Research Symposium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hylocichla Mustelina
Florida Field Naturalist 47(1):25-28, 2019. LICE AND MITES COLLECTED FROM A WOOD THRUSH (Hylocichla mustelina), A BLACK-AND-WHITE WARBLER (Mniotilta varia), A COMMON GRACKLE (Quiscalus quiscula), AND A NORTHERN MOCKINGBIRD (Mimus polyglottos) ON VACA KEY, FLORIDA LAWRENCE J. HRIBAR Florida Keys Mosquito Control District, 503 107th Street, Marathon, Florida 33050 Florida’s bird fauna is species-rich with over 500 species known from the state (Greenlaw et al. 2014). Yet little to nothing is known about the ectoparasite fauna of most species; what is known was summarized by Forrester and Spalding (2003). Since then few contributions have been made to our knowledge. This note reports ectoparasites removed from three birds found dead outside a building on Vaca Key in the City of Marathon, Monroe County, Florida (24.729984, -81.039438) and one bird killed by a moving vehicle also on Vaca Key. All birds were examined for ectoparasites and specimens were handled and prepared for study as in previous reports (Hribar and Miller 2011; Hribar 2013, 2014). Slide-mounted specimens were sent to specialists for identification. The Wood Thrush (Hylocichla mustelina) was once much commoner than it is now; since 1966 its numbers have declined almost 2% per year (Sauer et al. 2012). It is rarely observed in the Florida Keys, and then only in the spring and autumn, during migration (USFWS 1994). Forrester and Spalding (2003) reported no records of ectoparasitic mites from this bird in Florida. An unidentified feather miteAnalges sp. (Analgidae) was recovered from a Wood Thrush in Tennessee (Reeves et al. 2007). -
A Comprehensive Multilocus Assessment of Sparrow (Aves: Passerellidae) Relationships ⇑ John Klicka A, , F
Molecular Phylogenetics and Evolution 77 (2014) 177–182 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Short Communication A comprehensive multilocus assessment of sparrow (Aves: Passerellidae) relationships ⇑ John Klicka a, , F. Keith Barker b,c, Kevin J. Burns d, Scott M. Lanyon b, Irby J. Lovette e, Jaime A. Chaves f,g, Robert W. Bryson Jr. a a Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Box 353010, Seattle, WA 98195-3010, USA b Department of Ecology, Evolution, and Behavior, University of Minnesota, 100 Ecology Building, 1987 Upper Buford Circle, St. Paul, MN 55108, USA c Bell Museum of Natural History, University of Minnesota, 100 Ecology Building, 1987 Upper Buford Circle, St. Paul, MN 55108, USA d Department of Biology, San Diego State University, San Diego, CA 92182, USA e Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14950, USA f Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA g Universidad San Francisco de Quito, USFQ, Colegio de Ciencias Biológicas y Ambientales, y Extensión Galápagos, Campus Cumbayá, Casilla Postal 17-1200-841, Quito, Ecuador article info abstract Article history: The New World sparrows (Emberizidae) are among the best known of songbird groups and have long- Received 6 November 2013 been recognized as one of the prominent components of the New World nine-primaried oscine assem- Revised 16 April 2014 blage. Despite receiving much attention from taxonomists over the years, and only recently using molec- Accepted 21 April 2014 ular methods, was a ‘‘core’’ sparrow clade established allowing the reconstruction of a phylogenetic Available online 30 April 2014 hypothesis that includes the full sampling of sparrow species diversity. -
Adult Red-Headed Woodpecker Interac- Tion with Bullsnake After Arboreal Nest Depredation
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln The Prairie Naturalist Great Plains Natural Science Society 6-2017 ADULT RED-HEADED WOODPECKER INTERAC- TION WITH BULLSNAKE AFTER ARBOREAL NEST DEPREDATION Brittney J. Yohannes James L. Howitz Follow this and additional works at: https://digitalcommons.unl.edu/tpn Part of the Biodiversity Commons, Botany Commons, Ecology and Evolutionary Biology Commons, Natural Resources and Conservation Commons, Systems Biology Commons, and the Weed Science Commons This Article is brought to you for free and open access by the Great Plains Natural Science Society at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in The Prairie Naturalist by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Prairie Naturalist 49:23–25; 2017 ADULT RED-HEADED WOODPECKER INTERAC- 100 m away from the first observation. To our knowledge, TION WITH BULLSNAKE AFTER ARBOREAL this is the first documented observation of red-headed wood- NEST DEPREDATION—Nest success rates often are pecker nest depredation by any subspecies of gopher snake, higher among cavity nesting birds than those that nest in and the first documented case of an adult red-headed wood- open cups or on the ground (Martin and Li 1992, Wesołowski pecker actively defending its nest against snake predation. and Tomiłojć 2005). Among cavity nesting birds, woodpeck- On 10 June 2015, we were monitoring red-headed wood- ers have some of the highest rates of nest success (Johnson pecker nests at Cedar Creek Ecosystem Science Reserve in and Kermott 1994). A review of woodpecker nesting ecology East Bethel, MN with a nest cavity camera (IBWO.org, Little across species documented nest success ranging from 0.42 to Rock, Arkansas) and telescoping pole (Crain, Mound City, Il- 1.00 with a median of 0.80 (n = 84 populations), and that pre- linois). -
Southeast Arizona, USA 29Th December 2019 - 11Th January 2020
Southeast Arizona, USA 29th December 2019 - 11th January 2020 By Samuel Perfect Bird Taxonomy for this trip report follows the IOC World Bird List (v 9.2) Site info and abbreviations: Map of SE Arizona including codes for each site mentioned in the text Twin Hills Estates, Tucson (THE) 32.227400, -111.059838 The estate is by private access only. However, there is a trail (Painted Hills Trailhead) at 32.227668, - 111.038959 which offers much the same diversity in a less built up environment. The land in the surrounding area tends to be private with multiple “no trespassing” signs so much of the birding had to be confined to the road or trails. Nevertheless, the environment is largely left to nature and even the gardens incorporate the natural flora, most notably the saguaro cacti. The urban environment hosts Northern Mockingbird, Mourning Dove and House Finch in abundance whilst the trail and rural environments included desert specialities such as Cactus Wren, Phainopepla, Black-throated Sparrow and Gila Woodpecker. Saguaro National Park, Picture Rocks (SNP) 32.254136, -111.197316 Although we remained in the car for much of our visit as we completed the “Loop Drive” we did manage to soak in much of the scenery of the park set in the West Rincon Mountain District and the impressive extent of the cactus forest. Several smaller trails do border the main driving loop, so it was possible to explore further afield where we chose to stop. There is little evidence of human influence besides the roads and trails with the main exception being the visitor centre (see coordinates). -
Temporal Dynamics of Woodpecker Predation on Emerald Ash Borer (Agrilus Planipennis) in the Northeastern U.S.A
Agricultural and Forest Entomology (2016), 18, 174–181 DOI: 10.1111/afe.12142 Temporal dynamics of woodpecker predation on emerald ash borer (Agrilus planipennis) in the northeastern U.S.A. ∗ † ‡ † ∗ David E. Jennings ,JianJ.Duan, Leah S. Bauer ,JonathanM.Schmude, Miles T. Wetherington ∗ and Paula M. Shrewsbury ∗Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, U.S.A., †Beneficial Insects Introduction Research Unit, USDA Agricultural Research Service, 501 South Chapel Street, Newark, DE 19711, U.S.A., and ‡Northern Research Station, USDA Forest Service, 3101 Technology Boulevard, Lansing, MI 48910, U.S.A. Abstract 1 Woodpeckers (Picidae) are important natural enemies attacking emerald ash borer (EAB) Agrilus planipennis Fairmaire in North America. There can be considerable variation in predation levels within and between sites, and among different times of year; therefore, understanding what causes these differences is necessary for effectively predicting EAB population dynamics. 2 We examined the temporal dynamics of woodpecker predation on EAB in Michigan and Maryland, as well as how they were affected by season, region, resource availability, tree size and crown condition. In Michigan, we quantified predation in association with EAB developmental stages on different trees over 2 years, whereas, in Maryland, we recorded woodpecker attacks on the same trees for 1 year. 3 Season was a significant predictor of woodpecker predation, with most occurring in winter when late-instar larvae were abundant. Predation also was affected by crown condition and tree size. Additionally, predation levels were similar throughout the year in a region where generations are considered to be less synchronized, representing a more consistent resource for woodpeckers. -
AOS Classification Committee – North and Middle America Proposal Set 2018-B 17 January 2018
AOS Classification Committee – North and Middle America Proposal Set 2018-B 17 January 2018 No. Page Title 01 02 Split Fork-tailed Swift Apus pacificus into four species 02 05 Restore Canada Jay as the English name of Perisoreus canadensis 03 13 Recognize two genera in Stercorariidae 04 15 Split Red-eyed Vireo (Vireo olivaceus) into two species 05 19 Split Pseudobulweria from Pterodroma 06 25 Add Tadorna tadorna (Common Shelduck) to the Checklist 07 27 Add three species to the U.S. list 08 29 Change the English names of the two species of Gallinula that occur in our area 09 32 Change the English name of Leistes militaris to Red-breasted Meadowlark 10 35 Revise generic assignments of woodpeckers of the genus Picoides 11 39 Split the storm-petrels (Hydrobatidae) into two families 1 2018-B-1 N&MA Classification Committee p. 280 Split Fork-tailed Swift Apus pacificus into four species Effect on NACC: This proposal would change the species circumscription of Fork-tailed Swift Apus pacificus by splitting it into four species. The form that occurs in the NACC area is nominate pacificus, so the current species account would remain unchanged except for the distributional statement and notes. Background: The Fork-tailed Swift Apus pacificus was until recently (e.g., Chantler 1999, 2000) considered to consist of four subspecies: pacificus, kanoi, cooki, and leuconyx. Nominate pacificus is highly migratory, breeding from Siberia south to northern China and Japan, and wintering in Australia, Indonesia, and Malaysia. The other subspecies are either residents or short distance migrants: kanoi, which breeds from Taiwan west to SE Tibet and appears to winter as far south as southeast Asia. -
(MAPS) Program on Fort Bragg, North Carolina
The 2016 Annual Report of the Monitoring Avian Productivity and Survivorship (MAPS) Program on Fort Bragg, North Carolina Common Yellowthroat (photo by John Flannery) Steven Albert, Danielle R. Kaschube, and Ron Taylor The Institute for Bird Populations P.O. Box 1346 Point Reyes Station, CA 94956-1346 March 2017 Table of Contents Introduction ..................................................................................................................................... 1 Methods........................................................................................................................................... 2 Establishment and operation of stations ............................................................................. 2 Figure 1. Locations of MAPS bird banding stations at Fort Bragg, NC. ........................... 3 Data collection .................................................................................................................... 5 Computer data entry and verification ................................................................................. 5 Data analysis ....................................................................................................................... 6 Adult population index and productivity analyses ...................................................6 Results ............................................................................................................................................. 7 2016 Indices of Adult Population Size and Post-Fledging Productivity -
Menopon Picicola: a New Junior Synonym of Menacanthus Pici (Insecta: Phthiraptera: Menoponidae)
Zootaxa 4915 (1): 148–150 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Correspondence ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4915.1.11 http://zoobank.org/urn:lsid:zoobank.org:pub:B6E4B8EC-AB85-4A15-A2B9-1DDB8275799A Menopon picicola: a new junior synonym of Menacanthus pici (Insecta: Phthiraptera: Menoponidae) RICARDO L. PALMA1 & TERRY D. GALLOWAY2 1Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand. 2Department of Entomology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada. �[email protected]; https://orcid.org/0000-0002-0124-8601 1Corresponding author. �[email protected]; https://orcid.org/0000-0003-2216-384X Packard (1873) described Menopon picicola as a new species, based on ten lice taken from two species of woodpeckers of the genus Picoides—P. arcticus (Swainson, 1832) and P. dorsalis Baird, 1858—collected in Wyoming, U.S.A. in August 1872. Considering that (1) Packard (1873) neither designated a holotype nor a single type host, (2) his type material is most likely lost, and (3) no additional lice from either of those two species of Picoides have been reported in the literature, the taxonomic status of Menopon picicola has not been confirmed. Based on the albeit brief original description of Menopon picicola, most subsequent authors from the mid-20th cen- tury agreed that this louse species should be placed in the genus Menacanthus Neumann, 1912, because there were no re- cords of Menopon from Piciformes, and considered it as a valid taxon. However, Złotorzycka (1965) placed M. -
Woodpeckers and Allies)
Coexistence, Ecomorphology, and Diversification in the Avian Family Picidae (Woodpeckers and Allies) A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Matthew Dufort IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY F. Keith Barker and Kenneth Kozak October 2015 © Matthew Dufort 2015 Acknowledgements I thank the many people, named and unnamed, who helped to make this possible. Keith Barker and Ken Kozak provided guidance throughout this process, engaged in innumerable conversations during the development and execution of this project, and provided invaluable feedback on this dissertation. My committee members, Jeannine Cavender-Bares and George Weiblen, provided helpful input on my project and feedback on this dissertation. I thank the Barker, Kozak, Jansa, and Zink labs and the Systematics Discussion Group for stimulating discussions that helped to shape the ideas presented here, and for insight on data collection and analytical approaches. Hernán Vázquez-Miranda was a constant source of information on lab techniques and phylogenetic methods, shared unpublished PCR primers and DNA extracts, and shared my enthusiasm for woodpeckers. Laura Garbe assisted with DNA sequencing. A number of organizations provided financial or logistical support without which this dissertation would not have been possible. I received fellowships from the National Science Foundation Graduate Research Fellowship Program and the Graduate School Fellowship of the University of Minnesota. Research funding was provided by the Dayton Fund of the Bell Museum of Natural History, the Chapman Fund of the American Museum of Natural History, the Field Museum of Natural History, and the University of Minnesota Council of Graduate Students. -
Passerellidae Species Tree
Passerellidae I: Spizellini, Ammodramini & Chlorospingini Lark Sparrow, Chondestes grammacus Lark Bunting, Calamospiza melanocorys Black-throated Sparrow, Amphispiza bilineata Five-striped Sparrow, Amphispiza quinquestriata SPIZELLINI Chipping Sparrow, Spizella passerina Clay-colored Sparrow, Spizella pallida Black-chinned Sparrow, Spizella atrogularis Field Sparrow, Spizella pusilla Brewer’s Sparrow, Spizella breweri Worthen’s Sparrow, Spizella wortheni Tumbes Sparrow, Rhynchospiza stolzmanni Stripe-capped Sparrow, Rhynchospiza strigiceps Grasshopper Sparrow, Ammodramus savannarum Grassland Sparrow, Ammodramus humeralis Yellow-browed Sparrow, Ammodramus aurifrons AMMODRAMINI Olive Sparrow, Arremonops rufivirgatus Green-backed Sparrow, Arremonops chloronotus Black-striped Sparrow, Arremonops conirostris Tocuyo Sparrow, Arremonops tocuyensis Rufous-winged Sparrow, Peucaea carpalis Cinnamon-tailed Sparrow, Peucaea sumichrasti Botteri’s Sparrow, Peucaea botterii Cassin’s Sparrow, Peucaea cassinii Bachman’s Sparrow, Peucaea aestivalis Stripe-headed Sparrow, Peucaea ruficauda Black-chested Sparrow, Peucaea humeralis Bridled Sparrow, Peucaea mystacalis Tanager Finch, Oreothraupis arremonops Short-billed (Yellow-whiskered) Chlorospingus, Chlorospingus parvirostris CHLOROSPINGINI Yellow-throated Chlorospingus, Chlorospingus flavigularis Ashy-throated Chlorospingus, Chlorospingus canigularis Sooty-capped Chlorospingus, Chlorospingus pileatus Wetmore’s Chlorospingus, Chlorospingus wetmorei White-fronted Chlorospingus, Chlorospingus albifrons Brown-headed -
NEWS and NOTES by Paul Hess
NEWS AND NOTES by Paul Hess “Lilian’s” Meadowlark für Ornithologie 135:28), but no details about the findings have been published. Ornithologist Harry C. Oberholser was intrigued by mead - At last, a large-scale genetic report by F. Keith Barker, Ar - owlarks collected in 1929 near Arizona’s Huachuca Moun - ion J. Vandergon, and Scott M. Lanyon arrived in 2008 tains, because their size, structure, and plumage differed (Auk 125:869–879). They examined two mitochondrial from those of the Western Meadowlark and from known DNA (mtDNA) genes and one nuclear locus in 14 Eastern variations of Eastern Meadowlark. In 1930 he described the Meadowlark subspecies throughout the North American, specimens as a new Eastern Meadowlark subspecies and Central American, and South American range. named it lilianae to honor Lilian Baldwin, who had donat - The results indicate a long history of evolutionary diver - ed the collection ( Scientific Publications of the Cleveland Mu - gence between lilianae and all except one other Eastern seum of Natural History 1:83–124). Meadowlark subspecies, auropectoralis of central and We now know it as “Lilian’s” Meadowlark, of desert grasslands in the southwestern U.S. and northern Mexico, where it is distinguishable from Western Meadowlark with careful study by eye and ear. In identification guides, lilianae re - ceived little attention and no illustration until the National Geographic Field Guide to the Birds of North America in 1983. Kevin J. Zimmer of - fered tips in Birding (August 1984, pp. 155–156) and in his books The Western Bird Watcher (Prentice-Hall 1985) and Birding in the American West (Cornell University Press 2000). -
Birds of Davis Creek Regional Park Thank You to the Following Photographers Who Supplied Pictures Taken at Davis Creek Regional Park
Birds of Davis Creek Regional Park Thank You to the following photographers who supplied pictures taken at Davis Creek Regional Park: Jeff Bleam, Ernest A. Ross, Steven Siegel, Tim Torell, Taylor James, Greg Scyphers, Jon Becknell, Sara Danta & Jane Thompson Future picture submissions can be sent to: [email protected] Thank You! Bird ID, Range Info. and Fun Facts from www.allaboutbirds.org Western Tanager (Piranga ludoviciana) ID: Orange-red head, yellow body and coal-black wings, back and tail. Short, thick-based bill and medium-length tail. Size: Between sparrow and robin. Fun Fact: While most red birds owe their redness to a variety of plant pigments known as carotenoids, the Western Tanager gets its scarlet head feathers from a rare pigment called rhodoxanthin. Unable to make this substance in their own bodies, Western Tanagers probably obtain it from insects in their diet. (allaboutbirds.org) Pacific Wren (Troglodytes pacificus) ID: Brown overall with darker brownish- black barring on the wings, tail and belly. Face is also brown with a slight pale mark over the eyebrow. Short wings, stubby tail and a thin bill. Size: Sparrow-sized or smaller. Fun Fact: Male Pacific Wrens build multiple nests within their territory. During courtship, males lead the female around to each nest and the female chooses which nest to use. (allaboutbirds.org) Bewick’s Wren (Thryomanes bewickii) ID: Slender body with a slender, long bill that is slightly downcurved. Back and wings are plain brown; underparts gray- white; and the long tail is barred with black and tipped with white spots. Long, brow-like white stripe over the eye.