Hydrol. Earth Syst. Sci., 22, 2717–2737, 2018 https://doi.org/10.5194/hess-22-2717-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Long-term temporal trajectories to enhance restoration efficiency and sustainability on large rivers: an interdisciplinary study David Eschbach1,a, Laurent Schmitt1, Gwenaël Imfeld2, Jan-Hendrik May3,b, Sylvain Payraudeau2, Frank Preusser3, Mareike Trauerstein4, and Grzegorz Skupinski1 1Laboratoire Image, Ville, Environnement (LIVE UMR 7362), Université de Strasbourg, CNRS, ENGEES, ZAEU LTER, Strasbourg, France 2Laboratoire d’Hydrologie et de Géochimie de Strasbourg (LHyGeS UMR 7517), Université de Strasbourg, CNRS, ENGEES, Strasbourg, France 3Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany 4Institute of Geography, University of Bern, Bern, Switzerland acurrent address: Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, 75005 Paris, France bcurrent address: School of Geography, University of Melbourne, Melbourne, Australia Correspondence: David Eschbach (
[email protected]) Received: 26 July 2017 – Discussion started: 28 August 2017 Revised: 26 March 2018 – Accepted: 10 April 2018 – Published: 7 May 2018 Abstract. While the history of a fluvial hydrosystem can terize the human-driven morphodynamic adjustments during provide essential knowledge on present functioning, histor- the last 2 centuries, (iii) characterize physico-chemical sed- ical context remains rarely considered in river restoration. iment properties to trace anthropogenic activities and eval- Here we show the relevance of an interdisciplinary study uate the potential impact of the restoration on pollutant re- for improving restoration within the framework of a Euro- mobilization, (iv) deduce the post-restoration evolution ten- pean LIFEC project on the French side of the Upper Rhine dency and (v) evaluate the efficiency and sustainability of the (Rohrschollen Island).