The Maxima Book

Total Page:16

File Type:pdf, Size:1020Kb

The Maxima Book The Maxima Book Paulo Ney de Souza Richard J. Fateman Joel Moses Cliff Yapp 19th September 2004 1 Credits Paulo Ney de Souza Jay Belanger Richard Fateman Joel Moses Cliff Yapp Contents Preface 5 I The Maxima Program and Standard Packages 6 1 Introduction 7 1.1 What is Maxima? ............................................. 7 1.2 A Brief History of Macsyma ....................................... 8 2 Available Interfaces to Maxima 10 2.1 The Terminal Interface .......................................... 10 2.2 The Emacs Interface ........................................... 11 2.2.1 Installing the Maxima Emacs Mode ............................... 11 2.2.2 Maxima-mode .......................................... 12 2.2.3 Enhanced Terminal Mode .................................... 14 2.2.4 Emaxima Mode .......................................... 14 2.3 Xmaxima ................................................. 26 2.4 TEXmacs ................................................. 27 2.5 Other Interfaces .............................................. 27 3 The Basics - What you need to know to operate in Maxima 29 3.1 The Very Beginning ............................................ 29 3.1.1 Our first Maxima Session .................................... 29 3.1.2 To Evaluate or Not to Evaluate .................................. 33 3.1.3 The Concept of Environment - The ev Command ........................ 33 3.1.4 Clearing values from the system - the kill command ...................... 38 3.2 Common Operators in Maxima ...................................... 38 3.2.1 Assignment Operators ...................................... 38 4 Trig through Calculus 42 4.1 Trigonometric Functions ......................................... 42 4.2 Differentiation ............................................... 43 4.3 Integration ................................................. 45 4.3.1 The assume Command ...................................... 46 4.3.2 Definite Integrals ......................................... 47 4.3.3 changevar ............................................ 48 4.3.4 Behind the Black Box - Using Specific Approaches ....................... 48 4.3.5 Other Examples .......................................... 48 2 CONTENTS 3 5 Advanced Mathematics - ODEs and Beyond 50 5.1 Ordinary Differential Equations ..................................... 50 5.1.1 Defining Ordinary Differential Equations ............................ 50 5.1.2 Solving Ordinary Differential Equations: ode2 ......................... 51 5.1.3 Solving Ordinary Differential Equations: desolve ....................... 57 6 Matrix Operations and Vectors 60 7 Introduction to Maxima’s Programming Language 61 7.1 Some Examples .............................................. 61 7.2 Unconventional Conditionals ....................................... 62 7.3 Assumptions ............................................... 62 7.4 Arbitrary Numbers of Parameters ..................................... 63 7.5 Arrays ................................................... 63 7.6 Iteration .................................................. 64 7.7 Serious Business ............................................. 64 7.8 Hardcopy ................................................. 65 7.9 Return to Arrays and Functions ...................................... 65 7.10 More Useful Examples .......................................... 65 7.11 Part Hacking ............................................... 67 7.12 User Representation of Data ....................................... 68 8 Graphics and Forms of Output 70 8.1 Options on the Command Line ...................................... 70 8.1.1 1D vs. 2D ............................................. 70 8.1.2 TeX Strings as Output ...................................... 70 8.1.3 Writing a Session to a File .................................... 71 8.2 Graphics .................................................. 73 8.2.1 2D function plotting ....................................... 73 8.2.2 3D Function Plotting ....................................... 73 8.3 Plot Options ................................................ 74 9 Maxims for the Maxima User 80 10 Help Systems and Debugging 82 11 Troubleshooting 83 12 Advanced Examples 84 II External, Additional, and Contributed Packages 87 13 The Concept of Packages - Expanding Maxima’s Abilities 88 14 Algebra 89 15 Calculus 90 15.1 asympa .................................................. 90 15.2 pdiff - Positional Derivatives ....................................... 91 15.3 qual .................................................... 100 16 Combinatorics 101 17 Differential Equations 102 CONTENTS 4 18 Graphics 103 19 Integequations 104 20 Integration 105 21 Macro 106 22 Matrix 107 23 Numeric 108 24 Physics 109 24.1 dimen ................................................... 109 24.2 dimension - Advanced Dimensional Analysis .............................. 110 24.3 physconst - Definitions for Physical Constants .............................. 118 25 Simplification 119 26 Special Functions 120 27 Sym 121 28 Tensor 122 29 Trigonometry 123 30 Utils 124 31 Vector 125 III Installing, Resources, Misc. 126 32 Installing Maxima 127 32.1 Requirements ............................................... 127 32.2 Source Based Installation on Linux .................................... 127 32.2.1 Configure ............................................. 127 32.2.2 Make ............................................... 128 32.3 Source Based Installation on Windows .................................. 129 32.4 Source Based Installation on MacOSX .................................. 129 List of Figures 129 Index 130 Bibliography 132 CONTENTS 5 Many hands and minds have contributed to Macsyma, in developing it as a research program, and tuning it for use by others. We have enjoyed constructing Macsyma and we hope that you will enjoy using it. We hope you will consider contributing your carefully polished and documented application programs to libraries at your local installation and other sites. Examples 1. First Example 29 6. Evaluation Toggle 33 2. Quitting Maxima 30 7. Basic Use of ev Command 33 3. End of Entry Characters 31 8. ev’s Expand Option 34 4. Line Labels 31 9. Float Example ?? 5. Labeling an Example Equation 32 Part I The Maxima Program and Standard Packages 6 CHAPTER 1 Introduction 1.1 What is Maxima? Maxima (pronounced mæxim 1e ) is a large computer program designed for the manipulation of algebraic expressions. You can use Maxima for manipulation of algebraic expressions involving constants, variables, and functions. It can differentiate, integrate, take limits, solve equations, factor polynomials, expand functions in power series, solve differ- ential equations in closed form, and perform many other operations. It also has a programming language that you can use to extend Maxima’s capabilities. The Dangers of Computer Algebra With all this marvelous capability, however, you must bear in mind the limitations inherent in any such tool. Those considering the use of computers to do mathematics, particularly students, must be warned that these systems are no substitute for hands on work with equations and struggling with concepts. These systems do not build your mathematical intuition, nor will they strengthen your core skills. This will matter a great deal down the road, especially to those of you who wish to break new ground in theoretical mathematics and science. Do not use a computer as a substitute for your basic education. By the same token, however, proficiency with computers and computer based mathematics is crucial for attacking the many problems which literally cannot be solved by pencil and paper methods. In many cases problems which would take years by hand can be reduced to seconds by powerful computers. Also, in the course of a long derivation, it is sometimes useful for those who have already mastered the fundamentals to do work in these systems as a guard against careless errors, or a faster means than a table of deriving some particular result. Also, in case of an error, fixing the resulting error can often be much quicker and simpler courtesy of a mathematical notebook, which can be reevaluated with the correct parameters in place. But just as a computer can guard against human error, the human must not trust the computer unquestioningly. All of these systems have limits, and when those limits are reached it is quite possible for bizarre errors to result, or in some cases answers which are actually wrong, to say nothing of the fact that the people who programmed these systems were human, and make mistakes. To illustrate the limits of computer algebra systems, we take the following example: when given the integral Integrate 1/sqrt(2-2*cos(x)) from x=-pi/2 to pi/2, Mathematica 4.1 gives, with no warnings, \!\(2\ Log[4] - 2\ Log[Cos[\[Pi]\/8]] + 2\ Log[Sin[\[Pi]\/8]]\) which N[%] evalutates numerically to give 1.00984. Maxima 5.6 returns the integral unevaluated, the commercial Macsyma says the integral is divergent, and Maple 7 says infinity. (Cite Maxima Email list here.) Had the person who wished to learn the result 1The acronym Maxima is the corruption of the main project name MACSYMA, which stands for Project MAC’s SYmbolic MAnipulation System. MAC itself is an acronym, usually cited as meaning Man and Computer or Machine Aided Cognition. The Laboratory for Computer Science at the Massachusetts Institute of Technology was known as Project MAC during the initial development of MACSYMA. The name MACSYMA is now trademarked by Macsyma Inc. 7 CHAPTER 1. INTRODUCTION
Recommended publications
  • The Sagemanifolds Project
    Tensor calculus with free softwares: the SageManifolds project Eric´ Gourgoulhon1, Micha l Bejger2 1Laboratoire Univers et Th´eories (LUTH) CNRS / Observatoire de Paris / Universit´eParis Diderot 92190 Meudon, France http://luth.obspm.fr/~luthier/gourgoulhon/ 2Centrum Astronomiczne im. M. Kopernika (CAMK) Warsaw, Poland http://users.camk.edu.pl/bejger/ Encuentros Relativistas Espa~noles2014 Valencia 1-5 September 2014 Eric´ Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 1 / 44 Outline 1 Differential geometry and tensor calculus on a computer 2 Sage: a free mathematics software 3 The SageManifolds project 4 SageManifolds at work: the Mars-Simon tensor example 5 Conclusion and perspectives Eric´ Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 2 / 44 Differential geometry and tensor calculus on a computer Outline 1 Differential geometry and tensor calculus on a computer 2 Sage: a free mathematics software 3 The SageManifolds project 4 SageManifolds at work: the Mars-Simon tensor example 5 Conclusion and perspectives Eric´ Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 3 / 44 In 1969, during his PhD under Pirani supervision at King's College, Ray d'Inverno wrote ALAM (Atlas Lisp Algebraic Manipulator) and used it to compute the Riemann tensor of Bondi metric. The original calculations took Bondi and his collaborators 6 months to go. The computation with ALAM took 4 minutes and yield to the discovery of 6 errors in the original paper [J.E.F. Skea, Applications of SHEEP (1994)] In the early 1970's, ALAM was rewritten in the LISP programming language, thereby becoming machine independent and renamed LAM The descendant of LAM, called SHEEP (!), was initiated in 1977 by Inge Frick Since then, many softwares for tensor calculus have been developed..
    [Show full text]
  • Using Macaulay2 Effectively in Practice
    Using Macaulay2 effectively in practice Mike Stillman ([email protected]) Department of Mathematics Cornell 22 July 2019 / IMA Sage/M2 Macaulay2: at a glance Project started in 1993, Dan Grayson and Mike Stillman. Open source. Key computations: Gr¨obnerbases, free resolutions, Hilbert functions and applications of these. Rings, Modules and Chain Complexes are first class objects. Language which is comfortable for mathematicians, yet powerful, expressive, and fun to program in. Now a community project Journal of Software for Algebra and Geometry (started in 2009. Now we handle: Macaulay2, Singular, Gap, Cocoa) (original editors: Greg Smith, Amelia Taylor). Strong community: including about 2 workshops per year. User contributed packages (about 200 so far). Each has doc and tests, is tested every night, and is distributed with M2. Lots of activity Over 2000 math papers refer to Macaulay2. History: 1976-1978 (My undergrad years at Urbana) E. Graham Evans: asked me to write a program to compute syzygies, from Hilbert's algorithm from 1890. Really didn't work on computers of the day (probably might still be an issue!). Instead: Did computation degree by degree, no finishing condition. Used Buchsbaum-Eisenbud \What makes a complex exact" (by hand!) to see if the resulting complex was exact. Winfried Bruns was there too. Very exciting time. History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) I tried to do \real mathematics" but Dave Bayer (basically) rediscovered Groebner bases, and saw that they gave an algorithm for computing all syzygies. I got excited, dropped what I was doing, and we programmed (in Pascal), in less than one week, the first version of what would be Macaulay.
    [Show full text]
  • Plotting Direction Fields in Matlab and Maxima – a Short Tutorial
    Plotting direction fields in Matlab and Maxima – a short tutorial Luis Carvalho Introduction A first order differential equation can be expressed as dx x0(t) = = f(t; x) (1) dt where t is the independent variable and x is the dependent variable (on t). Note that the equation above is in normal form. The difficulty in solving equation (1) depends clearly on f(t; x). One way to gain geometric insight on how the solution might look like is to observe that any solution to (1) should be such that the slope at any point P (t0; x0) is f(t0; x0), since this is the value of the derivative at P . With this motivation in mind, if you select enough points and plot the slopes in each of these points, you will obtain a direction field for ODE (1). However, it is not easy to plot such a direction field for any function f(t; x), and so we must resort to some computational help. There are many computational packages to help us in this task. This is a short tutorial on how to plot direction fields for first order ODE’s in Matlab and Maxima. Matlab Matlab is a powerful “computing environment that combines numeric computation, advanced graphics and visualization” 1. A nice package for plotting direction field in Matlab (although resourceful, Matlab does not provide such facility natively) can be found at http://math.rice.edu/»dfield, contributed by John C. Polking from the Dept. of Mathematics at Rice University. To install this add-on, simply browse to the files for your version of Matlab and download them.
    [Show full text]
  • A Note on Integral Points on Elliptic Curves 3
    Journal de Th´eorie des Nombres de Bordeaux 00 (XXXX), 000–000 A note on integral points on elliptic curves par Mark WATKINS Abstract. We investigate a problem considered by Zagier and Elkies, of finding large integral points on elliptic curves. By writ- ing down a generic polynomial solution and equating coefficients, we are led to suspect four extremal cases that still might have non- degenerate solutions. Each of these cases gives rise to a polynomial system of equations, the first being solved by Elkies in 1988 using the resultant methods of Macsyma, with there being a unique rational nondegenerate solution. For the second case we found that resultants and/or Gr¨obner bases were not very efficacious. Instead, at the suggestion of Elkies, we used multidimensional p-adic Newton iteration, and were able to find a nondegenerate solution, albeit over a quartic number field. Due to our methodol- ogy, we do not have much hope of proving that there are no other solutions. For the third case we found a solution in a nonic number field, but we were unable to make much progress with the fourth case. We make a few concluding comments and include an ap- pendix from Elkies regarding his calculations and correspondence with Zagier. Resum´ e.´ A` la suite de Zagier et Elkies, nous recherchons de grands points entiers sur des courbes elliptiques. En ´ecrivant une solution polynomiale g´en´erique et en ´egalisant des coefficients, nous obtenons quatre cas extr´emaux susceptibles d’avoir des so- lutions non d´eg´en´er´ees. Chacun de ces cas conduit `aun syst`eme d’´equations polynomiales, le premier ´etant r´esolu par Elkies en 1988 en utilisant les r´esultants de Macsyma; il admet une unique solution rationnelle non d´eg´en´er´ee.
    [Show full text]
  • Some Reflections About the Success and Impact of the Computer Algebra System DERIVE with a 10-Year Time Perspective
    Noname manuscript No. (will be inserted by the editor) Some reflections about the success and impact of the computer algebra system DERIVE with a 10-year time perspective Eugenio Roanes-Lozano · Jose Luis Gal´an-Garc´ıa · Carmen Solano-Mac´ıas Received: date / Accepted: date Abstract The computer algebra system DERIVE had a very important im- pact in teaching mathematics with technology, mainly in the 1990's. The au- thors analyze the possible reasons for its success and impact and give personal conclusions based on the facts collected. More than 10 years after it was discon- tinued it is still used for teaching and several scientific papers (most devoted to educational issues) still refer to it. A summary of the history, journals and conferences together with a brief bibliographic analysis are included. Keywords Computer algebra systems · DERIVE · educational software · symbolic computation · technology in mathematics education Eugenio Roanes-Lozano Instituto de Matem´aticaInterdisciplinar & Departamento de Did´actica de las Ciencias Experimentales, Sociales y Matem´aticas, Facultad de Educaci´on,Universidad Complutense de Madrid, c/ Rector Royo Villanova s/n, 28040-Madrid, Spain Tel.: +34-91-3946248 Fax: +34-91-3946133 E-mail: [email protected] Jose Luis Gal´an-Garc´ıa Departamento de Matem´atica Aplicada, Universidad de M´alaga, M´alaga, c/ Dr. Ortiz Ramos s/n. Campus de Teatinos, E{29071 M´alaga,Spain Tel.: +34-952-132873 Fax: +34-952-132766 E-mail: [email protected] Carmen Solano-Mac´ıas Departamento de Informaci´ony Comunicaci´on,Universidad de Extremadura, Plaza de Ibn Marwan s/n, 06001-Badajoz, Spain Tel.: +34-924-286400 Fax: +34-924-286401 E-mail: [email protected] 2 Eugenio Roanes-Lozano et al.
    [Show full text]
  • CAS (Computer Algebra System) Mathematica
    CAS (Computer Algebra System) Mathematica- UML students can download a copy for free as part of the UML site license; see the course website for details From: Wikipedia 2/9/2014 A computer algebra system (CAS) is a software program that allows [one] to compute with mathematical expressions in a way which is similar to the traditional handwritten computations of the mathematicians and other scientists. The main ones are Axiom, Magma, Maple, Mathematica and Sage (the latter includes several computer algebras systems, such as Macsyma and SymPy). Computer algebra systems began to appear in the 1960s, and evolved out of two quite different sources—the requirements of theoretical physicists and research into artificial intelligence. A prime example for the first development was the pioneering work conducted by the later Nobel Prize laureate in physics Martin Veltman, who designed a program for symbolic mathematics, especially High Energy Physics, called Schoonschip (Dutch for "clean ship") in 1963. Using LISP as the programming basis, Carl Engelman created MATHLAB in 1964 at MITRE within an artificial intelligence research environment. Later MATHLAB was made available to users on PDP-6 and PDP-10 Systems running TOPS-10 or TENEX in universities. Today it can still be used on SIMH-Emulations of the PDP-10. MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory") which is a system for numerical computation built 15 years later at the University of New Mexico, accidentally named rather similarly. The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a popular copyleft version of Macsyma called Maxima is actively being maintained.
    [Show full text]
  • Singular Value Decomposition and Its Numerical Computations
    Singular Value Decomposition and its numerical computations Wen Zhang, Anastasios Arvanitis and Asif Al-Rasheed ABSTRACT The Singular Value Decomposition (SVD) is widely used in many engineering fields. Due to the important role that the SVD plays in real-time computations, we try to study its numerical characteristics and implement the numerical methods for calculating it. Generally speaking, there are two approaches to get the SVD of a matrix, i.e., direct method and indirect method. The first one is to transform the original matrix to a bidiagonal matrix and then compute the SVD of this resulting matrix. The second method is to obtain the SVD through the eigen pairs of another square matrix. In this project, we implement these two kinds of methods and develop the combined methods for computing the SVD. Finally we compare these methods with the built-in function in Matlab (svd) regarding timings and accuracy. 1. INTRODUCTION The singular value decomposition is a factorization of a real or complex matrix and it is used in many applications. Let A be a real or a complex matrix with m by n dimension. Then the SVD of A is: where is an m by m orthogonal matrix, Σ is an m by n rectangular diagonal matrix and is the transpose of n ä n matrix. The diagonal entries of Σ are known as the singular values of A. The m columns of U and the n columns of V are called the left singular vectors and right singular vectors of A, respectively. Both U and V are orthogonal matrices.
    [Show full text]
  • Arxiv:Cs/0608005V2 [Cs.SC] 12 Jun 2007
    AEI-2006-037 cs.SC/0608005 A field-theory motivated approach to symbolic computer algebra Kasper Peeters Max-Planck-Institut f¨ur Gravitationsphysik, Albert-Einstein-Institut Am M¨uhlenberg 1, 14476 Golm, GERMANY Abstract Field theory is an area in physics with a deceptively compact notation. Although general pur- pose computer algebra systems, built around generic list-based data structures, can be used to represent and manipulate field-theory expressions, this often leads to cumbersome input formats, unexpected side-effects, or the need for a lot of special-purpose code. This makes a direct trans- lation of problems from paper to computer and back needlessly time-consuming and error-prone. A prototype computer algebra system is presented which features TEX-like input, graph data structures, lists with Young-tableaux symmetries and a multiple-inheritance property system. The usefulness of this approach is illustrated with a number of explicit field-theory problems. 1. Field theory versus general-purpose computer algebra For good reasons, the area of general-purpose computer algebra programs has histor- ically been dominated by what one could call “list-based” systems. These are systems which are centred on the idea that, at the lowest level, mathematical expressions are nothing else but nested lists (or equivalently: nested functions, trees, directed acyclic graphs, . ). There is no doubt that a lot of mathematics indeed maps elegantly to problems concerning the manipulation of nested lists, as the success of a large class of LISP-based computer algebra systems illustrates (either implemented in LISP itself or arXiv:cs/0608005v2 [cs.SC] 12 Jun 2007 in another language with appropriate list data structures).
    [Show full text]
  • An Alternative Algorithm for Computing the Betti Table of a Monomial Ideal 3
    AN ALTERNATIVE ALGORITHM FOR COMPUTING THE BETTI TABLE OF A MONOMIAL IDEAL MARIA-LAURA TORRENTE AND MATTEO VARBARO Abstract. In this paper we develop a new technique to compute the Betti table of a monomial ideal. We present a prototype implementation of the resulting algorithm and we perform numerical experiments suggesting a very promising efficiency. On the way of describing the method, we also prove new constraints on the shape of the possible Betti tables of a monomial ideal. 1. Introduction Since many years syzygies, and more generally free resolutions, are central in purely theo- retical aspects of algebraic geometry; more recently, after the connection between algebra and statistics have been initiated by Diaconis and Sturmfels in [DS98], free resolutions have also become an important tool in statistics (for instance, see [D11, SW09]). As a consequence, it is fundamental to have efficient algorithms to compute them. The usual approach uses Gr¨obner bases and exploits a result of Schreyer (for more details see [Sc80, Sc91] or [Ei95, Chapter 15, Section 5]). The packages for free resolutions of the most used computer algebra systems, like [Macaulay2, Singular, CoCoA], are based on these techniques. In this paper, we introduce a new algorithmic method to compute the minimal graded free resolution of any finitely generated graded module over a polynomial ring such that some (possibly non- minimal) graded free resolution is known a priori. We describe this method and we present the resulting algorithm in the case of monomial ideals in a polynomial ring, in which situ- ation we always have a starting nonminimal graded free resolution.
    [Show full text]
  • Sage Tutorial (Pdf)
    Sage Tutorial Release 9.4 The Sage Development Team Aug 24, 2021 CONTENTS 1 Introduction 3 1.1 Installation................................................4 1.2 Ways to Use Sage.............................................4 1.3 Longterm Goals for Sage.........................................5 2 A Guided Tour 7 2.1 Assignment, Equality, and Arithmetic..................................7 2.2 Getting Help...............................................9 2.3 Functions, Indentation, and Counting.................................. 10 2.4 Basic Algebra and Calculus....................................... 14 2.5 Plotting.................................................. 20 2.6 Some Common Issues with Functions.................................. 23 2.7 Basic Rings................................................ 26 2.8 Linear Algebra.............................................. 28 2.9 Polynomials............................................... 32 2.10 Parents, Conversion and Coercion.................................... 36 2.11 Finite Groups, Abelian Groups...................................... 42 2.12 Number Theory............................................. 43 2.13 Some More Advanced Mathematics................................... 46 3 The Interactive Shell 55 3.1 Your Sage Session............................................ 55 3.2 Logging Input and Output........................................ 57 3.3 Paste Ignores Prompts.......................................... 58 3.4 Timing Commands............................................ 58 3.5 Other IPython
    [Show full text]
  • A Framework for Representing Knowledge Marvin Minsky MIT-AI Laboratory Memo 306, June, 1974. Reprinted in the Psychology of Comp
    A Framework for Representing Knowledge Marvin Minsky MIT-AI Laboratory Memo 306, June, 1974. Reprinted in The Psychology of Computer Vision, P. Winston (Ed.), McGraw-Hill, 1975. Shorter versions in J. Haugeland, Ed., Mind Design, MIT Press, 1981, and in Cognitive Science, Collins, Allan and Edward E. Smith (eds.) Morgan-Kaufmann, 1992 ISBN 55860-013-2] FRAMES It seems to me that the ingredients of most theories both in Artificial Intelligence and in Psychology have been on the whole too minute, local, and unstructured to account–either practically or phenomenologically–for the effectiveness of common-sense thought. The "chunks" of reasoning, language, memory, and "perception" ought to be larger and more structured; their factual and procedural contents must be more intimately connected in order to explain the apparent power and speed of mental activities. Similar feelings seem to be emerging in several centers working on theories of intelligence. They take one form in the proposal of Papert and myself (1972) to sub-structure knowledge into "micro-worlds"; another form in the "Problem-spaces" of Newell and Simon (1972); and yet another in new, large structures that theorists like Schank (1974), Abelson (1974), and Norman (1972) assign to linguistic objects. I see all these as moving away from the traditional attempts both by behavioristic psychologists and by logic-oriented students of Artificial Intelligence in trying to represent knowledge as collections of separate, simple fragments. I try here to bring together several of these issues by pretending to have a unified, coherent theory. The paper raises more questions than it answers, and I have tried to note the theory's deficiencies.
    [Show full text]
  • An Overview of the Evolution of the Devices Running Computer Algebra Systems and Their Educational Implications
    Electrical & Electronic Technology Open Access Journal Short Communication Open Access An overview of the evolution of the devices running computer algebra systems and their educational implications Abstract Volume 1 Issue 1 - 2017 Only back in late 60’s and early 70’s powerful computers were required to run the Eugenio Roanes-Lozano then just released computer algebra systems (brand new software mainly designed as Instituto de Matemática Interdisciplinar & Depto de Álgebra, a specialized aid for astronomy and high energy physics). In the late 80’s they could Universidad Complutense de Madrid, Spain be run in standard computers. And in 1995 the first calculator including a computer algebra system was released. Now some of these pieces of software are freely available Correspondence: Eugenio Roanes-Lozano, Instituto de for Smartphones. That this software has been ported to these electronic devices is a Matemática Interdisciplinar & Depto de Álgebra, Universidad challenge to different aspects of mathematical and physics education, like: problem Complutense de Madrid, c/ Rector Royo Villanova s/n, solving, assessment and standardized assessment. 28040-Madrid, Spain, Tel 913-946-248, Fax 913-944-662, Email [email protected] Keywords: computer algebra systems, computers, calculators, smartphones, mathematical education Received: May 05, 2017 | Published: June 20, 2017 Introduction symbolic manipulations such as symbolic differentiation and integra- tion can be implemented. The incredible increase of microprocessors 1 Computer algebra systems have two main differences w.r.t. clas- power makes it possible to have CAS available for Smartphones. This sic computer languages: induces serious challenges in teaching mathematics as well and in the a) They perform numerical computations in exact arithmetic (by assessment of this subject.
    [Show full text]