UN/SCETDG/29/INF.3/Rev.1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rhode Island Hazardous Substance List
Rhode Island Hazardous Substance List Source: T - ACGIH F - NFPA49 C - IARC Alphabetical Order C.A.S. ACGIH NFPA IARC CHEMICAL NAME 13010-47-4 C 1,-(2-Chloroethyl)-3-cyclohexyl-1-Nitrosourea 76-11-9 T 1,1,1,2-tetrachloro-2,2-difluoroethane 76-12-0 T 1,1,2,2-tetrachloro-1,2-difluoroethane 79-34-5 T 1,1,2,2-tetrachloroethane - skin 76-13-1 T 1,1,2-trichloro-1,2,2-trifluoroethane 79-00-5 T F C 1,1,2-trichloroethane - skin 594-72-9 T 1,1-Dichloro-1-nitroethane 74-34-3 T 1,1-dichloroethane 57-14-7 T 1,1-dimethylhydrazine (udmh) 96-18-4 T 1,2,3-trichloropropane 120-82-1 T 1,2,4-Trichlorobenzene 106-88-7 F 1,2-Butylene oxide 107-15-3 T F 1,2-Diaminoethane 96-12-8 C 1,2-Dibromo-3-chloropropane 106-93-4 T F C 1,2-Dibromoethane - skin 107-06-2 T F 1,2-Dichlorethane 540-59-0 T F 1,2-Dichloroethene 540-59-0 T F 1,2-Dichloroetylene 1615-80-1 C 1,2-Diethylhydrazine C 1,2-Dimethyl hydrazine - skin 106-99-0 T F 1,3-Butadiene 118-52-5 T 1,3-Dichloro-5,5-dimethylhydantoin 542-75-6 T F 1,3-Dichloropropene (cis and trans) 542-75-6 T F 1,3-Dichloropropylene 110-56-5 F 1,4-Dichlorobutane 123-91-1 T F C 1,4-Dioxane 1120-71-4 1-3-Propane sultone 110-53-2 F 1-Bromopentane 106-89-8 T F C 1-Chloro,2,3-epoxy-propane 600-25-9 T 1-Chloro-1-nitropropane 97-00-7 F 1-chloro-2,4-dinitrobenzene 543-59-9 F 1-Chloropentane 112-30-1 F 1-Decanol 111-27-3 F 1-Hexanol 141-79-7 T F 1-Isobutenyl methyl ketone 108-03-2 T F 1-Nitropropane 71-41-0 F 1-Pentanol 110-58-7 F 1-Pentylamine 111-40-0 T F 2,2'-Diaminodiethylamine 111-44-4 F 2,2'Dichlorodiethyl ether 75-99-0 T 2,2-dichloropropionic acid 556-52-5 T 2,3-Epoxy-1-propanol 93-76-5 T 2,4,5-T 95-95-4 F 2,4,5-trichlorophenol 88-06-2 F C 2,4,6-trichlorophenol 118-96-7 T F 2,4,6-Trinitro Toluene 479-95-8 T 2,4,6-Trinitrophenyl-methylnitramine 94-75-7 T 2,4-d (2,4-dichlorophenoxyacetic acid) 97-02-9 F 2,4-dinitroaniline 584-84-9 T F 2,4-Tolylene diisocyanate 108-83-8 T 2,6-Dimethyl-4-heptanone 108-83-8 T 2,6-Dimethyl-4-heptanone 128-37-0 T 2,6-Ditert. -
Hazardous Material Inventory Statement
City of Brooklyn Park FIRE DEPARTMENT 5200 - 85th Avenue North Brooklyn Park MN 55443 Phone: (763)493-8020 Fax: (763) 493-8391 Hazardous Materials Inventory Statement Users Guide A separate inventory statement shall be provided for each building. An amended inventory statement shall be provided within 30 days of the storage of any hazardous materials or plastics that changes or adds a hazard class or which is sufficient in quantity to cause an increase in the quantity which exceeds 5 percent for any hazard class. The hazardous materials inventory statement shall list by hazard class categories. Each grouping shall provide the following information for each hazardous material listed for that group including a total quantity for each group of hazard class. 1. Hazard class. (See attached Hazardous Materials Categories Listing) 2. Common or trade name. 3. Chemical Abstract Service Number (CAS number) found in 29 Code of Federal Regulations (C.F.R.). 4. Whether the material is pure or a mixture, and whether the material is a solid, liquid or gas 5. Maximum aggregate quantity stored at any one time. 6. Maximum aggregate quantity In-Use (Open to atmosphere) at any one time. 7. Maximum aggregate quantity In-Use (Closed to atmosphere) at any one time. 8. Storage conditions related to the storage type, high-pile, encapsulated, non-encapsulated. Attached is a listing of categories that all materials need to be organized to. Definitions of these categories are also attached for your use. At the end of this packet are blank forms for completing this project. For questions regarding Hazardous Materials Inventory Statement contact the Fire Department at 763-493-8020. -
160 'Ideal' Gases: Anaesthetics in the Heart of the Twentieth Century Ian
International Workshop on the History of Chemistry 2015 Tokyo ‘Ideal’ Gases: Anaesthetics in the Heart of the Twentieth Century Ian D. Rae University of Melbourne, Australia 1. Introduction By 1920 only three gaseous anaesthetics were widely used – nitrous oxide, diethyl ether (ether) and chloroform. The toxicity of chloroform was acknowledged, nitrous oxide did not induce deep anaesthesia, and ether was extremely inflammable, so in the 1920s there were good reasons to search for new anaesthetics. While my concern is with gaseous anaesthetics, I recognise that there were parallel developments in two related fields, that of topical or local anaesthetics, typified by the natural product cocaine and a host of synthetic substances, and injectable anaesthetics starting with opiates, then barbiturates and leading to modern materials such as propofol (2,6-diisopropylphenol). 2. Theories of anaesthetic action Hans Meyer1 noted that the anaesthetic substances were soluble in both fatty and aqueous media, proposed a general theory of anaesthesia based on the partition or distribution coefficient as a critical determinant. Meyer enunciated the following three principles that underpinned his theory: all chemically inert substances that are soluble in fats and fatty materials will produce narcosis; the line of action is in the nerve cells; the comparative strengths of substances depend on their solubility in fatty material and in water, that is, on the distribution coefficient. Charles Overton arrived at the same idea independently. Some years after completing his PhD research on cell permeability studies, Overton first presented his theory of narcosis in a lecture to the Society for Natural History in Zurich in October 1898, in a paper published the following year2 and in his book3 which included a full exposition. -
Safety Data Sheet
Safety Data Sheet Issue Date: 19-Sep-2013 Revision Date: 10-Dec-2016 Version 2 1. PRODUCT AND COMPANY IDENTIFICATION Product Identifier Product Name United 482 O2 PLUS Other means of identification SDS # UNITED-482 UN/ID No UN1457 Recommended use of the chemical and restrictions on use Recommended Use Water Soluble Packets Uses Advised Against For industrial and institutional use only. Details of the supplier of the safety data sheet Supplier Address United Laboratories, Inc. 320 37th Avenue St. Charles, IL 60174 www.unitedlabsinc.com www.unitedlabsinc.ca Emergency Telephone Number Company Phone Number 800-323-2594 (to reorder) Emergency Telephone (24 hr) INFOTRAC 1-800-535-5053 (North America) 1-352-323-3500 (International) 2. HAZARDS IDENTIFICATION Classification OSHA Regulatory Status-This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Serious eye damage/eye irritation Category 1 Oxidizing Solids Category 2 Signal Word Danger Hazard Statements Causes serious eye damage. May intensify fire; oxidizer. Precautionary Statements – Prevention Wear eye protection/face protection. Take any precaution to avoid mixing with combustibles. Keep away from heat/sparks/ open flames/hot surfaces. No smoking. Keep/store away from clothing/combustible materials. _____________________________________________________________________________________________ Page 1 / 7 Revision Date: 10-Dec-2016 UNITED-482 - United 482 O2 PLUS _____________________________________________________________________________________________ Precautionary Statements - Response In case of fire: use water to extinguish. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a poison center or physician. Precautionary Statements - Storage Store in accordance with local, national and regional rules, laws and regulations. -
Va 0047.Doc 8/10/01 3
BEFORE THE STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION In re: Environmental Engineering Consultants, Inc. Petition for Variance _________________________________/ OGC File No. 01-0790 FINAL ORDER GRANTING PETITION FOR VARIANCE FROM RULE 62-522.300(3), F.A.C. On May 9, 2001, Environmental Engineering Consultants (EEC), Inc., filed a petition for variance from requirements in rule 62- 522.300(3) of the Florida Administrative Code. The petition was for a variance from rule 62-522.300(3), which prohibits a zone of discharge for discharges through wells, in order to use an in-situ remediation process. This process involves the use of wells or borings which is considered installation of one or more temporary Class V underground injection control wells at the site of contamination. A notice of receipt of the petition was published in the Florida Administrative Weekly on June 1, 2001. 1. Petitioner is located at 5119 North Florida Avenue, Tampa, Florida 33603. 2. EEC, Inc., wants to perform enhanced in-situ aerobic biodegradation using a powder containing 75% food grade calcium peroxide and 25% calcium hydroxide (manufactured by FMC Corporation) mixed with chlorine free potable water to clean up sites contaminated with gasoline, diesel fuel, and other chemicals containing primarily aromatic hydrocarbons. Va_0047.doc 8/10/01 3. Under rule 62-520.420 of the Florida Administrative Code, the standards for Class G-II ground waters include the primary and secondary drinking water standards of rules 62-550.310 and 62- 550.320 of the Florida Administrative Code, and the minimum criteria of rule 62-520.410 of the Florida Administrative Code. -
Effects of Solid Oxygen Fertilizers and Biochars on Nitrous Oxide
www.nature.com/scientificreports OPEN Efects of solid oxygen fertilizers and biochars on nitrous oxide production from agricultural soils in Florida Tanumoy Bera1,2, Kanika S. Inglett2 & Guodong D. Liu1* Elevated levels of nitrous oxide (N2O) emissions are a matter of concern in agricultural soils especially when fooding (hypoxic conditions) results from over irrigation or frequent rains. This study is the frst to report the use of two solid oxygen fertilizers (SOFs, calcium peroxide and magnesium peroxide) to reduce N2O production in mineral and organic soils amended with N fertilizer in a short-term laboratory incubation besides two biochars. In general, organic soil had greater N2O production than mineral soil. Soils amended with nitrogen fertilizer exhibited increased N2O production, by 74 times in mineral soil and 2 times in organic soil. Both solid oxygen fertilizers in mineral soil (98–99%) and calcium peroxide in organic soil (25%) successfully reduced N2O production than corresponding N fertilized treatments. Additionally, a greater level of available nitrate–N (52–57 and 225 mg kg−1 in mineral and organic soil, respectively) was recorded with the solid oxygen fertilizers. Corn residue biochar with N fertilizer increased N2O production in mineral soil but decreased in organic soil, while pine bark biochar with N did not afect the N2O production in either soil. Depending on soil, appropriate SOFs applied were able to reduce N2O production and maintain greater nitrate–N levels in fooded soil. Thus, solid oxygen fertilizers can potentially be used as an efective way to reduce N2O emission from hypoxic soil in agricultural production systems. -
(12) Patent Application Publication (10) Pub. No.: US 2007/0059270 A1 Hall Et Al
US 2007005927OA1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0059270 A1 Hall et al. (43) Pub. Date: Mar. 15, 2007 (54) ION EXCHANGE RESIN TREATED TO (22) Filed: Sep. 13, 2005 CONTROL, SWELLING Publication Classification (75) Inventors: Harlan Hall, Oregon, WI (US); J. Scott Madsen, Cottage Grove, WI (US) (51) Int. Cl. A 6LX 3L/795 (2006.01) Correspondence Address: (52) U.S. Cl. ............................................................ 424/78.1 CHALKER FLORES, LLP 2711 LBJ FRWY (57) ABSTRACT Suite 1036 DALLAS, TX 75234 (US) The present invention provides a method and composition are provided that includes an ion exchange resin treated with (73) Assignee: The Coating Place, Inc., Verona, WI from between about 0.01 to about 10 percent by weight of one or more Sugar alcohols in contact with one or more ionic (21) Appl. No.: 11/225,834 pharmaceutically active drug. US 2007/0059270 A1 Mar. 15, 2007 ON EXCHANGE RESIN TREATED TO CONTROL drug bound to an ion-exchange resin to provide a drug-resin SWELLING complex having a drug content above a specified value. The drug-resin complex is Subsequently coated with a water TECHNICAL FIELD OF THE INVENTION permeable diffusion barrier coating that is insoluble in 0001. The present invention relates general to the con gastrointestinal fluids. Thus, the release of drug is controlled trolled release of active agents, and in particular, to phar under conditions encountered in the gastrointestinal tract. macologically active drugs adsorbed to ion exchange resin. 0007 One of the major disadvantages with the use of an ion exchange resin as a pharmaceutical delivery agent is that BACKGROUND OF THE INVENTION ion exchange resin particles are Susceptible to Swelling. -
MIL-STD-1442 Rev. A
Downloaded from http://www.everyspec.com I METRIc 1 MIL-STD-1442A SUPERSEDING MIL-STD-1442 11ARgust 1987 MILITARY STANDARD INORGANIC PEROXIDES, TECHNICAL GRADE . AMSC N/A FSC 6810 DISTRIBUTION STA~MENT A. Approved for public release; distribution is unlimited. =--- Downloaded from http://www.everyspec.com MIL-STD-1442A FOREWORD Inorganic Peroxides, Technical Grade 1. This Military Standard is approved for use by all Departments and Agencies of the Department of Defense. 2. Benefiaal comments (reoommendationsadditionsde}etions) and any pertinent data _ whkh maybe of use in improving this document should be addressed to Technioal Director, U.S. Army EdgeWood Researoh, Development and Engineering Center, Attn: SCBRD-ENE (STWSPECWPKG), Aberdeen Proving Ground, MD 21010-5423, by using the self-addressed Standardization Document Impmvement Proposal (DD Form 1426) appearing at the end of this document or by letter. 3. This standard is approved for use by all Departments and Agencies of the Depafiment of Defense in the selection of items for application. It k Intended to prevent the entry of unnecessary items (stzes, types, varieties) into the Department. of Defense logistics system. This doournent is not intended to restrict any semice . in selecting new items resulting from state-of-the-aft ohanges. Downloaded from http://www.everyspec.com I MIL-STD-1442A CONTENTS arawan h 1. SCOPE . 1 1.1 Covemge . ..o.. .*** 1 1.2 Application . ,.. 1 1.3 Classification . .*. 1 2. APPLICABLE DOCUMENTS . 2 2.1 Governmen tDocument s...... .,.. 2 2.1.1 Specfmtions, Standards, and Handbooks . 2 2.1.2 Other Government Documents, Drawings, and Publications . 3 2.2 Non-Govemmen: Publ:wtions. -
2020 Emergency Response Guidebook
2020 A guidebook intended for use by first responders A guidebook intended for use by first responders during the initial phase of a transportation incident during the initial phase of a transportation incident involving hazardous materials/dangerous goods involving hazardous materials/dangerous goods EMERGENCY RESPONSE GUIDEBOOK THIS DOCUMENT SHOULD NOT BE USED TO DETERMINE COMPLIANCE WITH THE HAZARDOUS MATERIALS/ DANGEROUS GOODS REGULATIONS OR 2020 TO CREATE WORKER SAFETY DOCUMENTS EMERGENCY RESPONSE FOR SPECIFIC CHEMICALS GUIDEBOOK NOT FOR SALE This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors. https://www.phmsa.dot.gov/hazmat https://www.tc.gc.ca/TDG http://www.sct.gob.mx SHIPPING PAPERS (DOCUMENTS) 24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS For the purpose of this guidebook, shipping documents and shipping papers are synonymous. CANADA Shipping papers provide vital information regarding the hazardous materials/dangerous goods to 1. CANUTEC initiate protective actions. A consolidated version of the information found on shipping papers may 1-888-CANUTEC (226-8832) or 613-996-6666 * be found as follows: *666 (STAR 666) cellular (in Canada only) • Road – kept in the cab of a motor vehicle • Rail – kept in possession of a crew member UNITED STATES • Aviation – kept in possession of the pilot or aircraft employees • Marine – kept in a holder on the bridge of a vessel 1. CHEMTREC 1-800-424-9300 Information provided: (in the U.S., Canada and the U.S. Virgin Islands) • 4-digit identification number, UN or NA (go to yellow pages) For calls originating elsewhere: 703-527-3887 * • Proper shipping name (go to blue pages) • Hazard class or division number of material 2. -
Calcium Peroxide CAS No
Product Safety Summary Calcium Peroxide CAS No. 1350-79-9 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information on the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found on the Safety Data Sheet (SDS) for the chemical substance. Names • Calcium peroxide • Calcium dioxide • Calcium superoxide Product Overview Solvay Chemicals, Inc. does not sell calcium peroxide directly to consumers. Most calcium peroxide is used as a dough conditioning aid or for soil remediation (decontamination). When used in doughs, calcium peroxide is decomposed during baking. Some calcium peroxide is used in toothpastes as a whitener. Calcium peroxide can be used in agriculture to release oxygen into soils or as a seed pretreatment. It also stimulates the aerobic microbial degradation of hydrocarbons in contaminated groundwater and soil. Consumers would be exposed to only very small amounts of calcium peroxide in consumer product applications such as toothpastes. Calcium peroxide is a solid chemical used as a source of oxygen or hydrogen peroxide. When placed in water, calcium peroxide begins to decompose and release oxygen. When treated or dissolved in acids, calcium peroxide forms hydrogen peroxide. Calcium peroxide is a pale yellow, granular or powdered solid oxidizer. Exposure to calcium peroxide can cause irritation to the skin, eyes, and respiratory tract. Ingestion should be avoided at all concentrations. Calcium peroxide is not persistent in the environment and slowly decomposes to form calcium hydroxide and oxygen. -
Safety Data Sheet Calcium Peroxide
SAFETY DATA SHEET CALCIUM PEROXIDE 1. Product and Company Identification Product identifiers Product name: Calcium peroxide Relevant identified uses of the substance or mixture and uses advised against Identified uses: Environmental application, water treatment and soil/ground oxidation. Details of the supplier of the safety data sheet Company Compass Remediation Chemicals 2028 East Ben White Blvd #240-1974 Austin, TX 78741 Telephone (866) 221-9167 Emergency telephone number Emergency Phone #: CHEMTREC 1-800-424-9300 2. Hazards Identification Classification of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) Oxidizing solids (Category 3), H272 Acute toxicity, Oral (Category 4), H302 Serious skin burns, eye damage (Category 1), H314 Serious eye damage (Category 1), H318 Specific target organ toxicity-single exposure (Category 3), Respiratory system, H335 For the full text of the H- Statements mentioned in this Section, see Section 16. GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statements H272 May intensify fire; oxidizer. H314 Causes severe skin burns and eye damage H302 Harmful if swallowed. H318 Causes serious eye damage. H335 May cause respiratory irritation. SDS Calcium Peroxide P a g e 1 o f 6 SAFETY DATA SHEET – CALCIUM PEROXIDE Precautionary statements P201 Obtain special instructions before use. P202 Do not handle until all safety precautions have been read and understood. P210 Keep away from heat. P220 Keep/Store away from clothing/combustible materials. P221 Take any precaution to avoid mixing with combustibles. P261 Avoid breathing dust/fume/gas/mist/vapors/spray. P264 Wash skin thoroughly after handling. P270 Do not eat, drink or smoke when using this product. -
Facile Fabrication of Oxygen-Releasing Tannylated Calcium Peroxide Nanoparticles
materials Article Facile Fabrication of Oxygen-Releasing Tannylated Calcium Peroxide Nanoparticles Ji Sun Park, Yeong Jun Song, Yong Geun Lim and Kyeongsoon Park * Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Korea; [email protected] (J.S.P.); [email protected] (Y.J.S.); [email protected] (Y.G.L.) * Correspondence: [email protected]; Tel.: +82-31-670-3357 Received: 16 July 2020; Accepted: 31 August 2020; Published: 1 September 2020 Abstract: This study reports a new approach for the facile fabrication of calcium peroxide (CaO2) nanoparticles using tannic acid (TA) as the coordinate bridge between calcium ions. Tannylated-CaO2 (TA/CaO2) nanoparticles were prepared by reacting calcium chloride (CaCl2) with hydrogen peroxide (H2O2) in ethanol containing ammonia and different amounts of TA (10, 25, and 50 mg). The prepared TA/CaO2 aggregates consisted of nanoparticles 25–31 nm in size. The nanoparticles prepared using 10 mg of TA in the precursor solution exhibited the highest efficiency for oxygen generation. Moreover, the oxygen generation from TA (10 mg)/CaO2 nanoparticles was higher in an acidic environment. Keywords: calcium peroxide; tannic acid; oxygen generation 1. Introduction The delivery of sufficient amounts of oxygen to transplanted cells and 3D-engineered tissues remains among the main challenges in the field of cellular engineering [1]. Oxygen deficiency in these cells results in poor extracellular matrix deposition, cell death, and tissue necrosis [2]. Moreover, hypoxic tumor cells in solid tumor tissues are more resistant to radiation and chemotherapy [3,4]. Therefore, the prevention of hypoxia in 3D scaffolds during transplantation and in solid tumors during cancer therapy is essential for enhancing therapeutic effects.