Differential Chromatin Accessibility in Developing Projection Neurons Is Correlated with Transcriptional Regulation of Cell Fate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PROTEOMIC ANALYSIS of HUMAN URINARY EXOSOMES. Patricia
ABSTRACT Title of Document: PROTEOMIC ANALYSIS OF HUMAN URINARY EXOSOMES. Patricia Amalia Gonzales Mancilla, Ph.D., 2009 Directed By: Associate Professor Nam Sun Wang, Department of Chemical and Biomolecular Engineering Exosomes originate as the internal vesicles of multivesicular bodies (MVBs) in cells. These small vesicles (40-100 nm) have been shown to be secreted by most cell types throughout the body. In the kidney, urinary exosomes are released to the urine by fusion of the outer membrane of the MVBs with the apical plasma membrane of renal tubular epithelia. Exosomes contain apical membrane and cytosolic proteins and can be isolated using differential centrifugation. The analysis of urinary exosomes provides a non- invasive means of acquiring information about the physiological or pathophysiological state of renal cells. The overall objective of this research was to develop methods and knowledge infrastructure for urinary proteomics. We proposed to conduct a proteomic analysis of human urinary exosomes. The first objective was to profile the proteome of human urinary exosomes using liquid chromatography-tandem spectrometry (LC- MS/MS) and specialized software for identification of peptide sequences from fragmentation spectra. We unambiguously identified 1132 proteins. In addition, the phosphoproteome of human urinary exosomes was profiled using the neutral loss scanning acquisition mode of LC-MS/MS. The phosphoproteomic profiling identified 19 phosphorylation sites corresponding to 14 phosphoproteins. The second objective was to analyze urinary exosomes samples isolated from patients with genetic mutations. Polyclonal antibodies were generated to recognize epitopes on the gene products of these genetic mutations, NKCC2 and MRP4. The potential usefulness of urinary exosome analysis was demonstrated using the well-defined renal tubulopathy, Bartter syndrome type I and using the single nucleotide polymorphism in the ABCC4 gene. -
Par6c Is at the Mother Centriole and Controls Centrosomal Protein
860 Research Article Par6c is at the mother centriole and controls centrosomal protein composition through a Par6a-dependent pathway Vale´rian Dormoy, Kati Tormanen and Christine Su¨ tterlin* Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA *Author for correspondence ([email protected]) Accepted 3 December 2012 Journal of Cell Science 126, 860–870 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.121186 Summary The centrosome contains two centrioles that differ in age, protein composition and function. This non-membrane bound organelle is known to regulate microtubule organization in dividing cells and ciliogenesis in quiescent cells. These specific roles depend on protein appendages at the older, or mother, centriole. In this study, we identified the polarity protein partitioning defective 6 homolog gamma (Par6c) as a novel component of the mother centriole. This specific localization required the Par6c C-terminus, but was independent of intact microtubules, the dynein/dynactin complex and the components of the PAR polarity complex. Par6c depletion resulted in altered centrosomal protein composition, with the loss of a large number of proteins, including Par6a and p150Glued, from the centrosome. As a consequence, there were defects in ciliogenesis, microtubule organization and centrosome reorientation during migration. Par6c interacted with Par3 and aPKC, but these proteins were not required for the regulation of centrosomal protein composition. Par6c also associated with Par6a, which controls protein recruitment to the centrosome through p150Glued. Our study is the first to identify Par6c as a component of the mother centriole and to report a role of a mother centriole protein in the regulation of centrosomal protein composition. -
ARID5B As a Critical Downstream Target of the TAL1 Complex That Activates the Oncogenic Transcriptional Program and Promotes T-Cell Leukemogenesis
Downloaded from genesdev.cshlp.org on October 10, 2021 - Published by Cold Spring Harbor Laboratory Press ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis Wei Zhong Leong,1 Shi Hao Tan,1 Phuong Cao Thi Ngoc,1 Stella Amanda,1 Alice Wei Yee Yam,1 Wei-Siang Liau,1 Zhiyuan Gong,2 Lee N. Lawton,1 Daniel G. Tenen,1,3,4 and Takaomi Sanda1,4 1Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; 2Department of Biological Sciences, National University of Singapore, 117543 Singapore; 3Harvard Medical School, Boston, Massachusetts 02215, USA; 4Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore The oncogenic transcription factor TAL1/SCL induces an aberrant transcriptional program in T-cell acute lym- phoblastic leukemia (T-ALL) cells. However, the critical factors that are directly activated by TAL1 and contribute to T-ALL pathogenesis are largely unknown. Here, we identified AT-rich interactive domain 5B (ARID5B) as a col- laborating oncogenic factor involved in the transcriptional program in T-ALL. ARID5B expression is down-regulated at the double-negative 2–4 stages in normal thymocytes, while it is induced by the TAL1 complex in human T-ALL cells. The enhancer located 135 kb upstream of the ARID5B gene locus is activated under a superenhancer in T-ALL cells but not in normal T cells. Notably, ARID5B-bound regions are associated predominantly with active tran- scription. ARID5B and TAL1 frequently co-occupy target genes and coordinately control their expression. -
The Effect of Chromosomal Translocations in Acute Leukemias: the LMO2 Paradigm in Transcription and Development I
[CANCER RESEARCH (SUPPL.) 59, 1794s-1798s, April 1, 1999] The Effect of Chromosomal Translocations in Acute Leukemias: The LMO2 Paradigm in Transcription and Development I Terence H. Rabbitts, 2 Katharina Bucher, Grace Chung, Gerald Grutz, Alan Warren, and Yoshi Yamada Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 2QH United Kingdom Abstract proto-oncogene from a Burkitt's lymphoma translocation breakpoint t(8;14)(q24;q32) revealed that, while the translocated gene was intact, Two general features have emerged about genes that are activated after there were many mutations in both the noncoding first exon and chromosomal translocations in acute forms of cancer. The protein prod- within the coding region itself (4-11). In T-cell acute leukemias, there ucts of these genes are transcription regulators and are involved in are several different chromosomal translocations found in individual developmental processes, and it seems that the subversion of these normal functions accounts for their role in tumorigenesis. The features of the tumors, and the analysis of these has led to the discovery of many LMO family of genes, which encode LIM-domain proteins involved in different, novel genes that can contribute to T-cell tumorigenesis (1). T-cell acute leukemia through chromosomal translocations, typify these These and many other studies have led to two conclusions: abnormal functions in tumorigenesis. For example, the LMO2 protein is (a) many of the chromosomal translocation-activated oncogenes are involved in the formation of multimeric DNA-binding complexes, which transcription regulators in their normal sites of expression, and it is may vary in composition at different stages of hematopoiesis and function this property that is instrumental in their involvement in tumor etiol- to control differentiation of specific lineages. -
LMO T-Cell Translocation Oncogenes Typify Genes Activated by Chromosomal Translocations That Alter Transcription and Developmental Processes
Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE LMO T-cell translocation oncogenes typify genes activated by chromosomal translocations that alter transcription and developmental processes Terence H. Rabbitts1 Medical Research Council (MRC) Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge CB2 2QH, UK The cytogenetic analysis of tumors, particularly those of ment (immunoglobulin or T-cell receptor) occurs and oc- hematopoietic origin, has revealed that reciprocal chro- casionally mediates chromosomal translocation. This mosomal translocations are recurring features of these type of translocation causes oncogene activation result- tumors. Further from the initial recognition of the trans- ing from the new chromosomal environment of the re- location t(9;22) (Nowell and Hungerford 1960; Rowley arranged gene. In general, this means inappropriate gene 1973), it has become clear that particular chromosomal expression. The second, and probably the most common translocations are found consistently in specific tumor outcome of chromosomal translocations, is gene fusion subtypes. A principle example of this is the translocation in which exons from a gene on each of the involved chro- t(8;14)(q24;q32.1) invariably found in the human B cell mosomes are linked after the chromosomal transloca- tumor Burkitt’s lymphoma (Manolov and Manolov 1972; tion, resulting in a fusion mRNA and protein. This type Zech et al. 1976). The link with the immunoglobulin of event is found in many cases of hematopoietic tumors H-chain locus on chromosome 14, band q32.1 (Croce et and in the sarcomas. al. 1979; Hobart et al. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Ninein, a Microtubule Minus-End Anchoring Protein 3015 Analysis As Described Previously (Henderson Et Al., 1994)
Journal of Cell Science 113, 3013-3023 (2000) 3013 Printed in Great Britain © The Company of Biologists Limited 2000 JCS1634 Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein Mette M. Mogensen1,*, Azer Malik1, Matthieu Piel2, Veronique Bouckson-Castaing2 and Michel Bornens2 1Department of Anatomy and Physiology, MSI/WTB complex, Dow Street, University of Dundee, Dundee, DD1 5EH, UK 2Institute Curie, UMR 144-CNRS, 26 Rue d’Ulm, 75248 Paris Cedex 05, France *Author for correspondence (e-mail: [email protected]) Accepted 14 June; published on WWW 9 August 2000 SUMMARY The novel concept of a centrosomal anchoring complex, epithelial cells, where the vast majority of the microtubule which is distinct from the γ-tubulin nucleating complex, has minus-ends are associated with apical non-centrosomal previously been proposed following studies on cochlear sites, suggests that it is not directly involved in microtubule epithelial cells. In this investigation we present evidence nucleation. Ninein seems to play an important role in the from two different cell systems which suggests that the positioning and anchorage of the microtubule minus-ends centrosomal protein ninein is a strong candidate for the in these epithelial cells. Evidence is presented which proposed anchoring complex. suggests that ninein is released from the centrosome, Ninein has recently been observed in cultured fibroblast translocated with the microtubules, and is responsible for cells to localise primarily to the post-mitotic mother the anchorage of microtubule minus-ends to the apical centriole, which is the focus for a classic radial microtubule sites. We propose that ninein is a non-nucleating array. -
Downloaded from Bioscientifica.Com at 10/04/2021 03:09:50PM Via Free Access
242 S-M Ho et al. Regulation of centrosome 24:2 83–96 Research duplication by BPA analogues Bisphenol A and its analogues disrupt centrosome cycle and microtubule dynamics in prostate cancer Shuk-Mei Ho1,2,3,4, Rahul Rao1, Sarah To1,5,6, Emma Schoch1 and Pheruza Tarapore1,2,3 1Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio, USA 2Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio, USA Correspondence 3Cincinnati Cancer Center, Cincinnati, Ohio, USA should be addressed 4Cincinnati Veteran Affairs Hospital Medical Center, Cincinnati, Ohio, USA to S-M Ho or P Tarapore 5Center for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia Email 6Monash University, Clayton, Victoria, Australia [email protected] or [email protected] Abstract Humans are increasingly exposed to structural analogues of bisphenol A (BPA), as Key Words BPA is being replaced by these compounds in BPA-free consumer products. We have f endocrine-disrupting previously shown that chronic and developmental exposure to BPA is associated with chemicals increased prostate cancer (PCa) risk in human and animal models. Here, we examine f bisphenol A analogues whether exposure of PCa cells (LNCaP, C4-2) to low-dose BPA and its structural analogues f BPA (BPS, BPF, BPAF, TBBPA, DMBPA and TMBPA) affects centrosome amplification (CA), f BPS a hallmark of cancer initiation and progression. We found that exposure to BPA, BPS, f BPF DMBPA and TBBPA, in descending order, increased the number of cells with CA, in a non- f TBBPA Endocrine-Related Cancer Endocrine-Related monotonic dose–response manner. -
The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2. -
Is Cep70, a Centrosomal Protein with New Roles in Breast Cancer Dissemination and Metastasis, a Facilitator of Epithelial-Mesenchymal Transition?
Is Cep70, a centrosomal protein with new roles in breast cancer dissemination and metastasis, a facilitator of epithelial-mesenchymal transition? Pedro A. Lazo 1,2 1 Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain 2 Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain Running title: Cep70 and EMT Disclosures: None declared. Contact address: [email protected] 1 Introduction Microtubules are driving mechanisms of chromosomes, intracellular organelle movement, and cell shape and motility. Microtubules are organized on centrosomes, which are assembled in microtubule-organizing centers (MTOC). In mitosis there is no nuclear envelope and centromeres associated to microtubules are mainly involved in chromosome redistribution into daughter cells. In differentiated cells the microtubule- organizing centers are dispersed in the cytoplasm (non centrosomal (ncMTOC)) and interact with the minus end of microtubules through γ-tubulin. 1 However, it is not known if the microtubule contribution to tumor biology is only by facilitating tumor aneuploidy. During tumor dissemination, a process not linked to cell division, important changes take place in cell shape and motility. Microtubules are very dynamic because of their inherent structural instability, and this plasticity facilitates their reorganization during the epithelial-mesenchymal -
DIPPER, a Spatiotemporal Proteomics Atlas of Human Intervertebral Discs
TOOLS AND RESOURCES DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics Vivian Tam1,2†, Peikai Chen1†‡, Anita Yee1, Nestor Solis3, Theo Klein3§, Mateusz Kudelko1, Rakesh Sharma4, Wilson CW Chan1,2,5, Christopher M Overall3, Lisbet Haglund6, Pak C Sham7, Kathryn Song Eng Cheah1, Danny Chan1,2* 1School of Biomedical Sciences, , The University of Hong Kong, Hong Kong; 2The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China; 3Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; 4Proteomics and Metabolomics Core Facility, The University of Hong Kong, Hong Kong; 5Department of Orthopaedics Surgery and Traumatology, HKU-Shenzhen Hospital, Shenzhen, China; 6Department of Surgery, McGill University, Montreal, Canada; 7Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Hong Kong Abstract The spatiotemporal proteome of the intervertebral disc (IVD) underpins its integrity *For correspondence: and function. We present DIPPER, a deep and comprehensive IVD proteomic resource comprising [email protected] 94 genome-wide profiles from 17 individuals. To begin with, protein modules defining key †These authors contributed directional trends spanning the lateral and anteroposterior axes were derived from high-resolution equally to this work spatial proteomes of intact young cadaveric lumbar IVDs. They revealed novel region-specific Present address: ‡Department profiles of regulatory activities -
The Development of the Mammalian Central
Chapter 5: GRIPE is a novel gene that may assume different roles during development and in adulthood Chapter 5: GRIPE is a novel gene that may assume different roles during development and in adulthood 5.1. Characterisation of GRIPE and E12 mRNA expression during development As a first step towards describing the expression of GRIPE and E12 during neurodevelopment, Northern analysis was conducted to acquire a global pattern of mRNA expression. To do this, embryonic and adult tissues were harvested for RNA isolation as described (Section 2.2). Northern hybridisation was then performed using radiolabelled GRIPE and E12 cDNAs as probes, and these results are shown in Fig. 5.1. A single band of approximately 8kb is detected in all samples; this was the only signal detected in all northern hybridisations performed with different GRIPE cDNA and cRNA probes (see Appendix 10.2). It would appear that GRIPE mRNA is abundant in the head and trunk at e11.5, and levels decrease during embryogenesis, and are undetectable by e17.5. In the adult, GRIPE is abundant in the brain, but is undetectable in the placenta and kidney. However, further RT-PCR experiments (see Figs 6.8 and 6.13) indicate that GRIPE is weakly detectable in these tissues, but not in the kidney. Northern analysis of E12 mRNA shows high levels of expression at e11.5, with a gradual decrease during embryogenesis, and is almost undetectable by e17.5. Further, E12 is undetectable in adult brain, placenta and kidney. These observations demonstrate a coincidence in expression of GRIPE and E12 mRNA during embryogenesis, but not in the adult; where E12 mRNA is undetectable.