Scoping Paper Feeding Into the Development of UNEP's Position On

Total Page:16

File Type:pdf, Size:1020Kb

Scoping Paper Feeding Into the Development of UNEP's Position On Scoping paper feeding into the development of UNEP’s position on urban and peri-urban agriculture Final version (15 July 2013) Ir. Marielle Dubbeling, RUAF Foundation (International network of Resource centres on Urban Agriculture and Food security) with inputs from Yves Cabannes, DPU/University College London and from several UN and international organisations Leusden, The Netherlands (www.ruaf.org) Contents 1. Executive summary ..................................................................................................................... 3 2. Aims of the paper ........................................................................................................................ 6 3. Placing urban and peri-urban agriculture in the context of urban food systems and resilient cities .................................................................................................................................................... 7 4. Institutional, research and policy achievements and gaps in urban agriculture .......................... 11 4.1 Main institutional achievements and gaps ............................................................................. 11 4.2 Mobilising financial support .................................................................................................... 14 4.3 Research and extension for safer, more efficient and sustainable farming systems.............. 15 4.4 More commercial forms of urban agriculture and business models for short supply chains; multifunctional urban agriculture and resource recovery ............................................................ 17 4.5 Need for further integration of urban and peri-urban agriculture into land use planning and urban or city regional food systems .............................................................................................. 18 4.6 Agricultural training and extension programmes ................................................................... 20 4.7 Need for more systematic and standardised research on impacts ......................................... 22 5. Potential role that UNEP could play in the sector ......................................................................... 22 5.1 Mainstreaming urban agriculture into current UNEP programmes and agendas .................. 23 5.2 Tackling identified gaps in the sector ...................................................................................... 25 6. Conclusions .................................................................................................................................... 28 7. References ..................................................................................................................................... 29 Annex 1- Questionnaire on institutional urban agriculture programs and visions for the future- List of respondents .................................................................................................................................. 31 Annex 2- Urban agriculture, the food, waste, water and energy nexus and policy frameworks ..... 33 Urban agriculture, food security and income generation: the food nexus ................................... 33 Urban agriculture, resource recovery and efficiency and city resilience: the waste, water and energy nexus ................................................................................................................................. 37 Policy frameworks ......................................................................................................................... 42 Annex 3- Past and current involvement of research, international organisations, local government fora and UN agencies ........................................................................................................................ 47 Individual research and first UN surveys and support (1970-1995) ............................................. 47 Large increase in networking, research and policy making; several UN agencies develop projects and programmes on urban agriculture (1996-2007) .................................................................... 47 Resurge of interest for urban agriculture linked to the global food crisis, climate change, the green economy and debates on resilient cities (2008-present) ................................................... 49 2 | P a g e Scoping paper feeding into the development of UNEP’s position on urban and peri-urban agriculture 1. Executive summary In an increasingly urbanising world, characterised by growing urban markets, urban poverty and food insecurity, a rising attention for urban or city-regional food systems responds to the need to place food higher on the urban agenda. Sustainable urban food systems are on their turn an increasingly important component of more resilient cities. Urban and peri-urban agriculture are seen as one of the strategies to contribute to such more resilient urban (food) systems. The growing interest for urban and peri-urban agriculture was and is triggered by recognition of its (potential) multiple co-benefits and contributions to not only improving food security and nutrition, but also to community organisation, city greening, waste management, income and employment generation and –more recently- city resilience and climate change adaptation (including flood mitigation and reduction of urban temperatures). This paper starts by placing urban and peri-urban agriculture in the context of more sustainable and resilient urban and city-regional (food) systems, discussing its contributions along the so-called food, waste, water and energy nexus. Based on an overview of the State of Play of urban agriculture and analysis of its benefits, the paper identifies and analyses mayor research and policy gaps in the field of urban and peri-urban agriculture and gives a set of recommendations regarding an UNEP potential role and interventions in the sector. Urban and peri-urban agriculture are defined as the growing of food and plants and raising of animals and fish in and around urban areas; by making use of urban resources such as land, labour and urban organic wastes, growing produce for urban citizens, being strongly influenced by urban policies and regulations, land prices and availability and urban markets, and having effects on urban food security and poverty, as well as the urban environment and health. Over the past 15 years, urban agriculture has grown from individual project and research interest and interventions to full-fledged donor programmes; university curricula, government policy and programmes and being a main topic of international conferences and publications. Drivers for urban agriculture are growing urban populations and markets, increasing exposure to crisis, growing urban poverty and urban agriculture‟s potential contribution to urban food security, income generation and economic security, urban green design and management and climate change adaptation. International organisations such as UN–FAO, UN-HABITAT and GIZ, networks such as RUAF and the Food Think Thank and local government bodies such as ICLEI, Metropolis and the Local Authorities Major Groups increasingly call for more resilient urban food systems to which urban and peri-urban agriculture, or increased local food production, may contribute as part of a comprehensive strategy that integrally considers rural-urban food flows, food production, processing and distribution, sustainable resource use, health and nutrition. Resilient urban food systems after all do require multiple sources of food (with urban and peri-urban agriculture being one of such –complementary- sources), buffers against increase in food prices and market disruptions (urban and peri-urban agriculture is acknowledged for its contribution to enhanced self-reliance, income and job creation), call for increased resource recovery and efficiency (with urban agriculture providing opportunities for closing nutrient loops and making productive use of resources) and more increased resilience to climate change (with urban agriculture and forestry playing a potential role in mitigating impacts of climate change). 3 | P a g e Over the past years, an increasing number of local and national governments have supported urban agriculture in their programing and planning. In order to make more effective and efficient use of resource opportunities for urban agriculture available in cities, there is a need for enabling policy environments (either in the context of food security, environmental or climate change policies and programmes), integration of urban and peri- urban agriculture in development and land use plans and zoning codes, support for safe and environmentally sustainable resource recovery, marketing, financing and technical assistance to producers. Support from international organisations and programmes to urban and peri-urban agriculture has grown from individual research and first UN support in the period between 1970-1995, to large increase in networking, research and policy making and more substantial UN support to urban agriculture projects and programmes (1995-2007), to a recent resurge in interest for urban agriculture (2008-recent) linked to the global food crisis, climate change and new debates on the green economy and resilient cities. Overall, this has led to (1) an increase in research capacity and programmes on urban agriculture; (2) rise in government attention and support to urban agriculture; (3) increasing diversity of funding (sources) for urban agriculture
Recommended publications
  • Reducing the Food Wastage Footprint
    toolkit.xps:Layout 1 13/06/13 11.44 Pagina 3 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-107741-2 (print) E-ISBN 978-92-5-107743-6 (PDF) © FAO 2013 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact- us/licence-request or addressed to [email protected]. FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through publications- [email protected].
    [Show full text]
  • “Sustainable” Sanitation: Challenges and Opportunities in Urban Areas
    sustainability Review Towards “Sustainable” Sanitation: Challenges and Opportunities in Urban Areas Kim Andersson *, Sarah Dickin and Arno Rosemarin Stockholm Environment Institute, Linnégatan 87D, 115 23 Stockholm, Sweden; [email protected] (S.D.); [email protected] (A.R.) * Correspondence: [email protected]; Tel.: +46-73-707-8609 Academic Editors: Philipp Aerni and Amy Glasmeier Received: 8 June 2016; Accepted: 2 December 2016; Published: 8 December 2016 Abstract: While sanitation is fundamental for health and wellbeing, cities of all sizes face growing challenges in providing safe, affordable and functional sanitation systems that are also sustainable. Factors such as limited political will, inadequate technical, financial and institutional capacities and failure to integrate safe sanitation systems into broader urban development have led to a persistence of unsustainable systems and missed opportunities to tackle overlapping and interacting urban challenges. This paper reviews challenges associated with providing sanitation systems in urban areas and explores ways to promote sustainable sanitation in cities. It focuses on opportunities to stimulate sustainable sanitation approaches from a resource recovery perspective, generating added value to society while protecting human and ecosystem health. We show how, if integrated within urban development, sustainable sanitation has great potential to catalyse action and contribute to multiple sustainable development goals. Keywords: urbanization; sustainable sanitation; resource recovery; urban planning and development; public health 1. Introduction Sanitation is fundamental to healthy and productive urban life, and the provision of sanitation services for fast-growing urban populations is one of the world’s most urgent challenges. Currently, more than 700 million urban residents lack improved sanitation access globally, including 80 million who practise open defecation [1].
    [Show full text]
  • REFERENCE LIST Status Report: Focus on Staple Crops
    AGRA (Alliance for a Green Revolution in Africa). 2013. Africa Agriculture REFERENCE LIST Status Report: Focus on Staple Crops. Nairobi: AGRA. http://agra-alliance.org/ AAAS (American Association for the Advancement of Science). 2012. download/533977a50dbc7/. “Statement by the AAAS Board of Directors on Labeling of Genetically AgResearch. 2016. “Shortlist of Five Holds Key to Reduced Methane Modified Foods.” Emissions from Livestock.” AgResearch News Release. http://www. Abalos, D., S. Jeffery, A. Sanz-Cobena, G. Guardia, and A. Vallejo. 2014. agresearch.co.nz/news/shortlist-of-five-holds-key-to-reduced-methane- “Meta-analysis of the Effect of Urease and Nitrification Inhibitors on Crop emissions-from-livestock/. Productivity and Nitrogen Use Efficiency.” Agriculture, Ecosystems, and AHDB (Agriculture and Horticulture Development Board). 2017. “Average Milk Environment 189: 136–144. Yield.” Farming Data. https://dairy.ahdb.org.uk/resources-library/market- Abalos, D., S. Jeffery, C.F. Drury, and C. Wagner-Riddle. 2016. “Improving information/farming-data/average-milk-yield/#.WV0_N4jyu70. Fertilizer Management in the U.S. and Canada for N O Mitigation: 2 Ahmed, S.E., A.C. Lees, N.G. Moura, T.A. Gardner, J. Barlow, J. Ferreira, and R.M. Understanding Potential Positive and Negative Side-Effects on Corn Yields.” Ewers. 2014. “Road Networks Predict Human Influence on Amazonian Bird Agriculture, Ecosystems, and Environment 221: 214–221. Communities.” Proceedings of the Royal Society B 281 (1795): 20141742. Abbott, P. 2012. “Biofuels, Binding Constraints and Agricultural Commodity Ahrends, A., P.M. Hollingsworth, P. Beckschäfer, H. Chen, R.J. Zomer, L. Zhang, Price Volatility.” Paper presented at the National Bureau of Economic M.
    [Show full text]
  • Sustainable Sanitation Systems: Health, Environment and Governance Challenges
    Sustainable Sanitation Systems: Health, Environment and Governance Challenges The Case of Human Rights-Based Policy Reform in Alternative Wastewater Management Strategies Florian Thevenon WaterLex Highlights WaterLex is an international public interest development Context: About 2.5 billion people Limits: Field awareness campaigns Policy reform: Integrating the Human organization based in Geneva, Switzerland. It is a UN- do not use an improved sanitation and advocacy actions are Rights to Water and Sanitation Water Partner with UN ECOSOC special consultative status. facility, and about 1 billion people encouraged to improve and monitor into policies and regulations, Its mission is to develop sustainable solutions based on practise open defaecation which is water quality and hygiene practices; including for service providers and human rights to improve water governance worldwide, one of the main causes of drinking because wastewater, even when regulators, could therefore be used particularly in regard to consistent water law and policy water pollution and diarrhoea treated, is highly enriched in to increase the access to safely frameworks. It works with an alliance of interested parties incidences. There is an urgent hazardous pollutants. Wastewater managed sanitation services and to improve water-governance frameworks, bringing them need to increase the access to recycling, safe water reclamation achievement of SDG 6. Local and in line with country obligations under international human safely managed sanitation services, and reuse must therefore be national governments therefore rights law. It is an official member of the UN Environment and a need for a paradigm shift regulated and aligned with national need to integrate their national Global Wastewater Initiative.
    [Show full text]
  • ENSURE HEALTHY LIVES and PROMOTE WELL-BEING for ALL Experiences of Community Health, Hygiene, Sanitation and Nutrition
    INNOVATION IN LOCAL AND GLOBAL LEARNING SYSTEMS FOR SUSTAINABILITY ENSURE HEALTHY LIVES AND PROMOTE WELL-BEING FOR ALL Experiences of Community Health, Hygiene, Sanitation and Nutrition LEARNING CONTRIBUTIONS OF REGIONAL CENTRES OF EXPERTISE ON EDUCATION FOR SUSTAINABLE DEVELOPMENT Editors: Unnikrishnan Payyappallimana Zinaida Fadeeva www.rcenetwork.org CONTENTS Contents Foreword by UNU-IAS 2 Foreword by UNU-IIGH 3 List of Abbreviations 4 About RCEs 6 Editorial 8 COMMUNITY HEALTH 1. RCE Grand Rapids 20 2. RCE Central Semenanjung 28 3. RCE Borderlands México-USA 38 4. RCE Greater Dhaka 48 5. RCE Yogyakarta 56 6. RCE Srinagar 62 WATER, SANITATION, HYGIENE 7. RCE Central Semenanjung 72 8. RCE Kunming 82 This document should be cited as: Innovation in Local and Global Learning Systems for Sustainability 9. RCE Bangalore 90 Ensure Healthy Lives and Promote Well-being for All Experiences of Community Health, Hygiene, Sanitation and Nutrition 10. RCE Goa 98 Learning Contributions of the Regional Centres of Expertise on Education for Sustainable Development, UNU-IAS, Tokyo, Japan, 2018 11. RCE Srinagar 104 Editing: Unnikrishnan Payyappallimana NUTRITION Zinaida Fadeeva 12. RCE CREIAS-Oeste 112 Technical Editors: Hanna Stahlberg 13. RCE Munich 122 Kiran Chhokar 14. RCE Mindanao 136 Coordination: Hanna Stahlberg Nancy Pham Way Forward 142 Design and layout: Fraser Biscomb Acknowledgements 147 © The United Nations University 2018 Contacts 148 Published by: United Nations University, Institute for the Advanced Study of Sustainability (UNU-IAS) 5-53-70, Jingumae, Shibuya Tokyo 150-8925, Japan Email: [email protected] Web: www.rcenetwork.org/portal The designations employed and the presentation of material throughout the publication do not imply the expression of any opinion whatsoever on the part of UNU-IAS concerning the legal status of any country, territory, city or area or of its authorities, or concerning its frontiers or boundaries.
    [Show full text]
  • Ecological Sanitation and Sustainable Nutrient Recovery Education: Considering the Three Fixes for Environmental Problem-Solving
    sustainability Article Ecological Sanitation and Sustainable Nutrient Recovery Education: Considering the Three Fixes for Environmental Problem-Solving Julian Junghanns 1,* and Thomas Beery 2 1 Faculty of Natural Sciences, Kristianstad University, SE-291 88 Kristianstad, Sweden 2 Faculty of Education, Kristianstad University, SE-291 88 Kristianstad, Sweden; [email protected] * Correspondence: [email protected] Received: 30 March 2020; Accepted: 25 April 2020; Published: 28 April 2020 Abstract: In the context of phosphorus as a finite resource and the unsustainable character of current sanitation in Europe, this paper examined social factors in a technological transition towards sustainable sanitation. The evaluation is based on the idea of cognitive, structural, and technological fixes to achieve environmental protection. The cognitive fix has been evaluated through literature and a European-wide survey with universities that offer civil and environmental engineering programs. Contrary to an initial hypothesis, ecological sanitation and nutrient recycling are taught by the majority (66%) of responding programs. There are, however, local differences in terms of context and detail of the education. The main impediments for teaching were identified as academic resources (especially in Belgium, Germany and Denmark) and the technological status quo (Ireland, Italy, Spain and some programs of the United Kingdom). Instructors’ personal commitment and experience was evaluated to be a key factor for an extensive coverage of sustainable sanitation in higher education programs. The role of higher education has a critical role to play in changing sanitation practices, given the unique professional developmental stage of students and the potential for a cognitive fix to contribute to meaningful change.
    [Show full text]
  • Environmental Sanitation “Reflections from Practice” a Module for Community Health Practitioners
    Environmental Sanitation “Reflections from Practice” A Module for Community Health Practitioners March 2015 PRAHLAD IM With the Team SOCIETY FOR COMMUNITY HEALTH AWARNESS, RESEARCH AND ACTION (SOCHARA) SOCIETY FOR COMMUNITY HEALTH AWARENESS RESEARCH AND ACTION 359, 1st Main, 1st Block, Koramangala, Bangalore - 560 034 E mail:[email protected] Web: www.sochara.org SOCHARA - Environmental Sanitation 1 2 SOCHARA - Environmental Sanitation CONTENT S No. Chapters Page Acknowledgments 4 List of Figures & Tables 5-6 Abbreviations 7 Foreword 8 Part A – Perspectives on Sanitation and Health 1 Introduction 11 2 History of Sanitation 17 3 Millennium Development Goals and Sanitation 22 4 Sanitation and Gender Perspectives 25 Part B – Understanding of Sanitation & its Interlinkages 5 Determinants of Sanitation – SEPCE analysis 29 6 Sanitation and Response to Disasters 33 7 Appropriate Technology for Sanitation 36 8 Ecological Sanitation 42 9 Fluorosis and Health 46 10 Occupational Health and Safety of Sanitation and Allied Workers 49 11 Solid and Liquid Waste Management 51 12 Toilet with Biogas plants 55 Part C – Building Theory from Practice 13 An Overview of SOCHARA’s Involment in Environmental Sanitation 59 Part D – Sustainable Sanitation 14 Sustainable Sanitation 71 References 74 SOCHARA - Environmental Sanitation 3 ACKNOWLEDGEMENT I thank the network partners, individuals, alumni fellows of SOCHARA, rural and urban communities and Panchayati Raj institution for the trust they had in me and the experience they have given me to grow as a community health worker. I would like to thank my mentors and guides Dr. Thelma Narayan and Dr. Ravi Narayan for their continued support through technical exposure, resources and guidance during our work on environmental sanitation and in preparing this module.
    [Show full text]
  • Eco-Friendly Toilet for Sustainable Wastewater Management in Tourism Area
    E3S Web of Conferences 211, 01009 (2020) https://doi.org/10.1051/e3sconf/202021101009 The 1st JESSD Symposium 2020 Eco-friendly toilet for sustainable wastewater management in tourism area Firdaus Ali1,2*, Dwi Lintang Lestari2 and Marsya Dyasthi Putri2 1Department of Civil and Environmental Engineering, Universitas Indonesia, Depok, 16424, Indonesia 2Indonesia Water Institute, Tanjung Barat Indah F2, Jakarta Selatan, 12530, Indonesia Abstract. Indonesia has implemented sustainable tourism through many programs and ecotourism is one of the issues that most talked about. Ecotourism in Indonesia defined as activities of responsible traveling in intact areas or in areas which are named according to the role of nature. The presence of sustainable tourism should be minimum negative impacts, both on the environmental resources and on social culture local values. The tourism carrying capacity has been influenced by numerous factors of the environmental properties and tourist motivation in the ecotourism locations. One of the keys in environmental properties is sanitation facility as now tourist has voiced concern over the hygiene and quality of the facilities. In tourism area, sometimes with lack of fresh water, a huge amount of fresh water is needed for the sanitation system often caused by the wasteful use of water habit that still done by many tourists. In terms of eco-efficiency, this paper focuses on eco-friendly design in an environmentally manner and analyzing wastewater management an eco- friendly toilet in tourism area. The concept of eco-friendly toilet is maximizing the recycling cycle of water, rain water, and wastewater for later reuse in accordance with the needs of water use in the sanitation system.
    [Show full text]
  • Urban Aquaculture
    Urban Aquaculture Water-sensitive transformation of cityscapes via blue-green infrastructures vorgelegt von Dipl.-Ing. Grit Bürgow geb. in Berlin von der Fakultät VI Planen Bauen Umwelt der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften - Dr.-Ing. - genehmigte Dissertation Promotionsausschuss: Vorsitzende: Prof. Undine Gisecke Gutachter: Prof. Dr.-Ing. Stefan Heiland Gutachterin: Prof. Dr.-Ing. Angela Million (Uttke) Gutachterin: Prof. Dr. Ranka Junge Tag der wissenschaftlichen Aussprache: 25. November 2013 Berlin 2014 Schriftenreihe der Reiner Lemoine-Stiftung Grit Bürgow Urban Aquaculture Water-sensitive transformation of cityscapes via blue-green infrastructures D 83 (Diss. TU Berlin) Shaker Verlag Aachen 2014 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Zugl.: Berlin, Techn. Univ., Diss., 2013 Titelfoto: (c) Rayko Huß Copyright Shaker Verlag 2014 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers. Printed in Germany. ISBN 978-3-8440-3262-8 ISSN 2193-7575 Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de
    [Show full text]
  • Current Developments on a Water-Related SDG
    Current developments on a water-related SDG Ndey-Isatou Njie Chief , Water, Energy and Capacity Development Branch Secretary, UN-Water Water in the Intergovernmental Process 2012 2013 2014 2015 Process Discussion Content Generation Negotiation and Debate Agreement SDG Working Group Open Working Group (OWG) on SDGs Report (Comprised of 30 Seats, 69 member states) (68 th UNGA Session) Process Process Intergovernmental Intergovernmental UN Task High Level Panel (HLP) HLP Report SG Report Team and Secretariat (May 2013) (Sep 2013) Member state debates UN-Led Process UN-Led Agreement on Goals and Targets? Country Consultations If so: •Indicators Monitoring Systems 11 Thematic Consultations • •Approach for implementation Non – UN Activities (e.g., civil society, foundations, private sector) research and consultation Non UN Non Activities Source : UNICEF 2013 Water Goal Water as cross cutting UNSGAB Report – January 2013 x Global Compact- Corporate x Sustainability and the UN post 2015 Agenda – March 2013 Report of the High Level Panel of x Eminent Persons - May 2013 Sustainable Development x Solutions Network – An Action Agenda for SD - June 2013 Report of the SG to the 68th x session of the GA: A life of dignity for all - July 2013 Survey to countries in the Rio X? process Progress report of the OWG of the x General Assembly - July 2013 Water-related SDG development… The African Minister’s Council on Water (AMCOW) . “[to] ensure a water secure world for all”, targets: 1) “Universal access to safe water, improved sanitation and hygiene by 2030”; 2) “Increase productive use of water resources under managed conditions to X% of harvest potential by 2030”; 3) “By 2030, water quality is assured and safeguarded for all uses”.
    [Show full text]
  • Eco Sanitation
    Eco Sanitation Ecological sanitation (Ecosan) is a new concept in handling compost wastes, to improve sewage treatment and, to hygienise and substances that have so far been termed wastewater or water- improve aquaculture. In water-rich regions, wastewater can be carried waste for disposal. It is a hygienic system of human waste treated to an extent that it can be re-used for water-intensive farming disposal to retrieve and re-use the systems like fish-farming. nutrients like nitrogen, phosphorus and potassium from human waste, and to The Advantages economise the use of water. It is based on the idea that urine, faeces and water are Ecological sanitation resources in an ecological loop and, * provides affordable sanitation options recycling of nutrients helps ensure food for all; covers a wide range of design and security. Ecosan aims to promote the technique for the collection and treatment development, implementation and of human waste; can be dry and/or water- dissemination of socially and culturally based system. acceptable and sustainable sanitation * provides appropriate solutions adapted approaches. These approaches are to the local situation; suitable both for hygienically safe and environmentally rural and urban settings; allows for sound. The main objectives of Ecosan are c e n t r a l i s e d a n d d e c e n t r a l i s e d to: management. * promotes health, protects environment, * reduce the health risks associated with sanitation, water conserves water, and minimises the pollution of the water contamination and waste disposal system. * prevent the pollution of surface and underground water * promotes safe and hygienic recovery and use of nutrients, * reduce, through recycling of grey water, wastewater organics, trace elements, water, and bio-energy.
    [Show full text]
  • The Potential of Reuse Developing Innovative Sanitation Solutions for the Region the Potential of Reuse Developing Innovative Sanitation Solutions for the Region
    The Potential of Reuse Developing innovative sanitation solutions for the region The Potential of Reuse Developing innovative sanitation solutions for the region Bremen Overseas Research and Development Association 2 3 The Potential of Reuse Table of contents Introduction 3 Map 4 Contributing to worldwide expertise on improved sanitation management 6 Contributing to advocacy dialogue to achieve the Sustainable Development Goals (SDGs) 8 Afghanistan: Systemising wastewater management 10 Addressing the challenges of rapid and unplanned urbanisation 11 Addressing gender inequalities 12 Building rural resilience 13 Iraq: Relieving the plight of refugees and internally displaced people 14 Supplying water for therapeutic gardening 15 Improving living conditions in the camps 16 Fostering capacity development in wastewater management 17 Jordan: Maximising the reuse of water 18 Fostering innovation from the municipality level to the national level 19 Establishing an integrated water management hub 20 Preserving natural bio-diversity and ecosystems 21 References 22 1 Sustainable development, liveable communities, Introduction healthy environments: to make these a reality Through our operations in Afghanistan, Iraq At BORDA WesCA, we take an environmen- around the world, it is essential to ensure access and Jordan, BORDA West and Central Asia tal resource management approach that to clean water and adequate sanitation, safely (WesCA) contributes to reducing the eco- recognises inter-linkages between SDGs. logical risk of untreated wastewater and
    [Show full text]