Mouse Slc35c2 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Slc35c2 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Slc35c2 Knockout Project (CRISPR/Cas9) Objective: To create a Slc35c2 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Slc35c2 gene (NCBI Reference Sequence: NM_144893 ; Ensembl: ENSMUSG00000017664 ) is located on Mouse chromosome 2. 10 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 10 (Transcript: ENSMUST00000109300). Exon 2~10 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 0.09% of the coding region. Exon 2~10 covers 100.0% of the coding region. The size of effective KO region: ~6218 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 10 Legends Exon of mouse Slc35c2 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(23.3% 466) | C(26.2% 524) | T(21.65% 433) | G(28.85% 577) Note: The 2000 bp section upstream of start codon is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(21.1% 422) | C(28.4% 568) | T(23.05% 461) | G(27.45% 549) Note: The 2000 bp section downstream of stop codon is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr2 - 165283369 165285368 2000 browser details YourSeq 24 1295 1323 2000 84.7% chr6 + 13062080 13062106 27 browser details YourSeq 22 696 720 2000 96.0% chr6 - 98563485 98563511 27 browser details YourSeq 22 1054 1075 2000 100.0% chr19 - 18597160 18597181 22 browser details YourSeq 22 379 400 2000 100.0% chr18 - 11043575 11043596 22 browser details YourSeq 22 1372 1396 2000 95.9% chr10 + 53878111 53878137 27 browser details YourSeq 21 444 465 2000 100.0% chr1 - 31750839 31750861 23 browser details YourSeq 21 1298 1328 2000 83.9% chrX + 73829401 73829431 31 browser details YourSeq 20 1333 1352 2000 100.0% chr10 - 36172756 36172775 20 browser details YourSeq 20 1747 1766 2000 100.0% chr1 - 74594402 74594421 20 browser details YourSeq 20 524 543 2000 100.0% chr1 + 32833791 32833810 20 Note: The 2000 bp section upstream of start codon is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr2 - 165275149 165277148 2000 browser details YourSeq 30 1218 1266 2000 96.9% chr1 + 119667099 119667149 51 browser details YourSeq 22 1006 1027 2000 100.0% chr13 - 33894390 33894411 22 browser details YourSeq 22 1487 1508 2000 100.0% chr9 + 65277840 65277861 22 browser details YourSeq 22 567 588 2000 100.0% chr4 + 62837535 62837556 22 browser details YourSeq 20 1420 1439 2000 100.0% chr1 - 57330574 57330593 20 browser details YourSeq 20 631 650 2000 100.0% chr1 - 36740189 36740208 20 browser details YourSeq 20 1030 1049 2000 100.0% chr1 - 34764422 34764441 20 browser details YourSeq 20 1826 1845 2000 100.0% chr1 + 42603015 42603034 20 browser details YourSeq 20 728 747 2000 100.0% chr1 + 17864906 17864925 20 Note: The 2000 bp section downstream of stop codon is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Slc35c2 solute carrier family 35, member C2 [ Mus musculus (house mouse) ] Gene ID: 228875, updated on 14-Aug-2019 Gene summary Official Symbol Slc35c2 provided by MGI Official Full Name solute carrier family 35, member C2 provided by MGI Primary source MGI:MGI:2385166 See related Ensembl:ENSMUSG00000017664 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as C85957; CGI-15; Ovcov1; D2Wsu58e Expression Ubiquitous expression in duodenum adult (RPKM 63.1), small intestine adult (RPKM 33.3) and 28 other tissues See more Orthologs human all Genomic context Location: 2 H3; 2 85.53 cM See Slc35c2 in Genome Data Viewer Exon count: 14 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 2 NC_000068.7 (165276522..165287888, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 2 NC_000068.6 (165102056..165113327, complement) Chromosome 2 - NC_000068.7 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 16 transcripts Gene: Slc35c2 ENSMUSG00000017664 Description solute carrier family 35, member C2 [Source:MGI Symbol;Acc:MGI:2385166] Gene Synonyms CGI-15, D2Wsu58e, Ovcov1 Location Chromosome 2: 165,276,554-165,287,869 reverse strand. GRCm38:CM000995.2 About this gene This gene has 16 transcripts (splice variants), 168 orthologues, 9 paralogues, is a member of 1 Ensembl protein family and is associated with 2 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Slc35c2- ENSMUST00000109300.8 2008 364aa ENSMUSP00000104923.2 Protein coding CCDS17074 Q5GMH2 TSL:1 204 Q8VCX2 GENCODE basic APPRIS P1 Slc35c2- ENSMUST00000109298.7 1991 364aa ENSMUSP00000104921.1 Protein coding CCDS17074 Q5GMH2 TSL:1 202 Q8VCX2 GENCODE basic APPRIS P1 Slc35c2- ENSMUST00000109299.7 1926 364aa ENSMUSP00000104922.1 Protein coding CCDS17074 Q5GMH2 TSL:1 203 Q8VCX2 GENCODE basic APPRIS P1 Slc35c2- ENSMUST00000017808.13 1843 364aa ENSMUSP00000017808.7 Protein coding CCDS17074 Q5GMH2 TSL:1 201 Q8VCX2 GENCODE basic APPRIS P1 Slc35c2- ENSMUST00000133961.7 862 192aa ENSMUSP00000118227.1 Protein coding - Q5GMG8 CDS 3' 211 incomplete TSL:3 Slc35c2- ENSMUST00000155289.7 830 199aa ENSMUSP00000119071.1 Protein coding - Q5GMH1 CDS 3' 215 incomplete TSL:5 Slc35c2- ENSMUST00000156134.7 796 192aa ENSMUSP00000116288.1 Protein coding - Q5GMG8 CDS 3' 216 incomplete TSL:2 Slc35c2- ENSMUST00000129210.7 728 163aa ENSMUSP00000118605.1 Protein coding - Q5GMG7 CDS 3' 206 incomplete TSL:5 Slc35c2- ENSMUST00000131409.1 690 137aa ENSMUSP00000120036.1 Protein coding - A2A5A3 CDS 3' 209 incomplete TSL:3 Slc35c2- ENSMUST00000129336.7 588 196aa ENSMUSP00000123299.1 Protein coding - Q5GMG9 CDS 3' 207 incomplete TSL:5 Slc35c2- ENSMUST00000130393.1 376 58aa ENSMUSP00000123450.1 Protein coding - Q5GMG6 CDS 3' 208 incomplete TSL:3 Slc35c2- ENSMUST00000132270.7 1892 72aa ENSMUSP00000125708.1 Nonsense mediated - E0CYZ1 TSL:1 210 decay Slc35c2- ENSMUST00000145301.7 786 72aa ENSMUSP00000123757.1 Nonsense mediated - E0CYZ1 TSL:5 212 decay Slc35c2- ENSMUST00000147247.1 2042 No - Retained intron - - TSL:2 213 protein Slc35c2- ENSMUST00000125550.1 1110 No - Retained intron - - TSL:1 205 protein Page 7 of 9 https://www.alphaknockout.com Slc35c2- ENSMUST00000154608.7 775 No - Retained intron - - TSL:5 214 protein 31.32 kb Forward strand 165.27Mb 165.28Mb 165.29Mb Contigs AL591430.8 > Genes (Comprehensive set... < Gm25569-201snoRNA < Slc35c2-205retained intron< Slc35c2-213retained intron < Elmo2-205protein coding < Slc35c2-202protein coding < Elmo2-203protein coding < Slc35c2-203protein coding < Elmo2-202protein coding < Slc35c2-204protein coding < Elmo2-211protein coding < Slc35c2-201protein coding < Elmo2-204protein coding < Slc35c2-210nonsense mediated decay < Elmo2-201protein coding < Slc35c2-214retained intron < Slc35c2-208protein coding < Slc35c2-207protein coding < Slc35c2-212nonsense mediated decay < Slc35c2-215protein coding < Slc35c2-216protein coding < Slc35c2-211protein coding < Slc35c2-206protein coding < Slc35c2-209protein coding Regulatory Build 165.27Mb 165.28Mb 165.29Mb Reverse strand 31.32 kb Regulation Legend CTCF Enhancer Promoter Promoter Flank Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript Page 8 of 9 https://www.alphaknockout.com Transcript: ENSMUST00000109300 < Slc35c2-204protein coding Reverse strand 11.32 kb ENSMUSP00000104... Transmembrane heli... Low complexity (Seg) Pfam Sugar phosphate transporter domain PANTHER PTHR11132:SF238 PTHR11132 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant splice region variant synonymous variant Scale bar 0 40 80 120 160 200 240 280 320 364 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 9 of 9.
Recommended publications
  • Small Cell Ovarian Carcinoma: Genomic Stability and Responsiveness to Therapeutics
    Gamwell et al. Orphanet Journal of Rare Diseases 2013, 8:33 http://www.ojrd.com/content/8/1/33 RESEARCH Open Access Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics Lisa F Gamwell1,2, Karen Gambaro3, Maria Merziotis2, Colleen Crane2, Suzanna L Arcand4, Valerie Bourada1,2, Christopher Davis2, Jeremy A Squire6, David G Huntsman7,8, Patricia N Tonin3,4,5 and Barbara C Vanderhyden1,2* Abstract Background: The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method: The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results: BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species
    Review Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species Ariel Orellana 1,2, Carol Moraga 1, Macarena Araya 1 and Adrian Moreno 1,2 1 - Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile 2 - FONDAP Center for Genome Regulation, Santiago, RM,Chile Correspondence to Ariel Orellana: Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile. [email protected] http://dx.doi.org/10.1016/j.jmb.2016.05.021 Edited by Thomas J. Smith Abstract Glycoproteins and glycolipids are crucial in a number of cellular processes, such as growth, development, and responses to external cues, among others. Polysaccharides, another class of sugar-containing molecules, also play important structural and signaling roles in the extracellular matrix. The additions of glycans to proteins and lipids, as well as polysaccharide synthesis, are processes that primarily occur in the Golgi apparatus, and the substrates used in this biosynthetic process are nucleotide sugars. These proteins, lipids, and polysaccharides are also modified by the addition of sulfate groups in the Golgi apparatus in a series of reactions where nucleotide sulfate is needed. The required nucleotide sugar substrates are mainly synthesized in the cytosol and transported into the Golgi apparatus by nucleotide sugar transporters (NSTs), which can additionally transport nucleotide sulfate. Due to the critical role of NSTs in eukaryotic organisms, any malfunction of these could change glycan and polysaccharide structures, thus affecting function and altering organism physiology. For example, mutations or deletion on NST genes lead to pathological conditions in humans or alter cell walls in plants.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Epistasis-Driven Identification of SLC25A51 As a Regulator of Human
    ARTICLE https://doi.org/10.1038/s41467-020-19871-x OPEN Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import Enrico Girardi 1, Gennaro Agrimi 2, Ulrich Goldmann 1, Giuseppe Fiume1, Sabrina Lindinger1, Vitaly Sedlyarov1, Ismet Srndic1, Bettina Gürtl1, Benedikt Agerer 1, Felix Kartnig1, Pasquale Scarcia 2, Maria Antonietta Di Noia2, Eva Liñeiro1, Manuele Rebsamen1, Tabea Wiedmer 1, Andreas Bergthaler1, ✉ Luigi Palmieri2,3 & Giulio Superti-Furga 1,4 1234567890():,; About a thousand genes in the human genome encode for membrane transporters. Among these, several solute carrier proteins (SLCs), representing the largest group of transporters, are still orphan and lack functional characterization. We reasoned that assessing genetic interactions among SLCs may be an efficient way to obtain functional information allowing their deorphanization. Here we describe a network of strong genetic interactions indicating a contribution to mitochondrial respiration and redox metabolism for SLC25A51/MCART1, an uncharacterized member of the SLC25 family of transporters. Through a combination of metabolomics, genomics and genetics approaches, we demonstrate a role for SLC25A51 as enabler of mitochondrial import of NAD, showcasing the potential of genetic interaction- driven functional gene deorphanization. 1 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. 2 Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics,
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Antagonistic Epistasis of Hnf4α and Foxo1 Networks Through Enhancer Interactions
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.04.187864; this version posted July 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Kuo et al, Hnf4a and FoxO1 in b-cell function Antagonistic epistasis of Hnf4α and FoxO1 networks through enhancer interactions in β-cell function Taiyi Kuo1,3,*, Wen Du1, Yasutaka Miyachi1, Prasanna K. Dadi2, David A. Jacobson2, Domenico Accili1 1Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY 2Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 3Lead Contact *Correspondence: Taiyi Kuo, Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, 1150 St. Nicholas Avenue, Room 237, New York, New York 10032, USA. Phone: 1-212-851-5333. Email: [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.04.187864; this version posted July 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Kuo et al, Hnf4a and FoxO1 in b-cell function Abstract Genetic and acquired abnormalities contribute to pancreatic β-cell failure in diabetes. Transcription factors Hnf4α (MODY1) and FoxO1 are respective examples of these two components, and are known to act through β-cell-specific enhancers.
    [Show full text]
  • RNA-Seq Reveals Conservation of Function Among the Yolk Sacs Of
    RNA-seq reveals conservation of function among the PNAS PLUS yolk sacs of human, mouse, and chicken Tereza Cindrova-Daviesa, Eric Jauniauxb, Michael G. Elliota,c, Sungsam Gongd,e, Graham J. Burtona,1, and D. Stephen Charnock-Jonesa,d,e,1,2 aCentre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom; bElizabeth Garret Anderson Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, WC1E 6BT, United Kingdom; cSt. John’s College, University of Cambridge, Cambridge, CB2 1TP, United Kingdom; dDepartment of Obstetrics and Gynaecology, University of Cambridge, Cambridge, CB2 0SW, United Kingdom; and eNational Institute for Health Research, Cambridge Comprehensive Biomedical Research Centre, Cambridge, CB2 0QQ, United Kingdom Edited by R. Michael Roberts, University of Missouri-Columbia, Columbia, MO, and approved May 5, 2017 (received for review February 14, 2017) The yolk sac is phylogenetically the oldest of the extraembryonic yolk sac plays a critical role during organogenesis (3–5, 8–10), membranes. The human embryo retains a yolk sac, which goes there are limited data to support this claim. Obtaining experi- through primary and secondary phases of development, but its mental data for the human is impossible for ethical reasons, and importance is controversial. Although it is known to synthesize thus we adopted an alternative strategy. Here, we report RNA proteins, its transport functions are widely considered vestigial. sequencing (RNA-seq) data derived from human and murine yolk Here, we report RNA-sequencing (RNA-seq) data for the human sacs and compare them with published data from the yolk sac of and murine yolk sacs and compare those data with data for the the chicken.
    [Show full text]
  • Supplementary Tables 1-18 Contain the Predictive Signatures Determined for Each AML Subgroup Using Prediction Analysis for Microarrays (PAM)
    SUPPLEMENTARY TABLES Supplementary Tables 1-18 contain the predictive signatures determined for each AML subgroup using Prediction Analysis for Microarrays (PAM). Each row indicates probe set ID , gene symbol and abnormality. In addition, two scores are indicated, which represent the standardized centroids for each class for probe sets surviving at the chosen threshold. By definition, cases with the abnormality are coded as class "2" and cases without the abnormality as "1". Supplementary Table 19 contains class prediction data using Prediction Analysis for Microarrays within normal karyotype AML. Table 1. Predictive signature AML and inv(16) Probe set ID Gene symbol Abnormality 1.score 2.score 1 201497_x_at MYH11 inv(16) -0.0793 0.8532 2 207961_x_at MYH11 inv(16) -0.0089 0.0959 Table 2. Predictive signature AML and t(15;17) Probe set ID Gene symbol Abnormality 1.score 2.score 1 226210_s_at MEG3 t(15;17) -0.0506 0.6432 2 205110_s_at FGF13 t(15;17) -0.0326 0.4151 3 210998_s_at HGF t(15;17) -0.0262 0.3333 4 210997_at HGF t(15;17) -0.0179 0.2276 5 223828_s_at LGALS12 t(15;17) -0.0178 0.2267 6 210794_s_at MEG3 t(15;17) -0.0127 0.1611 7 204537_s_at GABRE t(15;17) -0.0064 0.081 Table 3. Predictive signature AML and t(8;21) Probe set ID Gene symbol Abnormality 1.score 2.score 1 205529_s_at RUNX1T1 t(8;21) -0.6454 6.9461 2 228827_at --- t(8;21) -0.6058 6.5197 3 205528_s_at RUNX1T1 t(8;21) -0.4917 5.2917 4 213194_at ROBO1 t(8;21) -0.2334 2.5115 5 206940_s_at POU4F1 t(8;21) -0.1883 2.0269 6 216831_s_at RUNX1T1 t(8;21) -0.1705 1.8353 7 211341_at
    [Show full text]
  • Table S5-Correlation of Cytogenetic Changes with Gene Expression
    Table S5-Correlation of cytogenetic changes with gene expression in MCF10CA1a FeatureNumCytoband GeneName Description logFC Fold change 28 4087 2p21 TACSTD1 Homo sapiens tumor-associated calcium signal transducer 1 (TACSTD1), mRNA-7.04966 [NM_002354]0.007548158 37 38952 20p12.2 JAG1 Homo sapiens jagged 1 (Alagille syndrome) (JAG1), mRNA [NM_000214] -6.44293 0.011494322 67 2569 20q13.33 COL9A3 Homo sapiens collagen, type IX, alpha 3 (COL9A3), mRNA [NM_001853] -6.04499 0.015145263 72 44151 2p23.3 KRTCAP3 Homo sapiens clone DNA129535 MRV222 (UNQ3066) mRNA, complete cds. [AY358993]-6.03013 0.015302019 105 40016 8q12.1 CA8 Homo sapiens carbonic anhydrase VIII (CA8), mRNA [NM_004056] 5.68101 51.30442111 129 34872 20q13.32 SYCP2 Homo sapiens synaptonemal complex protein 2 (SYCP2), mRNA [NM_014258]-5.21222 0.026975242 140 27988 2p11.2 THC2314643 Unknown -4.99538 0.031350145 149 12276 2p23.3 KRTCAP3 Homo sapiens keratinocyte associated protein 3 (KRTCAP3), mRNA [NM_173853]-4.97604 0.031773429 154 24734 2p11.2 THC2343678 Q6E5T4 (Q6E5T4) Claudin 2, partial (5%) [THC2343678] 5.08397 33.91774866 170 24047 20q13.33 TNFRSF6B Homo sapiens tumor necrosis factor receptor superfamily, member 6b, decoy (TNFRSF6B),-5.09816 0.029194423 transcript variant M68C, mRNA [NM_032945] 177 39605 8p11.21 PLAT Homo sapiens plasminogen activator, tissue (PLAT), transcript variant 1, mRNA-4.88156 [NM_000930]0.033923737 186 31003 20p11.23 OVOL2 Homo sapiens ovo-like 2 (Drosophila) (OVOL2), mRNA [NM_021220] -4.69868 0.038508469 200 39605 8p11.21 PLAT Homo sapiens plasminogen activator, tissue (PLAT), transcript variant 1, mRNA-4.78576 [NM_000930]0.036252773 209 9317 2p14 ARHGAP25 Homo sapiens Rho GTPase activating protein 25 (ARHGAP25), transcript variant-4.62265 1, mRNA0.040592167 [NM_001007231] 211 39605 8p11.21 PLAT Homo sapiens plasminogen activator, tissue (PLAT), transcript variant 1, mRNA -4.7152[NM_000930]0.038070134 212 16979 2p13.1 MGC10955 Homo sapiens hypothetical protein MGC10955, mRNA (cDNA clone MGC:10955-4.70762 IMAGE:3632495),0.038270716 complete cds.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]