif- For simplicity, we consider the case of the canonical ferential equations which are appropriate modifications measure: © Springer-Verlag Berlin Heidelberg 2015 B. Engquist (ed.), Encyclopedia of Applied and Computational Mathematics, DOI 10.1007/978-3-540-70529-1 1288 Sampling Techniques for Computational Statistical Physics 1 ˇH.q;p/ or degenerate diffusive processes being added to deter- .dq dp/ D Z e dqdp; Z ministic models to improve sampling efficiencies. ˇH.q;p/ Z D e dqdp; (3) Direct probabilistic methods are typically based on E a prior probability measure used to sample configura- tions, which are then accepted or rejected according 1 where ˇ D kBT . Many sampling methods designed to some criterion (as for the rejection method, for for the canonical ensemble can be extended or adapted instance). Usually, a prior probability measure which to sample other ensembles. is easy to sample should be used. However, due to If the Hamiltonian is separable (i.e., it is the sum the high dimensionality of the problem, it is extremely of a quadratic kinetic energy and a potential energy), difficult to design a prior sufficiently close to the as is usually the case when Cartesian coordinates are canonical distribution to achieve a reasonable accep- used, the measure (3) has a tensorized form, and the tance rate. Direct probabilistic methods are therefore components of the momenta are distributed accord- rarely used in practice. ing to independent Gaussian distributions. It is there- fore straightforward to sample the kinetic part of the Markov Chain Methods canonical measure. The real difficulty consists in sam- Markov chain methods are mostly based on the pling positions distributed according to the canonical Metropolis–Hastings algorithm [5, 13], which is a measure widely used method in molecular simulation. The prior Z required in direct probabilistic methods is replaced by 1 ˇV.q/ ˇV.q/ a proposal move which generates a new configuration .dq/ D Z e dq; Z D e dq; D from a former one. This new configuration is then (4) accepted or rejected according to a criterion ensuring which is typically a high dimensional distribution, with that the correct measure is sampled. Here again, many local concentrated modes. For this reason, many designing a relevant proposal move is the cornerstone sampling methods focus on sampling the configura- of the method, and this proposal depends crucially on tional part of the canonical measure. the model at hand. Since most concepts needed for sampling purposes can be used either in the configuration space or in the The Metropolis–Hastings Algorithm phase space, the following notation will be used: The The Metropolis–Hastings algorithm generates a state of the system is denoted by x 2 S Rd ,which n Markov chain of the system configurations .x /n0 D can be the position space q 2 (and then d D 3N ), having the distribution of interest .dx/ as a stationary E or the full phase space .q; p/ 2 with d D 6N . distribution. The invariant distribution has to be The measure .dx/ is the canonical distribution to be known only up to a multiplicative constant to perform sampled ( in configuration space, in phase space). this algorithm (which is the case for the canonical measure and its marginal in position). It consists in General Classification a two-step procedure, starting from a given initial From a mathematical point of view, most sampling condition x0: methods may be classified as (see [2]): 1. Propose a new state xQnC1 from xn according to the 1. “Direct” probabilistic methods, such as the standard proposition kernel T.xn; / rejection method, which generate identically and 2. Accept the propositionà with probability min independently distributed (i.i.d) configurations .xQ nC1/T.xQ nC1;xn/ 1; , and set in this case 2. Markov chain techniques .xn/T.xn; xQ nC1/ 3. Markovian stochastic dynamics xnC1 DQxnC1; otherwise, set xnC1 D xn 4. Purely deterministic methods on an extended phase- It is important to count several times a configuration space when a proposal is rejected. Although the division described above is useful to bear The original Metropolis algorithm was proposed in mind, there is a blurring of the lines between the dif- in [13] and relied on symmetric proposals in the config- ferent types of methods used in practice, with Markov uration space. It was later extended in [5] to allow for chains being constructed from Hamiltonian dynamics nonsymmetric propositions which can bias proposals Sampling Techniques for Computational Statistical Physics 1289 toward higher probability regions with respect to the element in devising efficient algorithms. It is observed target distribution . The algorithm is simple to in- in practice that the optimal acceptance/rejection rate, terpret in the case of a symmetric proposition kernel in terms of the variance of the estimator (a mean of on the configuration space (.x/ / eˇV.q/ and some observable over a trajectory), for example, is T.q;q0/ D T.q0;q/). The Metropolis–Hastings ratio often around 0.5, ensuring some balance between: is simply • Large moves that decorrelate the iterates when they are accepted (hence reducing the correlations in the r.q;q0/ D exp ˇ.V.q0/ V.q// : chain, which is interesting for the convergence to happen faster) but lead to high rejection rates (and If the proposed move has a lower energy, it is always thus degenerate samples since the same position accepted, which allows to visit more frequently the may be counted several times) states of higher probability. On the other hand, tran- • And small moves that are less rejected but do not sitions to less likely states of higher energies are not decorrelate the iterates much forbidden (but accepted less often), which is important This trade-off between small and large proposal moves to observe transitions from one metastable region to has been investigated rigorously in some simple cases another when these regions are separated by some in [16,17], where optimal acceptance rates are obtained energy barrier. in a limiting regime. Properties of the Algorithm Some Examples of Proposition Kernels The probability transition kernel of the Metropolis– The most simple transition kernels are based on ran- Hastings chain reads dom walks. For instance, it is possible to modify the current configuration by a random perturbation applied to all particles. The problem with such symmetric P.x;dx0/ D min 1; r.x; x0/ T.x;dx0/ proposals is that they may not be well suited to the 0 C .1 ˛.x// ıx.dx /; (5) target probability measure (creating very correlated successive configurations for small , or very unlikely where ˛.x/ 2 Œ0; 1 is the probability to accept a move moves for large ). Efficient nonsymmetric proposal starting from x (considering all possible propositions): moves are often based on discretizations of continuous Z stochastic dynamics which use a biasing term such as rV to ensure that the dynamics remains sufficiently ˛.x/ D min .1; r.x; y// T .x; dy/: S close to the minima of the potential. An interesting proposal relies on the Hamiltonian The first part of the transition kernel corresponds to dynamics itself and consists in (1) sampling new mo- the accepted transitions from x to x0, which occur menta pn according to the kinetic part of the canon- with probability min .1; r.x; x0//, while the term .1 ical measure; (2) performing one or several steps of S 0 ˛.x//ıx .dx / encodes all the rejected steps. the Verlet scheme starting from the previous position A simple computation shows that the Metropolis– qn, obtaining a proposed configuration .eqnC1;epnC1/; Hastings transition kernel P is reversible with respect and (3) computing rn D expŒˇ.H.eqnC1;epnC1/ to , namely, P.x;dx0/.dx/ D P.x0;dx/.dx0/.
Recommended publications
  • Using Macaulay2 Effectively in Practice
    Using Macaulay2 effectively in practice Mike Stillman ([email protected]) Department of Mathematics Cornell 22 July 2019 / IMA Sage/M2 Macaulay2: at a glance Project started in 1993, Dan Grayson and Mike Stillman. Open source. Key computations: Gr¨obnerbases, free resolutions, Hilbert functions and applications of these. Rings, Modules and Chain Complexes are first class objects. Language which is comfortable for mathematicians, yet powerful, expressive, and fun to program in. Now a community project Journal of Software for Algebra and Geometry (started in 2009. Now we handle: Macaulay2, Singular, Gap, Cocoa) (original editors: Greg Smith, Amelia Taylor). Strong community: including about 2 workshops per year. User contributed packages (about 200 so far). Each has doc and tests, is tested every night, and is distributed with M2. Lots of activity Over 2000 math papers refer to Macaulay2. History: 1976-1978 (My undergrad years at Urbana) E. Graham Evans: asked me to write a program to compute syzygies, from Hilbert's algorithm from 1890. Really didn't work on computers of the day (probably might still be an issue!). Instead: Did computation degree by degree, no finishing condition. Used Buchsbaum-Eisenbud \What makes a complex exact" (by hand!) to see if the resulting complex was exact. Winfried Bruns was there too. Very exciting time. History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) I tried to do \real mathematics" but Dave Bayer (basically) rediscovered Groebner bases, and saw that they gave an algorithm for computing all syzygies. I got excited, dropped what I was doing, and we programmed (in Pascal), in less than one week, the first version of what would be Macaulay.
    [Show full text]
  • Introduction to Experimental Mathematics
    15-355: Modern Computer Algebra Introduction to Experimental Mathematics Introduction to Experimental Mathematics Victor Adamchik Carnegie Mellon University Integer Relation Algorithms "Computers are useless. They can only give you answers." Pablo Picasso "The purpose of computing is insight, not numbers." Richard Humming Given a vector of real number {x1, ...,x n}, find a vector of integers {p1, ...,p n} such that a linear combination of given numbers is zero, namely p1 x1 + ...+p n xn =0 The algorithm was discovered iun 1979 by Ferguson and Forcade [1]. In 1982 it was improved by Lenstra, Lenstra, Lovász [2]. 1992, more improvements by Ferguson and Bailey - PSLQ algorithm[3]. 2D case: Suppose there are two numbers x,y. Find integers n,m such that x n+ym= 0. If x and b are integers, we use the Euclidean algorithm x=y*q 1 +r 1, 0≤r 1 <y y=r 1 *q 2 +r 2, 0≤r 2 <r 1 r1 =r 2 *q 3 +r 3, 0≤r 3 <r 2 ... ... ... rk-2 =r k-1 *q k +r k, 0≤r k <r k-1 rk-1 =r k *q k+1 +0 What if we apply this idea to real numbers? GCD 2 , 1 1.414214 = 1 * 1 + 0.414214 1 = 2 * 0.414214 + 0.171573 2 Introduction to Experimental Mathematics 0.414214 = 2 * 0.171573 + 0.071068 0.171573 = 2 * 0.071068 + 0.029437 0.071068 = 2 * 0.029437 + 0.012193 and so on Since remainders rk → 0 on each iteration, we will get either an exact relation or an approximation.
    [Show full text]
  • Some Reflections About the Success and Impact of the Computer Algebra System DERIVE with a 10-Year Time Perspective
    Noname manuscript No. (will be inserted by the editor) Some reflections about the success and impact of the computer algebra system DERIVE with a 10-year time perspective Eugenio Roanes-Lozano · Jose Luis Gal´an-Garc´ıa · Carmen Solano-Mac´ıas Received: date / Accepted: date Abstract The computer algebra system DERIVE had a very important im- pact in teaching mathematics with technology, mainly in the 1990's. The au- thors analyze the possible reasons for its success and impact and give personal conclusions based on the facts collected. More than 10 years after it was discon- tinued it is still used for teaching and several scientific papers (most devoted to educational issues) still refer to it. A summary of the history, journals and conferences together with a brief bibliographic analysis are included. Keywords Computer algebra systems · DERIVE · educational software · symbolic computation · technology in mathematics education Eugenio Roanes-Lozano Instituto de Matem´aticaInterdisciplinar & Departamento de Did´actica de las Ciencias Experimentales, Sociales y Matem´aticas, Facultad de Educaci´on,Universidad Complutense de Madrid, c/ Rector Royo Villanova s/n, 28040-Madrid, Spain Tel.: +34-91-3946248 Fax: +34-91-3946133 E-mail: [email protected] Jose Luis Gal´an-Garc´ıa Departamento de Matem´atica Aplicada, Universidad de M´alaga, M´alaga, c/ Dr. Ortiz Ramos s/n. Campus de Teatinos, E{29071 M´alaga,Spain Tel.: +34-952-132873 Fax: +34-952-132766 E-mail: [email protected] Carmen Solano-Mac´ıas Departamento de Informaci´ony Comunicaci´on,Universidad de Extremadura, Plaza de Ibn Marwan s/n, 06001-Badajoz, Spain Tel.: +34-924-286400 Fax: +34-924-286401 E-mail: [email protected] 2 Eugenio Roanes-Lozano et al.
    [Show full text]
  • Arxiv:2107.06030V2 [Math.HO] 18 Jul 2021 Jonathan Michael Borwein
    Jonathan Michael Borwein 1951 { 2016: Life and Legacy Richard P. Brent∗ Abstract Jonathan M. Borwein (1951{2016) was a prolific mathematician whose career spanned several countries (UK, Canada, USA, Australia) and whose many interests included analysis, optimisation, number theory, special functions, experimental mathematics, mathematical finance, mathematical education, and visualisation. We describe his life and legacy, and give an annotated bibliography of some of his most significant books and papers. 1 Life and Family Jonathan (Jon) Michael Borwein was born in St Andrews, Scotland, on 20 May 1951. He was the first of three children of David Borwein (1924{2021) and Bessie Borwein (n´eeFlax). It was an itinerant academic family. Both Jon's father David and his younger brother Peter Borwein (1953{2020) are well-known mathematicians and occasional co-authors of Jon. His mother Bessie is a former professor of anatomy. The Borweins have an Ashkenazy Jewish background. Jon's father was born in Lithuania, moved in 1930 with arXiv:2107.06030v4 [math.HO] 15 Sep 2021 his family to South Africa (where he met his future wife Bessie), and moved with Bessie to the UK in 1948. There he obtained a PhD (London) and then a Lectureship in St Andrews, Scotland, where Jon was born and went to school at Madras College. The family, including Jon and his two siblings, moved to Ontario, Canada, in 1963. In 1971 Jon graduated with a BA (Hons ∗Mathematical Sciences Institute, Australian National University, Canberra, ACT. Email: <[email protected]>. 1 Math) from the University of Western Ontario. It was in Ontario that Jon met his future wife and lifelong partner Judith (n´eeRoots).
    [Show full text]
  • Performance Analysis of Effective Symbolic Methods for Solving Band Matrix Slaes
    Performance Analysis of Effective Symbolic Methods for Solving Band Matrix SLAEs Milena Veneva ∗1 and Alexander Ayriyan y1 1Joint Institute for Nuclear Research, Laboratory of Information Technologies, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia Abstract This paper presents an experimental performance study of implementations of three symbolic algorithms for solving band matrix systems of linear algebraic equations with heptadiagonal, pen- tadiagonal, and tridiagonal coefficient matrices. The only assumption on the coefficient matrix in order for the algorithms to be stable is nonsingularity. These algorithms are implemented using the GiNaC library of C++ and the SymPy library of Python, considering five different data storing classes. Performance analysis of the implementations is done using the high-performance computing (HPC) platforms “HybriLIT” and “Avitohol”. The experimental setup and the results from the conducted computations on the individual computer systems are presented and discussed. An analysis of the three algorithms is performed. 1 Introduction Systems of linear algebraic equations (SLAEs) with heptadiagonal (HD), pentadiagonal (PD) and tridiagonal (TD) coefficient matrices may arise after many different scientific and engineering prob- lems, as well as problems of the computational linear algebra where finding the solution of a SLAE is considered to be one of the most important problems. On the other hand, special matrix’s char- acteristics like diagonal dominance, positive definiteness, etc. are not always feasible. The latter two points explain why there is a need of methods for solving of SLAEs which take into account the band structure of the matrices and do not have any other special requirements to them. One possible approach to this problem is the symbolic algorithms.
    [Show full text]
  • CAS (Computer Algebra System) Mathematica
    CAS (Computer Algebra System) Mathematica- UML students can download a copy for free as part of the UML site license; see the course website for details From: Wikipedia 2/9/2014 A computer algebra system (CAS) is a software program that allows [one] to compute with mathematical expressions in a way which is similar to the traditional handwritten computations of the mathematicians and other scientists. The main ones are Axiom, Magma, Maple, Mathematica and Sage (the latter includes several computer algebras systems, such as Macsyma and SymPy). Computer algebra systems began to appear in the 1960s, and evolved out of two quite different sources—the requirements of theoretical physicists and research into artificial intelligence. A prime example for the first development was the pioneering work conducted by the later Nobel Prize laureate in physics Martin Veltman, who designed a program for symbolic mathematics, especially High Energy Physics, called Schoonschip (Dutch for "clean ship") in 1963. Using LISP as the programming basis, Carl Engelman created MATHLAB in 1964 at MITRE within an artificial intelligence research environment. Later MATHLAB was made available to users on PDP-6 and PDP-10 Systems running TOPS-10 or TENEX in universities. Today it can still be used on SIMH-Emulations of the PDP-10. MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory") which is a system for numerical computation built 15 years later at the University of New Mexico, accidentally named rather similarly. The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a popular copyleft version of Macsyma called Maxima is actively being maintained.
    [Show full text]
  • SNC: a Cloud Service Platform for Symbolic-Numeric Computation Using Just-In-Time Compilation
    This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE Transactions on Cloud Computing IEEE TRANSACTIONS ON CLOUD COMPUTING 1 SNC: A Cloud Service Platform for Symbolic-Numeric Computation using Just-In-Time Compilation Peng Zhang1, Member, IEEE, Yueming Liu1, and Meikang Qiu, Senior Member, IEEE and SQL. Other types of Cloud services include: Software as a Abstract— Cloud services have been widely employed in IT Service (SaaS) in which the software is licensed and hosted in industry and scientific research. By using Cloud services users can Clouds; and Database as a Service (DBaaS) in which managed move computing tasks and data away from local computers to database services are hosted in Clouds. While enjoying these remote datacenters. By accessing Internet-based services over lightweight and mobile devices, users deploy diversified Cloud great services, we must face the challenges raised up by these applications on powerful machines. The key drivers towards this unexploited opportunities within a Cloud environment. paradigm for the scientific computing field include the substantial Complex scientific computing applications are being widely computing capacity, on-demand provisioning and cross-platform interoperability. To fully harness the Cloud services for scientific studied within the emerging Cloud-based services environment computing, however, we need to design an application-specific [4-12]. Traditionally, the focus is given to the parallel scientific platform to help the users efficiently migrate their applications. In HPC (high performance computing) applications [6, 12, 13], this, we propose a Cloud service platform for symbolic-numeric where substantial effort has been given to the integration of computation– SNC.
    [Show full text]
  • Axiom / Fricas
    Axiom / FriCAS Christoph Koutschan Research Institute for Symbolic Computation Johannes Kepler Universit¨atLinz, Austria Computer Algebra Systems 15.11.2010 Master's Thesis: The ISAC project • initiative at Graz University of Technology • Institute for Software Technology • Institute for Information Systems and Computer Media • experimental software assembling open source components with as little glue code as possible • feasibility study for a novel kind of transparent single-stepping software for applied mathematics • experimenting with concepts and technologies from • computer mathematics (theorem proving, symbolic computation, model based reasoning, etc.) • e-learning (knowledge space theory, usability engineering, computer-supported collaboration, etc.) • The development employs academic expertise from several disciplines. The challenge for research is interdisciplinary cooperation. Rewriting, a basic CAS technique This technique is used in simplification, equation solving, and many other CAS functions, and it is intuitively comprehensible. This would make rewriting useful for educational systems|if one copes with the problem, that even elementary simplifications involve hundreds of rewrites. As an example see: http://www.ist.tugraz.at/projects/isac/www/content/ publications.html#DA-M02-main \Reverse rewriting" for comprehensible justification Many CAS functions can not be done by rewriting, for instance cancelling multivariate polynomials, factoring or integration. However, respective inverse problems can be done by rewriting and produce human readable derivations. As an example see: http://www.ist.tugraz.at/projects/isac/www/content/ publications.html#GGTs-von-Polynomen Equation solving made transparent Re-engineering equation solvers in \transparent single-stepping systems" leads to types of equations, arranged in a tree. ISAC's tree of equations are to be compared with what is produced by tracing facilities of Mathematica and/or Maple.
    [Show full text]
  • EXPERIMENTAL MATHEMATICS: the ROLE of COMPUTATION in NONLINEAR SCIENCE Dedicated to the Memory of Our Friend and Colleague, Stanislaw M
    SPECIAL SECTION EXPERIMENTAL MATHEMATICS: THE ROLE OF COMPUTATION IN NONLINEAR SCIENCE Dedicated to the memory of our friend and colleague, Stanislaw M. Ulam. Computers have expanded the range of nonlinear phenomena that can be explored mathematically. An “experimental mathematics facility,” containing both special-purpose dedicated machines and general-purpose mainframes, may someday provide the ideal context for complex nonlinear problems. DAVID CAMPBELL, JIM CRUTCHFIELD, DOYNE FARMER, and ERICA JEN It would be hard to exaggerate the role that computers properties, and how can it be solved? The second prob- and numerical simulations have played in the recent lem involves what we call modeling: Given a process in progress of nonlinear science. Indeed, the term experi- the “real” world, how can we write down the best mental mathematics has been coined to describe mathematical description or model? As scientists we computer-based investigations into nonlinear problems want both to model the real world and to be able to that are inaccessible to analytic methods. The experi- solve the resulting models, and so we must address mental mathematician uses the computer to simulate both problems, for the interplay between them is cru- the solutions of nonlinear equations and thereby to gain cial. It is easy, for example, to write down the Navier- insights into their behavior and to suggest directions for Stokes equations describing fluid motion; this does very future analytic research. In the last 20 years, the sym- little to reveal the nature of turbulent fluid flow, how- biotic interplay between experimental and theoretical ever. Similarly, intuition about the qualitative aspects mathematics has caused a revolution in our under- of nonlinear behavior can be very valuable as a guide standing of nonlinear problems [17, 25, 301.
    [Show full text]
  • Applications of Computational Statistics with Multiple Regressions
    International Journal of Computational and Applied Mathematics. ISSN 1819-4966 Volume 12, Number 3 (2017), pp. 923-934 © Research India Publications http://www.ripublication.com Applications of Computational Statistics with Multiple Regressions S MD Riyaz Ahmed Research Scholar, Department of Mathematics, Rayalaseema University, A.P, India Abstract Applications of Computational Statistics with Multiple Regression through the use of Excel, MATLAB and SPSS. It has been widely used for a long time in various fields, such as operations research and analysis, automatic control, probability statistics, statistics, digital signal processing, dynamic system mutilation, etc. The regress function command in MATLAB toolbox provides a helpful tool for multiple linear regression analysis and model checking. Multiple regression analysis is additionally extremely helpful in experimental scenario wherever the experimenter will management the predictor variables. Keywords - Multiple Linear Regression, Excel, MATLAB, SPSS, least square, Matrix notations 1. INTRODUCTION Multiple linear regressions are one of the foremost wide used of all applied mathematics strategies. Multiple regression analysis is additionally extremely helpful in experimental scenario wherever the experimenter will management the predictor variables [1]. A single variable quantity within the model would have provided an inadequate description since a number of key variables have an effect on the response variable in necessary and distinctive ways that [2]. It makes an attempt to model the link between two or more variables and a response variable by fitting a equation to determined information. Each value of the independent variable x is related to a value of the dependent variable y. The population regression line for p informative variables 924 S MD Riyaz Ahmed x1, x 2 , x 3 ......
    [Show full text]
  • Arxiv:2102.02679V1 [Cs.LO] 4 Feb 2021 HOL-ODE [10], Which Supports Reasoning for Systems of Ordinary Differential Equations (Sodes)
    Certifying Differential Equation Solutions from Computer Algebra Systems in Isabelle/HOL Thomas Hickman, Christian Pardillo Laursen, and Simon Foster University of York Abstract. The Isabelle/HOL proof assistant has a powerful library for continuous analysis, which provides the foundation for verification of hybrid systems. However, Isabelle lacks automated proof support for continuous artifacts, which means that verification is often manual. In contrast, Computer Algebra Systems (CAS), such as Mathematica and SageMath, contain a wealth of efficient algorithms for matrices, differen- tial equations, and other related artifacts. Nevertheless, these algorithms are not verified, and thus their outputs cannot, of themselves, be trusted for use in a safety critical system. In this paper we integrate two CAS systems into Isabelle, with the aim of certifying symbolic solutions to or- dinary differential equations. This supports a verification technique that is both automated and trustworthy. 1 Introduction Verification of Cyber-Physical and Autonomous Systems requires that we can verify both discrete control, and continuous evolution, as envisaged by the hy- brid systems domain [1]. Whilst powerful bespoke verification tools exist, such as the KeYmaera X [2] proof assistant, software engineering requires a gen- eral framework, which can support a variety of notations and paradigms [3]. Isabelle/HOL [4] is a such a framework. Its combination of an extensible fron- tend for syntax processing, and a plug-in oriented backend, based in ML, which supports a wealth of heterogeneous semantic models and proof tools, supports a flexible platform for software development, verification, and assurance [5,6,7]. Verification of hybrid systems in Isabelle is supported by several detailed li- braries of Analysis, including Multivariate Analysis [8], Affine Arithmetic [9], and arXiv:2102.02679v1 [cs.LO] 4 Feb 2021 HOL-ODE [10], which supports reasoning for Systems of Ordinary Differential Equations (SODEs).
    [Show full text]
  • Using Computer Programming As an Effective Complement To
    Using Computer Programming as an Effective Complement to Mathematics Education: Experimenting with the Standards for Mathematics Practice in a Multidisciplinary Environment for Teaching and Learning with Technology in the 21st Century By Pavel Solin1 and Eugenio Roanes-Lozano2 1University of Nevada, Reno, 1664 N Virginia St, Reno, NV 89557, USA. Founder and Director of NCLab (http://nclab.com). 2Instituto de Matemática Interdisciplinar & Departamento de Didáctica de las Ciencias Experimentales, Sociales y Matemáticas, Facultad de Educación, Universidad Complutense de Madrid, c/ Rector Royo Villanova s/n, 28040 – Madrid, Spain. [email protected], [email protected] Received: 30 September 2018 Revised: 12 February 2019 DOI: 10.1564/tme_v27.3.03 Many mathematics educators are not aware of a strong 2. KAREL THE ROBOT connection that exists between the education of computer programming and mathematics. The reason may be that they Karel the Robot is a widely used educational have not been exposed to computer programming. This programming language which was introduced by Richard E. connection is worth exploring, given the current trends of Pattis in his 1981 textbook Karel the Robot: A Gentle automation and Industry 4.0. Therefore, in this paper we Introduction to the Art of Computer Programming (Pattis, take a closer look at the Common Core's eight Mathematical 1995). Let us note that Karel the Robot constitutes an Practice Standards. We show how each one of them can be environment related to Turtle Geometry (Abbelson and reinforced through computer programming. The following diSessa, 1981), but is not yet another implementation, as will discussion is virtually independent of the choice of a be detailed below.
    [Show full text]