bioRxiv preprint doi: https://doi.org/10.1101/645572; this version posted May 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Differential chromatin accessibility in developing projection neurons is correlated with transcriptional regulation of cell fate Authors: Whitney E. Heavner1,2*, Shaoyi Ji2, James H. Notwell3, Ethan S. Dyer4,5,6, Alex M. Tseng3, Johannes Birgmeier3, Boyoung Yoo3, Gill Bejerano3,7,8,9, Susan K. McConnell2 Affliations: 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 2Department of Biology, Stanford University, Stanford, CA 3Department of Computer Science, Stanford University, Stanford, CA 4Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 5Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 6Google, Mountain View, CA 7Department of Developmental Biology, Stanford University, Stanford, CA 8Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA 9Department of Biomedical Data Science, Stanford University, Stanford, CA *Correspondence to: W.E.H. (
[email protected]) bioRxiv preprint doi: https://doi.org/10.1101/645572; this version posted May 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract We are only just beginning to catalog the vast diversity of cell types in the cerebral cortex. Such categorization is a first step toward understanding how diversification relates to function. All cortical projection neurons arise from a uniform pool of progenitor cells that lines the ventricles of the forebrain.