Saltwater Intrusion and Quality of Water in the Floridan Aquifer System, Northeastern Florida

Total Page:16

File Type:pdf, Size:1020Kb

Saltwater Intrusion and Quality of Water in the Floridan Aquifer System, Northeastern Florida SALTWATER INTRUSION AND QUALITY OF WATER IN THE FLORIDAN AQUIFER SYSTEM, NORTHEASTERN FLORIDA By Rick M. Spechler U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 92-4174 Prepared in cooperation with the CITY OF JACKSONVILLE and the ST. JOHNS RIVER WATER MANAGEMENT DISTRICT Tallahassee, Florida 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information Copies of this report can be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services Suite 3015 Box 25286 227 N. Bronough Street Denver, CO 80225-0286 Tallahassee, FL 32301 800-ASK-USGS Additional information about water resources in Florida is available on the World Wide Web at http://fl.water.usgs.gov CONTENTS Abstract.................................................................................................................................................................................. 1 Introduction ........................................................................................................................................................................... 1 Purpose and Scope....................................................................................................................................................... 2 Previous Investigations................................................................................................................................................ 2 Acknowledgments ....................................................................................................................................................... 2 Well-Numbering System ............................................................................................................................................. 4 Water Use..................................................................................................................................................................... 4 Hydrogeologic Framework.................................................................................................................................................... 6 Hydrogeology ........................................................................................................................................................................ 11 Surficial Aquifer System ............................................................................................................................................. 11 Intermediate Confining Unit........................................................................................................................................ 15 Floridan Aquifer System ............................................................................................................................................. 15 Hydraulic Characteristics .................................................................................................................................. 16 Ground-Water Flow System .............................................................................................................................. 17 Long-Term Water-Level Trends .............................................................................................................. 17 Head Relations......................................................................................................................................... 19 Sub-Floridan Confining Unit....................................................................................................................................... 22 Quality of Ground Water ....................................................................................................................................................... 27 Wells Tapping the Upper Floridan Aquifer ................................................................................................................. 28 Specific Conductance ........................................................................................................................................ 28 Sulfate................................................................................................................................................................ 32 Chloride ............................................................................................................................................................. 32 Ionic Composition ............................................................................................................................................. 32 Multiaquifer Wells Tapping the Upper Floridan and the Upper Zone of the Lower Floridan Aquifer....................... 34 Wells Tapping the Upper Zone of the Lower Floridan Aquifer .................................................................................. 37 Wells Tapping the Fernandina Permeable Zone .......................................................................................................... 37 Saltwater Intrusion and Trends in Chloride Concentrations.................................................................................................. 43 Mechanisms of Saltwater Intrusion ....................................................................................................................................... 47 Relict Seawater ............................................................................................................................................................ 47 Lateral Encroachment.................................................................................................................................................. 47 Upconing ..................................................................................................................................................................... 49 Upward Leakage through Wells .................................................................................................................................. 49 Upward Leakage through Structural Deformities........................................................................................................ 49 Water Management Considerations....................................................................................................................................... 53 Summary and Conclusions .................................................................................................................................................... 56 Selected References ............................................................................................................................................................... 58 Appendix I--Chemical and physical analyses of water from the Floridan aquifer system in Nassau, Duval, St. Johns, and northeastern Clay Counties...................................................................................................................................... 63 Appendix 11--Records of wells completed in the Floridan aquifer system in Nassau, Duval, St. Johns, and northeastern Clay Counties .......................................................................................................................................................... 71 PLATE Map showing altitude of the top of the Ocala Limestone..........................................................................in back pocket FIGURES 1. Map showing location of study area........................................................................................................................ 3 2. Graph showing total ground-water use, 1965-88 .................................................................................................... 4 3. Diagram showing total ground-water use by category for 1988 ............................................................................. 5 4. Diagram showing generalized geology and hydrogeology of northeastern Florida................................................ 7 Contents iii 5. Map showing location of hydrogeologic sections................................................................................................... 8 6-8. Hydrogeologic sections: 6. A-A’ and B-B’......................................................................................................................................................... 9 7. C-C’......................................................................................................................................................................... 10 8. D-D’ ........................................................................................................................................................................ 10 9. Map showing altitude of the top of the Avon Park Formation................................................................................ 12 10. Map showing major structural features in (A) northern Florida and (B) the study area......................................... 13 11. Diagram showing summary of historical nomenclature applied to aquifer systems in the study area .................. 14 12-15. Maps showing: 12. Potentiometric surface of the Upper Floridan aquifer in north-eastern Florida, September 1989.......................... 18 13. Estimated predevelopment
Recommended publications
  • Long Term Consequences of Groundwater Pumping in Australia: a Review of Impacts Around the Globe
    Long term consequences of groundwater pumping in Australia: A review of impacts around the globe Author Tularam, Gurudeo, Krishna, M. Published 2009 Journal Title Journal of Applied Sciences in Environmental Sanitation Copyright Statement © The Author(s) 2009. The attached file is reproduced here in accordance with the copyright policy of the publisher. For information about this journal please refer to the journal's website or contact the authors. Downloaded from http://hdl.handle.net/10072/29294 Link to published version http://www.trisanita.org/volume042009.htm Griffith Research Online https://research-repository.griffith.edu.au G. A. Tularam and M. Krishna, 2009. Long Term Consequences of Groundwater Pumping in Australia:ISSN A 0Rev126iew-280 Of7 Impacts Around The Globe. Volume 4, Number 2: 151-166, May-August, 2009 © T2009 Department of Environmental Engineering Sepuluh Nopember Institute of Technology, Surabaya & Indonesian Society of Sanitary and Environmental Engineers, Jakarta Open Access http://www.trisanita.org Review Paper LONG TERM CONSEQUENCES OF GROUNDWATER PUMPING IN AUSTRALIA: A REVIEW OF IMPACTS AROUND THE GLOBE G. A. TULARAM* and M. KRISHNA Faculty of Science, Environment, Engineering and Technology Griffith University Brisbane Australia . *Corresponding author: Phone: 00617 37353522; Email: [email protected] Received: 23 rd July 2009; Revised: 26 th August 2009; Accepted: 31 st August 2009 Abstract: Groundwater or subsurface water refers to all water below the surface of the ground including that in the saturated zone and in deep aquifers. Subsurface water has been a readily available source for humans over centuries and has been particularly associated with developing nations. This source has in the past been ill managed and has caused water quality issues in many communities around the world.
    [Show full text]
  • Management of Seawater Intrusion in Coastal Aquifers: a Review
    water Review Management of Seawater Intrusion in Coastal Aquifers: A Review Mohammed S. Hussain 1 , Hany F. Abd-Elhamid 2,3, Akbar A. Javadi 4,* and Mohsen M. Sherif 5 1 Civil Engineering Department, College of Engineering, University of Duhok, 1006 AJ Duhok, Kurdistan Region-Iraq; [email protected] 2 Department of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig P.O. Box 44519, Egypt; [email protected] 3 Civil Engineering Department, College of Engineering, Shaqra University, Duwadimi P.O. Box 11911, Saudi Arabia 4 Department of Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, UK 5 National Water Center, United Arab Emirates Univ., Al Ain PO Box 15551, UAE; [email protected] * Correspondence: [email protected] Received: 25 October 2019; Accepted: 20 November 2019; Published: 24 November 2019 Abstract: Seawater intrusion (SWI) is one of the most challenging and widespread environmental problems that threaten the quality and sustainability of fresh groundwater resources in coastal aquifers. The excessive pumping of groundwater, associated with the lack of natural recharge, has exacerbated the SWI problem in arid and semi-arid regions. Therefore, appropriate management strategies should be implemented in coastal aquifers to control the impacts of SWI problems, considering acceptable limits of economic and environmental costs. The management of coastal aquifers involves the identification of an acceptable ultimate landward extent of the saline water body and the calculation of the amount of seaward discharge of freshwater that is necessary to keep the saline–freshwater interface in a seacoast position.
    [Show full text]
  • West-Central Florida's Aquifers: Florida's Great Unseen Water Resources
    West-Central Florida's aquifers: Florida's great unseen water resources Item Type monograph Publisher Southwest Florida Water Management District Download date 27/09/2021 20:30:45 Link to Item http://hdl.handle.net/1834/19407 Southwest Florida Water Management District West-Central Florida’s Aquifers Florida’s Great Unseen Water Resources Th e abundance of Florida’s freshwater resources provides a great attraction for residents and tourists alike. Th e rivers, lakes and wetland areas found throughout the state serve as a water-lover’s paradise for fi shing, boating, hiking and many other recreational activities. However, the majority of Florida’s fresh water is inaccessible to the public for recreational purposes. In fact, most of the state’s fresh water lies underground in Florida’s aquifers. While the ground water within Florida’s aquifers remains unseen, it still serves a vital role in maintaining the quality of life for all Floridians. Th e District is responsible for protecting this important resource. A cave diver explores the Upper Floridan aquifer through a spring. What Is an Aquifer? An aquifer is a layer of underground rock or sand that stores water. Th e ground water within an aquifer can fi ll the spaces between grains of sand and gravel, or it can fi ll the cracks and fi ssures in solid rock. Th e water within an aquifer is constantly moving. How quickly the water moves depends on both the physical characteristics of the aquifer and the water-level gradient, or slope, in the aquifer. In aquifers with large caverns or many large fractures, water can travel very quickly.
    [Show full text]
  • Aquifer System in Southern Florida
    HYDRGGEOLOGY, GRQUOT*WATER MOVEMENT, AND SUBSURFACE STORAGE IN THE FLORIDAN AQUIFER SYSTEM IN SOUTHERN FLORIDA REGIONAL AQUIFER-SYSTEM ANALYSIS \ SOUTH CAROLINA L.-S.. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1403-G AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations,
    [Show full text]
  • Electrical Resistivity Imaging of Seawater Intrusion Into the Monterey Bay Aquifer System by A
    Electrical Resistivity Imaging of Seawater Intrusion into the Monterey Bay Aquifer System by A. Pidlisecky1, T. Moran2,B.Hansen3, and R. Knight4 Abstract We use electrical resistivity tomography to obtain a 6.8-km electrical resistivity image to a depth of approximately 150 m.b.s.l. along the coast of Monterey Bay. The resulting image is used to determine the subsurface distribution of saltwater- and freshwater- saturated sediments and the geologic controls on fluid distributions in the region. Data acquisition took place over two field seasons in 2011 and 2012. To maximize our ability to image both vertical and horizontal variations in the subsurface, a combination of dipole–dipole, Wenner, Wenner-gamma, and gradient measurements were made, resulting in a large final dataset of approximately 139,000 data points. The resulting resistivity section extends to a depth of 150 m.b.s.l., and is used, in conjunction with the gamma logs from four coastal monitoring wells to identify four dominant lithologic units. From these data, we are able to infer the existence of a contiguous clay layer in the southern portion of our transect, which prevents downward migration of the saltwater observed in the upper 25 m of the subsurface to the underlying freshwater aquifer. The saltwater and brackish water in the northern portion of the transect introduce the potential for seawater intrusion into the hydraulically connected freshwater aquifer to the south, not just from the ocean, but also laterally from north to south. Introduction measure changing groundwater conditions and groundwa- Groundwater is a critical component of freshwater ter elevations.
    [Show full text]
  • Saltwater Intrusion in Los Angeles Area Coastal Aquifers— the Marine Connection
    SUPPORTING SOUND MANAGEMENT OF OUR COASTS AND SEAS Saltwater Intrusion in Los Angeles Area Coastal Aquifers— the Marine Connection O ne-third of the water supply for coastal areas of Greater Los Angeles comes from local ground-water sources. Salt- water has penetrated a part of the supply, and a signifi cant part of the remaining supply is at risk. U.S. Geological Survey (USGS) scientists, working in cooperation with local water agencies, are studying the connection between coastal aquifers and the offshore geol- This computer-generated perspective view of the Greater Los Angeles region highlights the locations of “bar- ogy to better understand the riers” (shown in yellow) to saltwater intrusion into coastal aquifers. These barriers consist of freshwater processes and pathways of injection wells. Because some saltwater continues to infi ltrate into Los Angeles Basin aquifers, U.S. Geological Survey scientists are investigating the geology both onshore and offshore to better understand the pathways of saltwater intrusion. saltwater intrusion. This image combines high-resolution offshore bathymetric data and onshore digital-eleva- tion data. (Image produced by J.V. Gardner and P. Dartnell, U.S. Geological Survey.) Saltwater from the Pacifi c Ocean is is more complex than previously imag- on the geometry of geologic structures and seeping into some Los Angeles Basin ined. U.S. Geological Survey (USGS) buried erosional features, such as ancient coastal aquifers and replacing freshwater. scientists, working in cooperation with the stream channels. Another system uses Without treatment, this ground water Water Replenishment District of Southern laterally directed acoustic pulses to create does not conform to drinking-water or California and the Los Angeles County detailed three-dimensional images of the agricultural standards.
    [Show full text]
  • Dynamic Mechanism of an Extremely Severe Saltwater Intrusion in the Changjiang Estuary in February 2014
    Hydrol. Earth Syst. Sci., 24, 5043–5056, 2020 https://doi.org/10.5194/hess-24-5043-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Dynamic mechanism of an extremely severe saltwater intrusion in the Changjiang estuary in February 2014 Jianrong Zhu, Xinyue Cheng, Linjiang Li, Hui Wu, Jinghua Gu, and Hanghang Lyu State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China Correspondence: Jianrong Zhu ([email protected]) Received: 9 June 2020 – Discussion started: 22 June 2020 Revised: 7 September 2020 – Accepted: 20 September 2020 – Published: 29 October 2020 Abstract. Estuarine saltwater intrusions are mainly con- and vertical mixing (Simpson and Hunter, 1974; Prandle and trolled by river discharge and tides. Unexpectedly, an ex- Lane, 2015). Along-estuary winds can strain density gradi- tremely severe saltwater intrusion event occurred in Febru- ents and the associated destruction or enhancement of strati- ary 2014 in the Changjiang estuary under normal river dis- fication, depending on the wind direction and the entrainment charge conditions. This intrusion cut off the freshwater input depth ratio (Chen and Sanford, 2009). Wind-driven sea level for 23 d into the Qingcaosha reservoir, which is the largest setups at the mouth of estuaries can produce landward flows estuarine reservoir in the world, creating a severe threat to that outcompete river runoff, resulting in the net landward water safety in Shanghai. No similar catastrophic saltwater advection of salt (Aristizabal and Chant, 2015). For multi- intrusion has occurred since records of salinity in the estu- inlet coastal systems, residual (horizontal) circulation is in- ary have been kept.
    [Show full text]
  • Professional Paper SJ95-PP3 PREDICTING AREAS of FUTURE
    Professional Paper SJ95-PP3 PREDICTING AREAS OF FUTURE PUBLIC WATER SUPPLY PROBLEMS: A GEOGRAPHIC INFORMATION SYSTEM APPROACH by Paula Fischl St. Johns River Water Management District Palatka, Florida 1995 Northwest Florida Water Management District Suwannee River Water Management District St River Water St. Johns Rlv Water Management District Florida Water Management District South Florida Water Management District The St. Johns River Water Management District (SJRWMD) was created by the Florida Legislature in 1972 to be one of five water management districts in Florida. It includes all or part of 19 counties in northeast Florida. The mission of SJRWMD is to manage water resources to ensure their continued availability while maximizing environmental and economic benefits. It accomplishes its mission through regulation; applied research; assistance to federal, state, and local governments; operation and maintenance of water control works; and land acquisition and management. Professional papers are published to disseminate information collected by SJRWMD in pursuit of its mission. Copies of this report can be obtained from: Library St. Johns River Water Management District P.O. Box 1429 Palatka, FL 32178-1429 Phone: (904) 329-4132 ABSTRACT: A geographic information system methodology was developed to ensure the adequate placement of the locations of current ground water flow models used by the St. Johns River Water Management District and to delineate areas where new analyses should be performed. This methodology uses an overlay procedure with gridded surfaces to identify areas that have a high potential for (1) impacts to wetland vegetation, (2) saltwater intrusion, and/or (3) an increase in public water supply demand.
    [Show full text]
  • Analytical Solution of Saltwater Intrusion in Costal Aquifers Considering Climate Changes and Different Boundary Conditions
    water Article Analytical Solution of Saltwater Intrusion in Costal Aquifers Considering Climate Changes and Different Boundary Conditions Ismail Abd-Elaty 1, Martina Zele ˇnáková 2,* , Katarína Krajníková 3 and Hany F. Abd-Elhamid 1,4 1 Department of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt; [email protected] (I.A.-E.); [email protected] (H.F.A.-E.) 2 Department of Environmental Engineering, Faculty of Civil Engineering, Technical University of Košice, 042 00 Košice, Slovakia 3 Institute of Technology, Economics and Management in Construction, Faculty of Civil Engineering, Technical, University of Košice, 042 00 Košice, Slovakia; [email protected] 4 Center for Research and Innovation in Construction, Faculty of Civil Engineering, Technical University of Košice, 042 00 Košice, Slovakia * Correspondence: [email protected]; Tel.: +421-55-602-4270 Abstract: Groundwater contamination due to saltwater intrusion (SWI) has an extreme effect on freshwater quality. Analytical and numerical models could be used to investigate SWI. This study aims to develop an analytical solution to investigate SWI into coastal aquifers which was applied to a real case study at the Middle Nile Delta aquifer (MNDA). The study presented a new formula to predict the difference in depth of freshwater to seawater interface due to a change in boundary conditions. A Computer Program for Simulation of Three-Dimensional Variable-Density Ground- Water Flow and Transport (SEAWAT) is used for groundwater flow simulation and SWI and the Citation: Abd-Elaty, I.; results compared with the developed analytical solution. Four scenarios are considered in the study, Zeleˇnáková,M.; Krajníková, K.; including; the sea-level rise (SLR), reduction in recharge, over abstraction, and combination after Abd-Elhamid, H.F.
    [Show full text]
  • Sinking Lakes & Sinking Streams in the Wakulla
    Nitrogen Contributions of Karst Seepage into the Upper Floridan Aquifer from Sinking Streams and Sinking Lakes in the Wakulla Springshed September 30, 2016 Seán E. McGlynn, Principal Investigator Robert E. Deyle, Project Manager Porter Hole Sink, Lake Jackson (Seán McGlynn, 2000) This project was developed for the Wakulla Springs Alliance by McGlynn Laboratories, Inc. with financial assistance provided by the Fish and Wildlife Foundation of Florida, Inc. through the Protect Florida Springs Tag Grant Program, project PFS #1516-02. Contents Abstract 1 Introduction 2 Data Sources 8 Stream Flow Data 8 Lake Stage, Precipitation, and Evaporation Data 8 Total Nitrogen Concentration Data 10 Data Quality Assurance and Certification 10 Methods for Estimating Total Nitrogen Loadings 11 Precipitation Gains and Evaporation Losses 11 Recharge Factors, Attenuation Factors, and Seepage Rates 11 Findings and Management Recommendations 12 Management Recommendations 17 Recommendations for Further Research 18 References Cited 21 Appendix I: Descriptions of Sinking Waterbodies 23 Sinking Streams (Lotic Systems) 24 Lost Creek and Fisher Creek 26 Black Creek 27 Sinking Lakes (Lentic Systems) 27 Lake Iamonia 27 Lake Munson 28 Lake Miccosukee 28 Lake Jackson 30 Lake Lafayette 31 Bradford Brooks Chain of Lakes 32 Killearn Chain of Lakes 34 References Cited 35 Appendix II: Nitrate, Ammonia, Color, and Chlorophyll 37 Nitrate Loading 38 Ammonia Loading 39 Color Loading 40 Chlorophyll a Loading 41 Abstract This study revises estimates in the 2014 Nitrogen Source Inventory Loading Tool (NSILT) study produced by the Florida Department of Environmental Protection of total nitrogen loadings to Wakulla Springs and the Upper Wakulla River for sinking water bodies based on evaluating flows and water quality data for sinking streams and sinking lakes which were not included in the NSILT.
    [Show full text]
  • The Favorability of Florida's Geology to Sinkhole
    Appendix H: Sinkhole Report 2018 State Hazard Mitigation Plan _______________________________________________________________________________________ APPENDIX H: Sinkhole Report _______________________________________________________________________________________ Florida Division of Emergency Management THE FAVORABILITY OF FLORIDA’S GEOLOGY TO SINKHOLE FORMATION Prepared For: The Florida Division of Emergency Management, Mitigation Section Florida Department of Environmental Protection, Florida Geological Survey 3000 Commonwealth Boulevard, Suite 1, Tallahassee, Florida 32303 June 2017 Table of Contents EXECUTIVE SUMMARY ............................................................................................................ 4 INTRODUCTION .......................................................................................................................... 4 Background ................................................................................................................................. 5 Subsidence Incident Report Database ..................................................................................... 6 Purpose and Scope ...................................................................................................................... 7 Sinkhole Development ................................................................................................................ 7 Subsidence Sinkhole Formation .............................................................................................. 8 Collapse Sinkhole
    [Show full text]
  • SALTWATER INTRUSION and CLIMATE CHANGE a Primer for Local and Provincial Decision-Makers
    SALTWATER INTRUSION and CLIMATE CHANGE A primer for local and provincial decision-makers. Atlantic Climate Adaptation Solutions Association Saltwater Intrusion and Climate Change 1 SALTWATER INTRUSION and CLIMATE CHANGE Report Prepared by: Prince Edward Island Department of Environment, Labour and Justice Report Edited by: Doug Linzey, Fundy Communications, 2340 Gospel Rd, Canning NS Content Review and Project Management: Prince Edward Island Department of Environment, Labour and Justice, 11 Kent Street, Charlottetown, PE, C1A 7N8, [email protected] Disclaimer: This document was prepared for a specific purpose and should not be applied or relied upon for alternative uses without the permission, advice, and guidance of the authors, the provincial managers, and ACASA, or their respective designates. Users of this report do so at their own risk. Neither ACASA, the provinces of Nova Scotia, New Brunswick, Prince Edward Island, Newfoundland and Labrador, nor the authors of this report accept responsibility for damages suffered by any third party as a result of decisions or actions taken based on this report. Avertissement: Ce document a été préparé dans un but précis et ne devrait pas être appliqué ou invoqué pour d’autres utilisations sans autorisation, des conseils et des auteurs, les directeurs provinciaux et ACASA, ou leurs représentants respectifs. Les utilisateurs de ce rapport font à leurs risques et périls. Ni ACASA, les provinces de la Nouvelle-Écosse, au Nouveau-Brunswick, Île du Prince Édouard, Terre-Neuve-et-Labrador ou les auteurs de ce rapport acceptent la responsabilité pour les dommages subis par un tiers à la suite de décisions ou actions prises sur la base de ce rapport.
    [Show full text]