Origins and Delineation of Saltwater Intrusion in the Biscayne Aquifer and Changes in the Distribution of Saltwater in Miami-Dade County, Florida

Total Page:16

File Type:pdf, Size:1020Kb

Origins and Delineation of Saltwater Intrusion in the Biscayne Aquifer and Changes in the Distribution of Saltwater in Miami-Dade County, Florida Prepared in cooperation with Miami-Dade County Origins and Delineation of Saltwater Intrusion in the Biscayne Aquifer and Changes in the Distribution of Saltwater in Miami-Dade County, Florida Well field Sewage Cl/Br ratio = 300 to 800 Freshwater Biscayne Aquifer Infiltration Limestone CaCO3 + + from tidal Quartz Sand SiO2 Little or no ion exchange marshes seaward of the ion Freshwater exchange front inflow Freshwater/saltwater interface Ion exchange Leading edge front of saltwater Encroachment NaCl, B, Br, Leakage from front from ocean K, Li, SO4 Depleted Residual unprotected Mg 3 4 along the base HCO B SO saltwater canals Ca Li K of the aquifer Na Saltwater EnrichedCl, Br = Conservative Pinecrest sand member Quartz sand SiO2 Scientific Investigations Report 2014–5025 U.S. Department of the Interior U.S. Geological Survey Cover. Conceptual diagram of sources and mechanisms of the saltwater that has intruded parts of aquifers in southeast Florida, and changes in water chemistry that may result from this intrusion. Origins and Delineation of Saltwater Intrusion in the Biscayne Aquifer and Changes in the Distribution of Saltwater in Miami-Dade County, Florida By Scott T. Prinos, Michael A. Wacker, Kevin J. Cunningham, and David V. Fitterman Prepared in cooperation with Miami-Dade County Scientific Investigations Report 2014–5025 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Prinos, S.T., Wacker, M.A., Cunningham, K.J., and Fitterman, D.V., 2014, Origins and delineation of saltwater intrusion in the Biscayne aquifer and changes in the distribution of saltwater in Miami-Dade County, Florida: U.S. Geological Survey Scientific Investigations Report 2014–5025, 101 p., http://dx.doi.org/10.3133/sir20145025. ISSN 2328-0328 (online) iii Acknowledgments The authors would like to acknowledge the contributions of information provided by EAS Engineering, Inc., the Florida Department of Environmental Protection, the Florida Keys Aqueduct Authority, Miami-Dade County Department of Environmental Resource Manage- ment, and the South Florida Water Management District. We greatly appreciate the cooperation of the following property owners who allowed us to make measurements on their lands: the AA Baker Group, LTD, the Archdiocese of Miami, Alamo Rent A Car, Barry University, FRS Hold- ings, Inc., the City of Homestead, Homestead Miami Speedway, Hallandale Beach Elementary School, the Miami-Dade County Department of Public Schools, Miami-Dade County Parks and Recreation Department, the South Florida Water Management District, and Palmer Trinity School. Bob Brown of the Archdiocese of Miami; Edward Swakon of EAS Engineering, Inc.; Dr. Claudius Carnegie, Jorge Corrales, and Greg Mohr of the Miami-Dade County Department of Public Schools; Maria Idia Macfarlane, Sonia Villamil, and Virginia Walsh of the Miami- Dade Water and Sewer Department; and Steve Krupa of the South Florida Water Management District were instrumental in helping us gain access to numerous properties where the time- domain electromagnetic soundings were completed. Maria Idia Macfarlane of the Miami-Dade County Water and Sewer Department helped to oversee much of the well installation. Jorge Corrales helped collect many of the surface geophysical measurements that were made on lands owned by the Miami-Dade County Department of Public Schools. Michael J. Alexander, proj- ect manager of the Homestead Miami Speedway, not only provided necessary access to speed- way properties for measurements but also helped make necessary contacts with other properties owners in the area. Jim Happell of the University of Miami, Rosenstiel School of Marine and Atmospheric Science, John Stowell of Mount Sopris Instrument Company, and Roy Sonenshein of the National Park Service, Everglades National Park provided substantive reviews. The authors also would like to acknowledge the contributions of staff members of the U.S. Geological Survey. Michele Markovits helped with many aspects of this study, including the geochemical sampling, geophysical data collection, data entry, and sample preparation and analysis. Adam Foster provided substantive geochemical advice and helped to compile sample results in the database. Robert Valderrama completed most of the processing of time series elec- tromagnetic induction log sets, and Brian Banks collected the most recent logs for these data- sets. Ronald Bruce Irvin provided quality assurance of these log sets and partially automated the application of necessary adjustments. Lee Massey and Corey Whittaker helped to collect water samples. Brian Banks, Adrian Castillo, Eric Carlson, and Jeff Robinson helped to collect time-domain electromagnetic soundings. Jeff Robinson also collected many of the borehole logs as the new monitoring wells were being installed and helped to oversee some of the well installation. Ronald Bruce Irvin created the necessary scripts, software, and files to convert the static “Manual Water-Level Measurements in South Florida” website into a dynamic website that serves routinely collected salinity information as well as most of the salinity information collected during this study. The new website has proven to be valuable to local water manag- ers as they seek greater understanding of the changes in the extent and magnitude of saltwater intrusion in the Biscayne aquifer. Ronald Bruce Irvin also oversaw quality assurance for the time-series electromagnetic induction logs used during this study. Michael W. Bradley, Ed Busenberg, Richard H. Coupe, Kim H. Haag, Steven Hinkle, Carole Johnson, Robert Renken, Dorothy Sifuentes, Rick M. Spechler, David Sumner, Kimberly A. Swidarski, Kim Walten- baugh, and Peggy Widman provided invaluable support during the review, approval, and publi- cation process of this report. iv Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................2 Definition of Terms ................................................................................................................................2 Purpose and Scope ..............................................................................................................................6 Approach ................................................................................................................................................6 Description of Study Area ...................................................................................................................6 Hydrologic Controls .....................................................................................................................6 Topography and Physiography ..................................................................................................7 Climate ...........................................................................................................................................7 Water Use in Miami-Dade County ............................................................................................7 Hydrogeology/Hydrostratigraphic Framework .....................................................................10 Previous Studies .................................................................................................................................11 Origin of Saltwater Intrusion in Southeastern Florida ...........................................................................12 Mechanisms of Saltwater Intrusion ................................................................................................12 Upconing of Relict Saltwater from Previous Sea-Level High Stands ...............................12 Encroachment of Seawater along the Base of the Biscayne Aquifer ..............................13 Infiltration of Saltwater from Saltwater Marshes ................................................................13 Seepage from Streams or Canals in which Saltwater has Migrated Inland ...................13 Effects of Urban and Hydrologic Development on Saltwater Intrusion ....................................16 Predevelopment Conditions .....................................................................................................17 Relation of Urban Development to Saltwater Intrusion ......................................................17 Data Collection and Analysis .....................................................................................................................20
Recommended publications
  • Initial Draft – for Discussion Purposes Only
    Initial Draft – For Discussion Purposes Only Draft South Florida Canal Aquatic Life Study October 29, 2012 1 Initial Draft – For Discussion Purposes Only Draft South Florida Canal Aquatic Life Study Background and Introduction The Central & Southern Florida (C&SF) Project, which was authorized by Congress in 1948, has dramatically altered the waters of south Florida. The current C&SF Project includes 2600 miles of canals, over 1300 water control structures, and 64 pump stations1. The C&SF Project, which is operated by the South Florida Water Management District (SFWMD), provides water supply, flood control, navigation, water management, and recreational benefits to south Florida. As a part of the C&SF, there are four major canals running from Lake Okeechobee to the lower east coast – the West Palm Beach Canal (42 miles long), Hillsboro Canal (51 miles), North New River Canal (58 miles) and Miami canal (85 miles). In addition, there are many more miles of primary, secondary and tertiary canals operated as a part of or in conjunction with the C&SF or as a part of other water management facilities within the SFWMD. Other entities operating associated canals include counties and special drainage districts. There is a great deal of diversity in the design, construction and operation of these canals. The hydrology of the canals is highly manipulated by a series of water control structures and levees that have altered the natural hydroperiods and flows of the South Florida watershed on regional to local scales. Freshwater and estuarine reaches of water bodies are delineated by coastal salinity structures operated by the SFWMD.
    [Show full text]
  • Of Surface-Water Records to September 30, 1955
    GEOLOGICAL SURVEY CIRCULAR 382 INDEX OF SURFACE-WATER RECORDS TO SEPTEMBER 30, 1955 PART 2. SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS UNITED STATES DEPARTMENT OF THE INTERIOR Fred A. Seaton, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director GEOLOGICAL SURVEY CIRCULAR 382 INDEX OF SURFACE-WATER RECORDS TO SEPTEMBER 30,1955 PART 2. SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS By P. R. Speer and A. B. Goodwin Washington, D. C., 1956 Free on application to the Geological Survey, Washington 25, D. C. INDEX OF SURFACE-WATER RECORDS TO SEPTEMBER 30,1955 PAET 2. SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS By P. R Speer and A. B. Goodwin EXPLANATION This index lists the streamflow and reservoir stations in the South Atlantic slope and Eastern Gulf of Mexico basins for which records have been or are to be published in reports of the Geological Survey for periods prior to September 30, 1955. Periods of record for the same station published by other agencies are listed only when they contain more detailed information or are for periods not reported in publications of the Geological Survey. The stations are listed in the downstream order first adopted for use in the 1951 series of water-supply papers on surface-water supply of the United States. Starting at the headwater of each stream all stations are listed in a downstream direction. Tributary streams are indicated by indention and are inserted between main-stem stations in the order in which they enter the main stream. To indicate the rank of any tributary on which a record is available and the stream to which it is immediately tributary, each indention in the listing of stations represents one rank.
    [Show full text]
  • Florida Forever Work Plan
    South Florida Water Management District Florida Forever Work Plan December 13, 2001 Florida Forever Work Plan Contributors South Florida Water Management District Florida Forever Work Plan November 2001 Contributors Susan Coughanour Bill Helfferich Jenni Hiscock Lewis Hornung Blair Littlejohn Victor Lopez Gregg Mallinger Victor Mullen Agnes Ramsey Wanda Caffie-Simpson Paul Whalen i Florida Forever Work Plan Contributors ii Florida Forever Work Plan Executive Summary EXECUTIVE SUMMARY In 1999, the Florida Forever program was created, which authorized the issuance of bonds in an amount not to exceed $3 billion for acquisitions of land and water areas. This revenue is to be used for the purposes of restoration, conservation, recreation, water resource development, historical preservation and capital improvements to such land and water areas. This program is intended to accomplish environmental restoration, enhance public access and recreational enjoyment, promote long-term management goals, and facilitate water resource development. The requirements for developing The Florida Forever Water Management District Work Plan are contained in Section (s.) 373.199, Florida Statutes (F.S). The provision states that the water management districts are to create a five-year plan that identifies projects meeting specific criteria. In developing their project lists, each district is to integrate its surface water improvement and management plans, Save Our Rivers (SOR) land acquisition lists, stormwater management projects, proposed water resource development projects, proposed water body restoration projects, and other properties or activities that would assist in meeting the goals of Florida Forever. The initial plan was submitted on June 1, 2001 to the President of the Senate, Speaker of the House of Representatives, and Secretary of the Department of Environmental Protection (FDEP).
    [Show full text]
  • Long Term Consequences of Groundwater Pumping in Australia: a Review of Impacts Around the Globe
    Long term consequences of groundwater pumping in Australia: A review of impacts around the globe Author Tularam, Gurudeo, Krishna, M. Published 2009 Journal Title Journal of Applied Sciences in Environmental Sanitation Copyright Statement © The Author(s) 2009. The attached file is reproduced here in accordance with the copyright policy of the publisher. For information about this journal please refer to the journal's website or contact the authors. Downloaded from http://hdl.handle.net/10072/29294 Link to published version http://www.trisanita.org/volume042009.htm Griffith Research Online https://research-repository.griffith.edu.au G. A. Tularam and M. Krishna, 2009. Long Term Consequences of Groundwater Pumping in Australia:ISSN A 0Rev126iew-280 Of7 Impacts Around The Globe. Volume 4, Number 2: 151-166, May-August, 2009 © T2009 Department of Environmental Engineering Sepuluh Nopember Institute of Technology, Surabaya & Indonesian Society of Sanitary and Environmental Engineers, Jakarta Open Access http://www.trisanita.org Review Paper LONG TERM CONSEQUENCES OF GROUNDWATER PUMPING IN AUSTRALIA: A REVIEW OF IMPACTS AROUND THE GLOBE G. A. TULARAM* and M. KRISHNA Faculty of Science, Environment, Engineering and Technology Griffith University Brisbane Australia . *Corresponding author: Phone: 00617 37353522; Email: [email protected] Received: 23 rd July 2009; Revised: 26 th August 2009; Accepted: 31 st August 2009 Abstract: Groundwater or subsurface water refers to all water below the surface of the ground including that in the saturated zone and in deep aquifers. Subsurface water has been a readily available source for humans over centuries and has been particularly associated with developing nations. This source has in the past been ill managed and has caused water quality issues in many communities around the world.
    [Show full text]
  • Wilderness on the Edge: a History of Everglades National Park
    Wilderness on the Edge: A History of Everglades National Park Robert W Blythe Chicago, Illinois 2017 Prepared under the National Park Service/Organization of American Historians cooperative agreement Table of Contents List of Figures iii Preface xi Acknowledgements xiii Abbreviations and Acronyms Used in Footnotes xv Chapter 1: The Everglades to the 1920s 1 Chapter 2: Early Conservation Efforts in the Everglades 40 Chapter 3: The Movement for a National Park in the Everglades 62 Chapter 4: The Long and Winding Road to Park Establishment 92 Chapter 5: First a Wildlife Refuge, Then a National Park 131 Chapter 6: Land Acquisition 150 Chapter 7: Developing the Park 176 Chapter 8: The Water Needs of a Wetland Park: From Establishment (1947) to Congress’s Water Guarantee (1970) 213 Chapter 9: Water Issues, 1970 to 1992: The Rise of Environmentalism and the Path to the Restudy of the C&SF Project 237 Chapter 10: Wilderness Values and Wilderness Designations 270 Chapter 11: Park Science 288 Chapter 12: Wildlife, Native Plants, and Endangered Species 309 Chapter 13: Marine Fisheries, Fisheries Management, and Florida Bay 353 Chapter 14: Control of Invasive Species and Native Pests 373 Chapter 15: Wildland Fire 398 Chapter 16: Hurricanes and Storms 416 Chapter 17: Archeological and Historic Resources 430 Chapter 18: Museum Collection and Library 449 Chapter 19: Relationships with Cultural Communities 466 Chapter 20: Interpretive and Educational Programs 492 Chapter 21: Resource and Visitor Protection 526 Chapter 22: Relationships with the Military
    [Show full text]
  • Ttt-2-Map.Pdf
    BRIDGE RESTRICTIONS - MARCH 2019 <Double-click here to enter title> «¬89 4 2 ESCAMBIA «¬ «¬189 85 «¬ «¬ HOLMES 97 SANTA ROSA ¬« 29 331187 83 610001 ¤£ ¤£«¬ «¬ 81 87 570006 «¬ «¬ 520076 TTT-2 10 ¦¨§ ¤£90 «¬79 Pensacola Inset OKALOOSA Pensacola/ «¬285 WALTON «¬77 West Panhandle 293 WASHINGTON «¬87 570055 ¦¨§ ONLY STATE OWNED 20 ¤£98 «¬ BRIDGES SHOWN BAY 570082 460051 600108 LEGEND 460020 Route with «¬30 Restricted Bridge(s) 368 Route without 460113 «¬ Restricted Bridge(s) 460112 Non-State Maintained Road 460019 ######Restricted Bridge Number 0 12.5 25 50 Miles ¥ Page 1 of 16 BRIDGE RESTRICTIONS - MARCH 2019 <Double-click here to enter title> «¬2 HOLMES JACKSON 610001 71 530005 520076 «¬ «¬69 TTT-2 ¬79 « ¤£90 Panama City/ «¬77 ¦¨§10 GADSDEN ¤£27 WASHINGTON JEFFERSON Tallahassee 500092 ¤£19 ONLY STATE OWNED ¬20 BRIDGES SHOWN BAY « CALHOUN 460051 «¬71 «¬65 Tallahassee Inset «¬267 231 73 LEGEND ¤£ «¬ LEON 59 «¬ Route with Restricted Bridge(s) 460020 LIBERTY 368 «¬ Route without WAKULLA 61 «¬22 «¬ Restricted Bridge(s) 98 460112 ¤£ Non-State 460113 Maintained Road 460019 GULF TA ###### Restricted Bridge Number 98 FRANKLIN ¤£ 490018 ¤£319 «¬300 490031 0 12.5 25 50 Miles ¥ Page 2 of 16 BRIDGE RESTRICTIONS - MARCH 2019 350030 <Double-click320017 here to enter title> JEFFERSON «¬53 «¬145 ¤£90 «¬2 «¬6 HAMILTON COLUMBIA ¦¨§10 290030 «¬59 ¤£441 19 MADISON BAKER ¤£ 370013 TTT-2 221 ¤£ SUWANNEE ¤£98 ¤£27 «¬247 Lake City TAYLOR UNION 129 121 47 «¬ ¤£ ¬ 238 ONLY STATE OWNED « «¬ 231 LAFAYETTE «¬ ¤£27A BRIDGES SHOWN «¬100 BRADFORD LEGEND 235 «¬ Route with
    [Show full text]
  • Everglades National Park and the Seminole Problem
    EVERGLADES NATIONAL PARK 21 7 Invaders and Swamps Large numbers of Americans began migrating into south Florida during the late nineteenth century after railroads had cut through the forests and wetlands below Lake Okeechobee. By the 1880s engineers and land developers began promoting drainage projects, convinced that technology could transform this water-sogged country into land suitable for agriculture. At the turn of the cen- EVERGLADES NATIONAL PARK AND THE tury, steam shovels and dredges hissed and wheezed their way into the Ever- glades, bent on draining the Southeast's last wilderness. They were the latest of SEMlNOLE PROBLEM many intruders. Although Spanish explorers had arrived on the Florida coast early in the sixteenth century, Spain's imperial toehold never grew beyond a few fragile It seems we can't do anything but harm to those people even outposts. Inland remained mysterious, a cartographic void, El Laguno del Es- when we try to help them. pirito Santo. Following Spain, the British too had little success colonizing the -Old Man Temple, Key Largo, 1948 interior. After several centuries, all that Europeans had established were a few scattered coastal forts. Nonetheless, Europe's hand fell heavily through disease and warfare upon the aboriginal Xmucuan, Apalachee, and Calusa people. By 1700 the peninsula's interior and both coasts were almost devoid of Indians. Swollen by tropical rains and overflowing every summer for millennia, Lake The vacuum did not last long. Creeks from Georgia and Alabama soon Filtered Okeechobee releases a sheet of water that drains south over grass-covered marl into Florida's panhandle and beyond, occupying native hunting grounds.
    [Show full text]
  • Biscayne Aquifer, Florida Groundwater Provides Nearly 50 Percent of the Nation’S Drinking Water
    National Water Quality Program National Water-Quality Assessment Project Groundwater Quality in the Biscayne Aquifer, Florida Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey - (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Biscayne aquifer constitutes one of the important aquifers being evaluated. Background Overview of Water Quality The Biscayne aquifer underlies an area of about 4,000 square miles in southeastern Florida. About 4 million people live in this area, and the Biscayne aquifer is the primary source of drinking water with about 700 million gallons per day (Mgal/d) withdrawn for public supply in 2000 Inorganic Organic (Maupin and Barber, 2005; Arnold and others, 2020a). The study area for the Biscayne aquifer constituents constituents underlies much of Broward and Miami-Dade Counties in southeastern Florida and includes 3 the cities of Miami and Fort Lauderdale. Most of the area overlying the aquifer is developed 5 and consists of about 63 percent urban and 9 percent agricultural land use. The remaining area 17 (28 percent) is undeveloped (Homer and others, 2015). The Biscayne aquifer is an unconfined, surficial aquifer made up of shallow, highly 80 95 permeable limestone as well as some sandstone units (Miller, 1990). Because of the shallow depth of the units that make up this aquifer, the connection to surface water is an important aspect of the hydrogeology of the Biscayne aquifer (Miller, 1990). A system of canals and levees are used to manage the freshwater resources of southern Florida.
    [Show full text]
  • Development of Environmental Measures for Assessing Effects of Water Level Changes on Lakes and Wetlands in the Central Florida Water Initiative Area
    Development of Environmental Measures for Assessing Effects of Water Level Changes on Lakes and Wetlands in the Central Florida Water Initiative Area Central Florida Water Initiative’s Environmental Measures Team Final Report November, 2013 Attachments A‐H Environmental Measures Team Final Report Attachment A – Land Development Index (LDI) and Cross‐Walk of Florida Land Use Cover and Classification System (FLUCCS) Codes to LDI Values November, 2013 Environmental Measures Team Final Report Attachment A – Land Development Index (LDI) Tony Janicki, Ph.D. Janicki Environmental, Inc. Land Use and the Land Development Index The Land Development Index (LDI) (Brown et al. 2003) was estimated for each of the EMT study sites using land use data and a development intensity measure derived from energy use per unit area. The LDI is an estimate of the potential impacts from human‐dominated activities that are experienced by ecological systems within those watersheds. Initially, each of the wetland sites was overlain on the ECFT model grid. Then, the land uses (i.e., FLUCCS codes) within the ECFT model grid were identified and the contributing areas enumerated. Each of the land uses was assigned an LDI coefficient (Table A‐1). The overall LDI ranking was calculated as an area weighted average. Using the GIS, total area and percent of total area occupied by each of the land uses were determined and then the LDI was calculated as follows: LDITotal = Σ %LUi * LDIi Where: LDItotal = LDI ranking for wetland site, %LUi= percent of the total area of influence in land use I, and LDIi = landscape development intensity coefficient for land use i.
    [Show full text]
  • Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in Miami-Dade County, Florida, 2018: U.S
    U.S. Department of the Interior Scientific Investigations Map 3438 Prepared in cooperation with U.S. Geological Survey Sheet 1 of 1 Miami-Dade County Pamphlet accompanies map 80°40’ 80°35’ 80°30’ 80°25’ 80°20’ 80°15’ 80°10’ 80°05’ 0 5 10 KILOMETERS 1 G-3949S / 26 G-3949I / 144 0 5 10 MILES BROWARD COUNTY G-3949D / 225 MIAMI-DADE COUNTY EXPLANATION 2 G-3705 / 5,570 Well fields DMW6 / 42.7 IMW6 / 35 Approximate boundary of the Model Land Area DMW7 / 32 Approximate inland extent of saltwater in 2018—Isochlor represents a chloride IMW7 / 16.3 G-3948S / 151 concentration of 1,000 milligrams per liter at the base of the aquifer 3 G-3948D / 4,690 25°55’ G-3978 / 69 Dashed where data are insufficient Approximation 4 G-3601S / 330 G-3601I / 464 Approximate inland extent of saltwater in 2011 (Prinos and others, 2014)—Isochlor G-3601D (formerly G-3601) / 1,630 represents a chloride concentration of 1,000 milligrams per liter at the base of G-894 / 16 the aquifer Winson 1 / 31 F-279 / 4,700 Approximation Gratigny Well / 2,690 Dashed where data are insufficient Miami Canal G-297 (121 & 4th) / 19 5 3 ! Proposed locations for new wells and number (see table 4) G-3224 / 36 G-3705 / 5,570 ! Monitoring well name and chloride concentration, in milligrams per liter FLORIDA G-3602 / 5,250 G-3947 / 23 25°50’ F-45 / 175 Lake Okeechobee G-3250 / 187 6 G-548 / 32 G-3603 / 182 G-1354 / 920 Study area 7 G-571 / 27 G-3964 / 1,970 Florida Bay G-354 / 36 G-3704 / 8,730 G-1351 / 379 Miami International Airport 9 G-3604 / 6,860 G-3605 / 4,220 8 G-3977S / 17 G-3977D
    [Show full text]
  • Wynwood Development Table of Contents 03 Project Overview
    TOTAL AREA: 60,238 SQ.FT. Wynwood Development Table of Contents 03 Project Overview 15 Conceptual Drawings 17 Location 20 Demographics 23 Site Plan 26 Building Efficiency 29 RelatedISG Project Overview Project This featured property is centrally located in one of Miami’s hottest and trendiest neighborhood, Wynwood. The 60,238 SF site offers the unique possibility to develop one of South Florida’s most ground-breaking projects. There has only been a select amount of land deals in the past few years available in this neighborhood, and it is not common to find anything over 20,000 SF on average. With its desirable size and mixed use zoning, one can develop over 300 units with a retail component. Wynwood has experienced some of the highest rental rates of any area of South Florida, exceeding $3 per SF, and retail rates exceeding $100 SF. As the area continues to grow and evolve into a world renowned destination, it is forecasted that both residential and retail rental rates will keep increasing. Major landmark projects such as the Florida Brightline and Society Wynwood, as well as major groups such as Goldman Sachs, Zafra Bank, Thor Equity and Related Group investing here, it is positioned to keep growing at an unprecedented rate. Name Wynwood Development Style Development Site Location Edgewater - Miami 51 NE 22th Street Miami, FL 33137 Total Size 60,238 SQ. FT. (1.3829 ACRES) Lot A 50 NE 23nd STREET Folio # 01-3125-015-0140 Lot B 60 NE 23nd STREET Folio 01-3125-011-0330 Lot C 68 NE 23rd STREET Folio 01-3125-011-0320 Lot D 76 NE 23rd STREET Folio 01-3125-011-0310 Lot E 49 NE 23rd STREET Folio 01-3125-015-0140 Lot F 51 NE 23rd STREET Folio 01-3125-015-0130 Zoning T6-8-O URBAN CORE TRANSECT ZONE 04 Development Regulations And Area Requirements DEVELOPMENT REGULATIONS AND AREA REQUIREMENTS DESCRIPTION VALUE CODE SECTION REQUIRED PERMITTED PROVIDED CATEGORY RESIDENTIAL PERMITTED COMMERCIAL LODGING RESIDENTIAL COMMERCIAL LODGING RESIDENTIAL LODGING PERMITTED GENERAL COMMERCIAL PERMITTED LOT AREA / DENSITY MIN.5,000 SF LOT AREA MAX.
    [Show full text]
  • Management of Seawater Intrusion in Coastal Aquifers: a Review
    water Review Management of Seawater Intrusion in Coastal Aquifers: A Review Mohammed S. Hussain 1 , Hany F. Abd-Elhamid 2,3, Akbar A. Javadi 4,* and Mohsen M. Sherif 5 1 Civil Engineering Department, College of Engineering, University of Duhok, 1006 AJ Duhok, Kurdistan Region-Iraq; [email protected] 2 Department of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig P.O. Box 44519, Egypt; [email protected] 3 Civil Engineering Department, College of Engineering, Shaqra University, Duwadimi P.O. Box 11911, Saudi Arabia 4 Department of Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, UK 5 National Water Center, United Arab Emirates Univ., Al Ain PO Box 15551, UAE; [email protected] * Correspondence: [email protected] Received: 25 October 2019; Accepted: 20 November 2019; Published: 24 November 2019 Abstract: Seawater intrusion (SWI) is one of the most challenging and widespread environmental problems that threaten the quality and sustainability of fresh groundwater resources in coastal aquifers. The excessive pumping of groundwater, associated with the lack of natural recharge, has exacerbated the SWI problem in arid and semi-arid regions. Therefore, appropriate management strategies should be implemented in coastal aquifers to control the impacts of SWI problems, considering acceptable limits of economic and environmental costs. The management of coastal aquifers involves the identification of an acceptable ultimate landward extent of the saline water body and the calculation of the amount of seaward discharge of freshwater that is necessary to keep the saline–freshwater interface in a seacoast position.
    [Show full text]