DOI: 10.1126/Science.282.5392.1298 , 1298 (1998); 282 Science Et Al

Total Page:16

File Type:pdf, Size:1020Kb

DOI: 10.1126/Science.282.5392.1298 , 1298 (1998); 282 Science Et Al A Long-Snouted Predatory Dinosaur from Africa and the Evolution of Spinosaurids Paul C. Sereno et al. Science 282, 1298 (1998); DOI: 10.1126/science.282.5392.1298 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of September 6, 2013 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: on September 6, 2013 http://www.sciencemag.org/content/282/5392/1298.full.html This article cites 29 articles, 3 of which can be accessed free: http://www.sciencemag.org/content/282/5392/1298.full.html#ref-list-1 This article has been cited by 90 article(s) on the ISI Web of Science This article has been cited by 15 articles hosted by HighWire Press; see: http://www.sciencemag.org/content/282/5392/1298.full.html#related-urls This article appears in the following subject collections: www.sciencemag.org Geochemistry, Geophysics http://www.sciencemag.org/cgi/collection/geochem_phys Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 1998 by the American Association for the Advancement of Science; all rights reserved. The title Science is a registered trademark of AAAS. R EPORTS orly into the body of the maxilla. As in Baryonyx, the quadrate foramen is very large, A Long-Snouted Predatory and the distal condyles are very broad. The new cranial bones indicate that the Dinosaur from Africa and the spinosaurid skull is considerably lower, nar- rower, and longer (Fig. 2D) than previously Evolution of Spinosaurids reconstructed (13, 19). In dorsal view, the snout is extremely narrow (Fig. 2C). In ven- Paul C. Sereno,* Allison L. Beck, Didier B. Dutheil, tral view, the maxillae meet along the mid- Boubacar Gado, Hans C. E. Larsson, Gabrielle H. Lyon, line, displacing the internal nares and palatal Jonathan D. Marcot, Oliver W. M. Rauhut, Rudyard W. Sadleir, complex (pterygoid, palatine, and ectoptery- goid) toward the rear of the skull. Christian A. Sidor, David D. Varricchio, Gregory P. Wilson, In the postcranial skeleton, the cervical Jeffrey A. Wilson series arches upward (18) and has prominent epipophyses for muscle attachments. The Fossils discovered in Lower Cretaceous (Aptian) rocks in the Te´ne´re´ Desert of neural spines increase in height rapidly in the central Niger provide new information about spinosaurids, a peculiar group of middorsal vertebrae, forming a low median piscivorous theropod dinosaurs. The remains, which represent a new genus and sail that is deepest over the sacral vertebrae species, reveal the extreme elongation and transverse compression of the (Fig. 3). This vertebral morphology, incipi- spinosaurid snout. The postcranial bones include blade-shaped vertebral spines ently developed in Baryonyx (13), is distinct that form a low sail over the hips. Phylogenetic analysis suggests that the enlarged thumb claw and robust forelimb evolved during the Jurassic, before the elongated snout and other fish-eating adaptations in the skull. The close phylogenetic relationship between the new African spinosaurid and Baryonyx from Europe provides evidence of dispersal across the Tethys seaway during the Early Cretaceous. In 1912, a series of extremely high-spined remains consist of a single partial skull, Irri- vertebrae and a peculiar lower jaw with sub- tator (9, 10); and the European fossils, Bary- conical crocodilelike teeth were discovered in onyx, include the first relatively complete on September 6, 2013 the Baharıˆya oasis in central Egypt (1). These spinosaurid skeleton (11–13). fossils provided evidence that a large, pis- Fossils were recovered recently from the civorous, sail-backed predator roamed the Elrhaz Formation in Niger (Fig. 1). These northern shores of Africa during the Late Aptian-age rocks consist predominantly of Cretaceous (Cenomanian). This partial skel- fluvial channel deposits and are exposed in eton, Spinosaurus aegyptiacus, was de- low outcrops amid dune fields in the Te´ne´re´ stroyed during World War II, and few re- Desert (6, 14). The fossils found here include mains that are attributable to this taxon have plant, invertebrate, and vertebrate remains; since been recovered in these horizons (2–5). the vertebrate remains consist mainly of dis- www.sciencemag.org Additional bones of Spinosaurus-like articulated bones and teeth in basal channel predators have been discovered in Lower lag deposits. Dinosaurs are represented by at Cretaceous (Aptian or Albian) deposits in least three theropods, two sauropods, and Niger and Brazil and in somewhat older (Bar- three ornithopods (15). remian) rocks in Europe. The Nigerien fossils The newly discovered fossils include a include peculiar arched snout tips and enor- partial skull and skeleton of a new spinosau- mous manual unguals (6–8); the Brazilian rid, Suchomimus tenerensis gen. nov. sp. nov. Downloaded from (16), which can be distinguished from other spinosaurids (17). An articulated snout (Fig. P. C. Sereno, A. L. Beck, H. C. E. Larsson, J. D. Marcot, C. A. Sidor, J. A. Wilson, Department of Organismal 2A and B) reveals its remarkably long, low, Biology and Anatomy, University of Chicago, 1027 and narrow proportions. The elongation of the East 57th Street, Chicago, IL 60637, USA. D. B. snout is the result of the hypertrophy of both the Dutheil, Laboratoire de Pale´ontologie, Muse´um Na- premaxilla and the anterior ramus of the max- tional d’Histoire Naturelle, 8 rue du Buffon, 75005 Paris, France. B. Gado, Institut pour Recherche et illa. The premaxillae, which fuse early in Science Humaine, Republic of Niger. G. H. Lyon, Small growth, each contain alveoli for seven teeth. Schools Workshop, 115 South Sangamon Street, Uni- The subconical crowns are slightly recurved versity of Illinois, Chicago, IL 60607, USA. O. W. M. and have fine marginal serrations and textured Fig. 1. Mid-Cretaceous paleogeography and principal exposures of fossiliferous beds in the Rauhut, Department of Geology, University of Bristol, enamel surfaces (Fig. 2E). The external nares Wills Memorial Building, Queen’s Road, Bristol BS8 region of Gadoufaoua, Niger. (A) Mid-Creta- 1RJ, UK. R. W. Sadleir, Department of Earth and are retracted posterior to the premaxillary ceous (Aptian, 120 million years ago) paleogeo- Environmental Sciences, University of Illinois at Chi- teeth (Fig. 2, A and D), as in Baryonyx (14). graphic map (Mollweide projection) with lati- cago, 845 West Taylor Street, Chicago, IL 60607, The unusually long, plate-shaped anterome- tude and longitude lines spaced at 30° intervals USA. D. Varricchio, Old Trail Museum, 823 North dial processes of the maxillae (18) are firmly (longitude greater than 120° is not shown) Main Avenue, Choteau, MT 59422, USA. G. P. Wilson, held by the premaxillae (Fig. 2B). The medial (31). White cross, fossil locality. (B) Maps University of California, Museum of Paleontology, showing Niger, the exposures of the GAD 5 1101 Valley Life Sciences Building, Berkeley, CA wall of the antorbital fossa is confined to the beds (12) (white, above; black, below), and the 94720, USA. anterior end of the antorbital fenestra, and a location of the holotypic skeleton of Suchomi- *To whom correspondence should be addressed. simple conical pneumatocoel extends anteri- mus tenerensis (16°259N, 9°79E). 1298 13 NOVEMBER 1998 VOL 282 SCIENCE www.sciencemag.org R EPORTS from that in Spinosaurus (1), in which the blade-shaped anterior trochanter, and the as- evolved convergently in neotetanurans and much deeper sail arches to an apex over the cending process of the astragalus is taller than spinosaurids or originated as a tetanuran sy- middorsal vertebrae (Fig. 4B). that in Allosaurus (20). napomorphy that was subsequently lost in Complete pectoral and pelvic bones show a Phylogenetic analysis (21, 22) links spi- torvosaurids (21, 22). deep subrectangular acromion on the scapula nosaurids with torvosaurids (23) and places Spinosaurids are characterized by numer- and a low obturator flange on the ischium. The this clade (Spinosauroidea) as the sister group ous derived features, many of which are re- distal end of the pubis is distinctive. Although to Neotetanurae (Fig. 4A and Table 2). The lated to piscivory [including an unusually there is a short, sagittal, symphyseal flange that derived features that are shared between spi- long snout with a long secondary palate; a may correspond with the pubic foot in other nosaurids and torvosaurids, including the terminal rosette of teeth in the upper and theropods, the flattened, subrectangular distal short forearm and the enlarged manual digit I lower jaws (25); subcylindrical, spaced end of the pubis faces anteriorly, perpendicular ungual (22), appear to have evolved by the crowns; posteriorly displaced external nares; to the sagittal plane (Fig. 3). The forearm is Middle Jurassic (Fig. 4B). A hook-shaped ventrally positioned basipterygoid articula- remarkably stout, and manual digit III is robust, coracoid characterizes Suchominus, Bary- tion; and other features (8, 13, 22)]. Our as seen in the size of metacarpal III and the third onyx, and neotetanurans but not torvosaurids analysis suggests that spinosaurids can be ungual (Fig. 3 and Table 1). The femur has a (24). Thus, the hook-shaped coracoid either divided into two clades, the Baryonychinae Fig. 2. Skull of the spi- nosaurid Suchomimus tenerensis. Articulated premaxillae and maxil- lae (MNN GDF501) in left (A) lateral (re- versed from right) and (B) ventral views. Skull reconstruction of S. te- nerensis based on re- mains from Niger and Baryonyx walkeri in (C) dorsal and (D) lat- eral views.
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • A Revised Taxonomy of the Iguanodont Dinosaur Genera and Species
    ARTICLE IN PRESS + MODEL Cretaceous Research xx (2007) 1e25 www.elsevier.com/locate/CretRes A revised taxonomy of the iguanodont dinosaur genera and species Gregory S. Paul 3109 North Calvert Station, Side Apartment, Baltimore, MD 21218-3807, USA Received 20 April 2006; accepted in revised form 27 April 2007 Abstract Criteria for designating dinosaur genera are inconsistent; some very similar species are highly split at the generic level, other anatomically disparate species are united at the same rank. Since the mid-1800s the classic genus Iguanodon has become a taxonomic grab-bag containing species spanning most of the Early Cretaceous of the northern hemisphere. Recently the genus was radically redesignated when the type was shifted from nondiagnostic English Valanginian teeth to a complete skull and skeleton of the heavily built, semi-quadrupedal I. bernissartensis from much younger Belgian sediments, even though the latter is very different in form from the gracile skeletal remains described by Mantell. Currently, iguanodont remains from Europe are usually assigned to either robust I. bernissartensis or gracile I. atherfieldensis, regardless of lo- cation or stage. A stratigraphic analysis is combined with a character census that shows the European iguanodonts are markedly more morpho- logically divergent than other dinosaur genera, and some appear phylogenetically more derived than others. Two new genera and a new species have been or are named for the gracile iguanodonts of the Wealden Supergroup; strongly bipedal Mantellisaurus atherfieldensis Paul (2006. Turning the old into the new: a separate genus for the gracile iguanodont from the Wealden of England. In: Carpenter, K. (Ed.), Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs.
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex
    Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex By Karen E. Poole B.A. in Geology, May 2004, University of Pennsylvania M.A. in Earth and Planetary Sciences, August 2008, Washington University in St. Louis A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation Directed by Catherine Forster Professor of Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Karen Poole has passed the Final Examination for the degree of Doctor of Philosophy as of August 10th, 2015. This is the final and approved form of the dissertation. Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex Karen E. Poole Dissertation Research Committee: Catherine A. Forster, Professor of Biology, Dissertation Director James M. Clark, Ronald Weintraub Professor of Biology, Committee Member R. Alexander Pyron, Robert F. Griggs Assistant Professor of Biology, Committee Member ii © Copyright 2015 by Karen Poole All rights reserved iii Dedication To Joseph Theis, for his unending support, and for always reminding me what matters most in life. To my parents, who have always encouraged me to pursue my dreams, even those they didn’t understand. iv Acknowledgements First, a heartfelt thank you is due to my advisor, Cathy Forster, for giving me free reign in this dissertation, but always providing valuable commentary on any piece of writing I sent her, no matter how messy.
    [Show full text]
  • First Australian Spinosaur Dinosaur Had Global Distribution 15 June 2011
    First Australian spinosaur dinosaur had global distribution 15 June 2011 Could the first Australian spinosaur dinosaur be a Spinosaur fossil. Credit: Jon Augier and Museum Victoria Baryonyx? New research has uncovered a fossil cervical vertebra that is nearly identical to a Baryonyx specimen at the Museum. This research suggests spinosaurs lived all over the world. They found that the fossil belonged to a young dinosaur in the meat-eating (theropod) group called spinosaurids. (PhysOrg.com) -- Could the first Australian "The new fossil is the first example of a spinosaurid spinosaur dinosaur be a Baryonyx? New research dinosaur from Australia," says Paul Barrett Natural has uncovered a fossil cervical vertebra that is History Museum dinosaur expert who led this study. nearly identical to a Baryonyx specimen at the "It is almost identical to the Natural History Museum. This research suggests spinosaurs lived Museum's own Baryonyx specimen from England." all over the world. The first spinosaur dinosaur from the Early Cretaceous (125-100 million years ago) of Australia has been uncovered and suggests these meat-eating dinosaurs lived all over the planet, scientists report in the journal Biology Letters today. Scientists from the Natural History Museum and University of Cambridge in the UK and the Museum Victoria and Monash University in Australia, identified a fossil cervical vertebra from a site in Victoria, Australia. 1 / 3 pattern. "They are showing that many of the dinosaurs that we used to think of as distinctively 'northern' or 'southern' in character were much more widespread during this particular period of Earth history. "We're starting to find more similarities than differences as we look at these recent finds in more detail." Supercontinental break up When dinosaurs roamed the planet during the Cretaceous Period, the Earth's surface looked very different to how it does today.
    [Show full text]
  • Paleontological Discoveries in the Chorrillo Formation (Upper Campanian-Lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina
    Rev. Mus. Argentino Cienc. Nat., n.s. 21(2): 217-293, 2019 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina Fernando. E. NOVAS1,2, Federico. L. AGNOLIN1,2,3, Sebastián ROZADILLA1,2, Alexis M. ARANCIAGA-ROLANDO1,2, Federico BRISSON-EGLI1,2, Matias J. MOTTA1,2, Mauricio CERRONI1,2, Martín D. EZCURRA2,5, Agustín G. MARTINELLI2,5, Julia S. D´ANGELO1,2, Gerardo ALVAREZ-HERRERA1, Adriel R. GENTIL1,2, Sergio BOGAN3, Nicolás R. CHIMENTO1,2, Jordi A. GARCÍA-MARSÀ1,2, Gastón LO COCO1,2, Sergio E. MIQUEL2,4, Fátima F. BRITO4, Ezequiel I. VERA2,6, 7, Valeria S. PEREZ LOINAZE2,6 , Mariela S. FERNÁNDEZ8 & Leonardo SALGADO2,9 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina - fernovas@yahoo. com.ar. 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 3 Fundación de Historia Natural “Felix de Azara”, Universidad Maimonides, Hidalgo 775, C1405BDB Buenos Aires, Argentina. 4 Laboratorio de Malacología terrestre. División Invertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 5 Sección Paleontología de Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 6 División Paleobotánica. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 7 Área de Paleontología. Departamento de Geología, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria (C1428EGA) Buenos Aires, Argentina. 8 Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-INIBIOMA), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro, Argentina.
    [Show full text]
  • Cranial Anatomy of Allosaurus Jimmadseni, a New Species from the Lower Part of the Morrison Formation (Upper Jurassic) of Western North America
    Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America Daniel J. Chure1,2,* and Mark A. Loewen3,4,* 1 Dinosaur National Monument (retired), Jensen, UT, USA 2 Independent Researcher, Jensen, UT, USA 3 Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA * These authors contributed equally to this work. ABSTRACT Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis. Submitted 20 July 2018 Accepted 31 August 2019 Subjects Paleontology, Taxonomy Published 24 January 2020 Keywords Allosaurus, Allosaurus jimmadseni, Dinosaur, Theropod, Morrison Formation, Jurassic, Corresponding author Cranial anatomy Mark A.
    [Show full text]
  • A Century of Spinosaurs - a Review and Revision of the Spinosauridae
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online A century of spinosaurs - a review and revision of the Spinosauridae with comments on their ecology HONE David William Elliott1, * HOLTZ Thomas Richard Jnr2 1 School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK 2 Department of Geology, University of Maryland, College Park, MD 20742 USA Abstract: The spinosaurids represent an enigmatic and highly unusual form of large tetanuran theropods that were first identified in 1915. A recent flurry of discoveries and taxonomic revisions of this important and interesting clade had added greatly to our knowledge, however, spinosaur body fossils are generally rare and most species are known from only limited skeletal remains. Their unusual anatomical adaptations to the skull, limbs and axial column all differ from other large theropods and point to an unusual ecological niche and a lifestyle intimately linked to water. Keywords: Theropoda, Megalosauroidea, Baryonychinae, Spinosaurinae, palaeoecology E-mail: [email protected] 1 Introduction The Spinosauridae is an enigmatic clade of large and carnivorous theropods from the Jurassic and Cretaceous that are known from both Gondwana and Laurasia (Holtz et al., 2004). Despite their wide temporal and geographic distribution, the clade is known primarily from teeth and the body fossil record is extremely limited (Bertin, 2010). As such, relatively little is known about this group of animals, although their unusual morphology with regard to skull shape, dentition, dorsal neural spines and other features mark them out as divergent from the essential bauplan of other non-tetanuran theropods (Fig 1).
    [Show full text]
  • Second Discovery of a Spinosaurid Tooth from the Sebayashi Formation (Lower Cretaceous), Kanna Town, Gunma Prefecture, Japan
    群馬県立自然史博物館研究報告(21):1-6,2017 1 Bull.Gunma Mus.Natu.Hist(. 21):1-6,2017 Original Article Second discovery of a spinosaurid tooth from the Sebayashi Formation (Lower Cretaceous), Kanna Town, Gunma Prefecture, Japan 1 2 2 KUBOTA Katsuhiro, TAKAKUWA Yuji and HASEGAWA Yoshikazu 1Kanna Dinosaur Center: 51-2, Kagahara, Kanna, Tano, Gunma 370-1602, Japan ([email protected]) 2Gunma Museum of Natural History: 1674-1 Kamikuroiwa, Tomioka, Gunma 370-2345, Japan ([email protected]; [email protected]) Abstract: A fragment of an isolated tooth is described from the Lower Cretaceous Sebayashi Formation of the Sanchu Group. Its crown is almost round in cross section and shows distinctive flutes. Between the flutes, there are longitudinal finely granular structures. The distinctive carinae have poorly defined serrations. It is probably assigned as a spinosaurid theropod dinosaur and is the second report from Japan. This spinosaurid tooth is found from the higher stratigraphic horizon of the same formation than the first. The occurrences of spinosaurids from two horizons suggest that spinosaurids might have habituated this area during the deposit of the Sebayashi Formation. The dental comparison between Asian and other spinosaurids suggests that Asian spinosaurids may have unique dental characteristics and be different from any known spinosaurids, although the phylogenetic relationships between Asian and other spinosaurids (baryonychines and spinosaurines) are unclear. Key words: Dinosaur, Spinosauridae, Sebayashi Formation, Gunma Prefecture, Kanna Town Introduction Macro-sized and longitudinal ornamentation on the crown is characteristic in spinosaurids and had been called as crest, flute, A fragmentary dinosaur tooth was collected in a fossil- ridge, and striation (Fig.
    [Show full text]
  • A New Long-Necked Turtle, Laganemys Tenerensis (Pleurodira: Araripemydidae), from the Elrhaz Formation (Aptian–Albian) of Niger
    Chapter 14 A New Long-Necked Turtle, Laganemys tenerensis (Pleurodira: Araripemydidae), from the Elrhaz Formation (Aptian–Albian) of Niger Paul C. Sereno and Sara J. ElShafie Abstract An articulated skull and postcranial skeleton of a Introduction pelomedusoid turtle, Laganemys tenerensis gen. et sp. nov., is described from the Lower Cretaceous (Aptian–Albian) Pleurodires are less speciose than cryptodires among living Elrhaz Formation in Niger. Laganemys has a proportion- turtles and are restricted in geographic range to freshwater ately long skull, which increases in depth anteriorly, from habitats in the southern hemisphere. Pleurodiran diversity, the occiput to the snout. The thin flat carapace and plastron habitats, and geographic range, however, were considerably are covered with fine sulcus-and-ridge texture. The carapace greater in the past and appear to have peaked from the has a deep nuchal embayment anteriorly, a small mesopl- Late Cretaceous (ca. 100 Mya) through the Paleocene (ca. astron laterally, and three median fenestrae. The cervical 55 Mya) (Gaffney et al. 2006). Preceding this rich record of series is nearly as long as the carapace with specialized pleurodiran diversity, however, is the first half of pleurodiran joints to enhance lateral flexion between cervicals 2 and 3 history. About 200 million years ago, pleurodires and cryp- and cervicals 6 and 7. The relatively long tail is composed todires diverged from a common casichelydian ancestor, and of at least 26 vertebrae. Forelimbs and hind limbs have long for the ensuing 100 Mya the pleurodire fossil record is and relatively straight unguals. Discovered in a fluvial comparatively thin (Gaffney et al.
    [Show full text]
  • Structural Extremes in a Cretaceous Dinosaur Paul C
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Structural Extremes in a Cretaceous Dinosaur Paul C. Sereno1*, Jeffrey A. Wilson2, Lawrence M. Witmer3, John A. Whitlock2, Abdoulaye Maga4, Oumarou Ide4, Timothy A. Rowe5 1 Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America, 2 Museum of Paleontology and Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan, United States of America, 3 Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America, 4 Institute for Human Science, University of Niamey, Niamey, Republic of Niger, 5 Jackson School of Geological Sciences, The University of Texas at Austin, Austin, Texas, United States of America Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods.
    [Show full text]
  • Best Price for Cialis
    RECENTLY REDISCOVERED BARYONYCHINE TEETH (DINOSAURIA: THEROPODA): NEW MORPHOLOGIC DATA, RANGE EXTENSION & SIMILARITY TO CERATOSAURUS FOWLER, D. W.: Museum of the Rockies, Bozeman, MT ABSTRACT Newly identified baryonychine teeth from the UK Wealden illustrate the morphologic variability and stratigraphic range of this taxon. Whilst common in the formations in which they occur, their distinctive fluted and finely serrated teeth are often misidentified as crocodilian, which are superficially similar in appearance. Fourteen teeth from mainland Weald collections of the British Museum of Natural History (some collected over 150 years ago, all stored with goniopholid specimens) demonstrate the presence of baryonychines in the Hauterivian and possibly Valanginian stages of the Early Cretaceous: the oldest record of this group. An unusual laterally compressed, posteriorly recurved, and fluted tooth from the Purbeck Limestone (Late Jurassic – earliest Cretaceous) may extend Fig. 1: Neovenator: two ‘typical’ theropod Fig. 2: a ‘typical’ Goniopholis tooth from the the range of baryonychines even further. Some specimens from the teeth, Isle of Wight (lateral view) Isle of Wight (lingual, posterior) Barremian Wessex Fm (Isle of Wight, UK) and older mainland deposits show both lingual and labial fluting, previously seen only in teeth from Spain. Spanish specimens can no longer be considered phylogenetically distinct based on this character. The fluted premaxillary and anterior dentary teeth of Ceratosaurus (and to a lesser extent, some other ceratosaurs e.g. Masiakasaurus) bear remarkable similarity to the fluted teeth of baryonychines. Whether this represents convergence or a real phylogenetic signal requires further analysis. However, isolated teeth identified as Ceratosaurus sp. from the Late Jurassic of Tendaguru, Tanzania, can no longer be assigned with confidence to this taxon and should be reassessed, especially as ceratosaur lateral teeth are unknown from these strata.
    [Show full text]