Workshop on the Issue Martian Meteorites, Where Do We Stand

Total Page:16

File Type:pdf, Size:1020Kb

Workshop on the Issue Martian Meteorites, Where Do We Stand WORKSHOP ON THE ISSUE MARTIAN METEORITES: WHERE DO WESTAND AND. WHERE ARE WE GOING? J . ' November 2-4, 1998 Lunar and Planetary Institute, Houston, Texas WORKSHOP ON THEISSUE MARTIAN METEORITES: WHERE DO WE STAND AND WHERE ARE WE GOING? Held at Houston, Texas November 2-4, 1998 Sponsored by National Aeronautics and Space Administration Lunar and Planetary Institute Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 956 Compiled in 1998 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraintfor library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (1998) Title of abstract.In Workhop on the Issue Martian Meteorites: Where Do We Stand and Where Are We Going? LPI Contribution No. 956. Lunar andPlanetary Institute, Houston. 64 pp. This volume is distributed by ORDER DEPARTMENT Lunarand Planetary Institute 3600 Bay Area Boulevard Houston TX 77 058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling. LI Contribution No. 956 iii Preface This volume contains papers that were accepted for presentation at the Workshop on the Issue MartianMeteorites: Where Do We Stand and Where are We Going? The workshop was held November 2-4, 1998, at the Lunar and Planetary Institute in Houston, Texas. Members of the ScientificOrganizing Committee included D. C. Black, Co-Chair (Lunar and PlanetaryInstitute), C. Pilcher, Co-Chair (NASA Headquarters), D. Des Marais (NASA Ames Research Center), M. Drake (University of Arizona), J. Ferris(Rensselaer Polytechnic Institute), J. Longhi (Lamont-Doherty Earth Observatory),D. McCleese (Jet Propul­ sion Laboratory), D. McKay (NASA Johnson Space Center), H. Mcsween (University of Tennessee), M. Meyer (NASA Headquarters), H. Newsom (University of New Mexico), P. Rogers (Smithsonian Institution), and A. Treiman ( Lunar and PlanetaryInstitute). Logistical, administrative, and publications support were provided by the Publications and Program Services Departmentof the Lunar and Planetary Institute. LPI Contribution No. 956 v Contents Gamma-Ray Sterilization of Mars Analog Rocks and Minerals C. C. Allen ..................................................................................................................................... 1 Biomarkers in Carbonate Thermal Springs: Implications for Mars C. C. Allen, S. J. Kivett, and D. S. McKay ..................................................................................... 2 Fluid Inclusions in Allan Hills 84001 and Other Martian Meteorites: Evidence for Volatiles on Mars R. J. Bodnar ................................................................................................................................... 3 Rubidium-StrontiumFormation Age of Allan Hills 84001 Carbonates L. E. Borg, L. E. Nyquist, C.-Y. Shih, H. Wiesmann, Y. Reese, and J. N. Connelly ......................................................................................................................... 5 Rare Potassium-bearing Mica in Allan Hills 84001: Additional Constraints on Carbonate Formation A. J. Brearley ................................................................................................................................. 6 Water on Mars: How Much Was (Is) There, Where Did It Go, and When? M. H. Carr ..................................................................................................................................... 8 On Independent Proof of a Martian Origin for the Shergotty Meteorite Yu. T. Chuburkov, V. P. Pe rely gin, and V. A. Alekseev ................................................................. 9 The Searchfor Early Life on Mars: A European Space Agency Exobiology Science Team Study P. Clancy, A. Brack, B. Hofmann, G. Horneck, G. Kurat, J. Maxwell, G. G. Ori, C. Pillinger, F. Raulin, N. Thomas, F. Westall, and B. Fitton ..................................... 9 Studies of Life on Earth are Important for Mars Exploration D. J. Des Marais .......................................................................................................................... 10 Optimizing the Search for a Fossil Record of Ancient MartianLife J. D. Farmer ................................................................................................................................ 11 Bacterial Mineral Precipitation and the Making of Microfossils F. G. Ferris .................................................................................................................................. 12 Organic Carbon in Carbonate and Rim fromAllan Hills 84001 G. J. Flynn, L. P. Keller, C. Jacobsen, and S. Wirick ................................................................. 13 Chains of Magnetite Crystals in Allan Hills 84001: Evidence of Biological Origin E. I. Friedmann, J. Wierzchos, and C. Ascaso ............................................................................ 14 vi Workhop on Martian Meteorites Biomimetic butAbiotic Carbonates: New Geochemical Markers for Primitive Environments J. M. Garcia-Ruiz ........................................................................................................................ 16 How Do the Properties of Allan Hills 84001 Compare with Accepted Criteria for Evidence of Ancient Life? E. K. Gibson Jr., D.S. McKay, K. Thomas-Keprta, F. Westall, and C. A. Romanek ...................................................................................................................... 17 Xenon and Argon Isotopes in Irradiated, Etched Nakhla: Characterizingthe Host of Martian Atmospheric Xenon J. D. Gilmour, J. A. Whitby, R. Burgess, and G. Turner............................................................. 18 Formation of Carbonates in Allan Hills 84001 by Impact Metasomatism: Cooking with Gas R. P. Harvey................................................................................................................................. 20 Recovering More Antarctic Martian Meteorites: Answers to Common Questions R. P. Harvey and W. A. Cassidy .................................................................................................. 22 Estimates of Oxygen Fugacity in the Basaltic Shergottites fromElectron Microprobe Oxygen Analysis C. D. K. Herd and J. J. Papike .................................................................................................... 23 Implications of Hydrous Weathering Product on Mars forFuture Exploration L. E. Kirkland and K. C. Herr ..................................................................................................... 24 The Signature of Life: Is It Legible? A. H. Knoll.............. ..................................................................................................................... 25 Martian Biogenic Activity: Looking for Viruses and DNA Traces Instead of Extant Bacteria Traces L. V. Ksanfomality............... ........................................................................................................ 26 The Structure of Findings in Allan Hills 84001 May Hint at Their Inorganic Origin L_. V. Ksanfomality ............._. ...................... ................................................................................... 26 Constraints on Martian Volatile History from Studies of Martian Meteorites: Lessons Learnedand Open Questions L. A. Leshin .................................................................................................................................. 27 The Future Search for Life on Mars: An Unambiguous Martian Life Detection Experiment G. V. Levin ................................................................................................................................... 28 LP/ Contribution No. 956 vii Curation of U.S. Martian Meteorites Collected in Antarctica M. Lindstrom, C. Satterwhite, J. Allton, and E. Stansbery.......................................................... 29 Principal Component Analysis for Biosignature Detection in Extraterrestrial Samples G.D. McDonald and M. C. Storrie-Lombardi ............................................................................ 30 Evidence for Ancient Lifein Mars Meteorites: Lessons Learned D. S. McKay ................................................................................................................................. 31 Key Research: Martian Meteorites and Their Relationships to Planetary Geology and Perhaps Biology H. Y. McSween Jr . ....................................................................................................................... 33 What Were the Major Factors That Controlled Mineralogical Similarities and Differencesof Basaltic, Lherzolitic, and Clinopyroxenitic Martian Meteorites Within Each Group? T. Mikouchi, M. Miyamoto, and G. A. McKay ............................................................................ 34 Genesis of the Mars Pathfinder "Sulfur-Free"Rock fromSNC Parental Liquids M. E. Minitti and M. J. Rutherford................... ........................................................................... 36 Recognizing Lifeand Its Evolution Through
Recommended publications
  • Magnetite Biomineralization and Ancient Life on Mars Richard B Frankel* and Peter R Buseckt
    Magnetite biomineralization and ancient life on Mars Richard B Frankel* and Peter R Buseckt Certain chemical and mineral features of the Martian meteorite with a mass distribution unlike terrestrial PAHs or those from ALH84001 were reported in 1996 to be probable evidence of other meteorites; thirdly, bacterium-shaped objects (BSOs) ancient life on Mars. In spite of new observations and up to several hundred nanometers long that resemble fos­ interpretations, the question of ancient life on Mars remains silized terrestrial microorganisms; and lastly, 10-100 nm unresolved. Putative biogenic, nanometer magnetite has now magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) become a leading focus in the debate. crystals. These minerals were cited as evidence because of their similarity to biogenic magnetic minerals in terrestrial Addresses magnetotactic bacteria. *Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA; e-mail: [email protected] The ancient life on Mars hypothesis has been extensively tDepartments of Geology and Chemistry/Biochemistry, Arizona State challenged, and alternative non-biological processes have University, Tempe, Arizona 85287-1404, USA; e-mail: [email protected] been proposed for each of the four features cited by McKay et al. [4]. In this paper we review the current situa­ tion regarding their proposed evidence, focusing on the Abbreviations putative biogenic magnetite crystals. BCM biologically controlled mineralization BIM biologically induced mineralization BSO bacterium-shaped object Evidence for and against ancient Martian life PAH polycyclic aromatic hydrocarbon PAHs and BSOs Reports of contamination by terrestrial organic materials [5°,6°] and the similarity of ALH84001 PAHs to non-bio­ genic PAHs in carbonaceous chondrites [7,8] make it Introduction difficult to positively identify PAHs of non-terrestrial, bio­ A 2 kg carbonaceous stony meteorite, designated genic origin.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • From Meteorites to Evolution and Habitability of Planets
    Planetary and Space Science 72 (2012) 3–17 Contents lists available at SciVerse ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss From meteorites to evolution and habitability of planets Dehant Ve´ronique a,n, Breuer Doris b, Claeys Philippe c, Debaille Vinciane d, De Keyser Johan e, Javaux Emmanuelle f, Goderis Steven c, Karatekin O¨ zgur a, Spohn Tilman b, Vandaele Ann Carine e, Vanhaecke Frank g, Van Hoolst Tim a, Wilquet Vale´rie e a Royal Observatory of Belgium, 3 avenue Circulaire, Brussels, B-1180, Belgium b Deutsche Zentrum fur¨ Luft- und Raumfahrt, Berlin, Germany c Vrije Universiteit Brussel, Brussels, Belgium d Universite´ Libre de Bruxelles, Brussels, Belgium e Belgian Institute for Space Aeronomy, Brussels, Belgium f Universite´ de Liege, 4000 Liege 1, Belgique g Universiteit Gent, Brussels, Belgium article info abstract Article history: The evolution of planets is driven by the composition, structure, and thermal state of their internal core, Received 31 March 2012 mantle, lithosphere, and crust, and by interactions with a possible ocean and/or atmosphere. A planet’s Accepted 29 May 2012 history is a long chronology of events with possibly a sequence of apocalyptic events in which asteroids, Available online 23 June 2012 comets and their meteorite offspring play an important role. Large meteorite impacts on the young Keywords: Earth could have contributed to the conditions for life to appear, and similarly large meteorite impacts Terrestrial planets could also create the conditions to erase life or drastically decrease biodiversity on the surface of the Habitability planet. Meteorites also contain valuable information to understand the evolution of a planet through Meteorites their gas inclusion, their composition, and their cosmogenic isotopes.
    [Show full text]
  • Aqueous Alteration in Martian Meteorites: Comparing Mineral Relations in Igneous-Rock Weathering of Martian Meteorites and in the Sedimentary Cycle of Mars
    AQUEOUS ALTERATION IN MARTIAN METEORITES: COMPARING MINERAL RELATIONS IN IGNEOUS-ROCK WEATHERING OF MARTIAN METEORITES AND IN THE SEDIMENTARY CYCLE OF MARS MICHAEL A. VELBEL Department of Geological Sciences, 206 Natural Science Building, Michigan State University, East Lansing, Michigan 48824-1115 USA e-mail: [email protected] ABSTRACT: Many of the minerals observed or inferred to occur in the sediments and sedimentary rocks of Mars, from a variety of Mars-mission spacecraft data, also occur in Martian meteorites. Even Martian meteorites recovered after some exposure to terrestrial weathering can preserve preterrestrial evaporite minerals and useful information about aqueous alteration on Mars, but the textures and textural contexts of such minerals must be examined carefully to distinguish preterrestrial evaporite minerals from occurrences of similar minerals redistributed or formed by terrestrial processes. Textural analysis using terrestrial microscopy provides strong and compelling evidence for preterrestrial aqueous alteration products in a numberof Martian meteorites. Occurrences of corroded primary rock-forming minerals and alteration products in meteorites from Mars cover a range of ages of mineral–water interaction, from ca. 3.9 Ga (approximately mid-Noachian), through one or more episodes after ca. 1.3 Ga (approximately mid–late Amazonian), through the last half billion years (late Amazonian alteration in young shergottites), to quite recent. These occurrences record broadly similar aqueous corrosion processes and formation of soluble weathering products over a broad range of times in the paleoenvironmental history of the surface of Mars. Many of the same minerals (smectite-group clay minerals, Ca-sulfates, Mg-sulfates, and the K-Fe–sulfate jarosite) have been identified both in the Martian meteorites and from remote sensing of the Martian surface.
    [Show full text]
  • Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
    MacArtney, Adrienne (2018) Atmosphere crust coupling and carbon sequestration on early Mars. PhD thesis. http://theses.gla.ac.uk/9006/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten:Theses http://theses.gla.ac.uk/ [email protected] ATMOSPHERE - CRUST COUPLING AND CARBON SEQUESTRATION ON EARLY MARS By Adrienne MacArtney B.Sc. (Honours) Geosciences, Open University, 2013. Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the UNIVERSITY OF GLASGOW 2018 © Adrienne MacArtney All rights reserved. The author herby grants to the University of Glasgow permission to reproduce and redistribute publicly paper and electronic copies of this thesis document in whole or in any part in any medium now known or hereafter created. Signature of Author: 16th January 2018 Abstract Evidence exists for great volumes of water on early Mars. Liquid surface water requires a much denser atmosphere than modern Mars possesses, probably predominantly composed of CO2. Such significant volumes of CO2 and water in the presence of basalt should have produced vast concentrations of carbonate minerals, yet little carbonate has been discovered thus far.
    [Show full text]
  • Ancient Martian Life in Allan Hills 84001? Status of Some Current Controversies
    Workshop on the Issue of Martian Meteorites 7043.pdf ANCIENT MARTIAN LIFE IN ALLAN HILLS 84001? STATUS OF SOME CURRENT CONTROVERSIES. A. H. Treiman, Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston TX 77058, USA ([email protected]). Four lines of evidence were taken to suggest that ALH Also, it is possible that the elongate magnetites formed at 84001 contained traces of ancient martian life preserved in high T, but after the carbonates formed [5]. Magnetites are its carbonate mineral masses [1]: abundance of organic also present in void spaces in the carbonate, either as the compounds (PAHs), disequilibrium mineral assemblages, product of decarbonation at high T [21] or as entrapped from morphology of sub-micron magnetite crystals, and presence the aqueous fluid that deposited the carbonates [22]. of objects comparable in size and shape to bacteria. This Summary. There is no consensus on the formation T or evidence is predicated on the carbonate globules having mechanism of carbonate masses. The bulk of evidence, in formed at temperatures conducive to life. Here, I review my opinion, is not consistent with T>400°C [4,6,7]. At pres- evidence on carbonate formation temperature, martian ori- ent, there seems no way to tell whether the carbonates gin of organic compounds, and bacteria-shaped objects. formed at moderate or low T: hotter or colder than ~150°C. Formation Temperature: A precondition for signs of Organic Matter: McKay et al. [1] presented evidence life associated with the carbonate masses [1] is that the that the carbonate pancakes in ALH 84001 are enriched in masses formed at T amenable to life (as we know it) [2], polycyclic aromatic hydrocarbons, PAHs, which are organic <~150°C.
    [Show full text]
  • The Origin of Ancient Magnetic Activity on Small Planetary Bodies: a Nanopaleomagnetic Study
    The Origin of Ancient Magnetic Activity on Small Planetary Bodies: A Nanopaleomagnetic Study James Francis Joseph Bryson Department of Earth Sciences University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy Selwyn College October 2014 To my family and teachers Declaration I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other University. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration, except where specifically indicated in the text. This dissertation contains fewer than 225 pages of text, appendices, illustrations, captions and bibliography. James Francis Joseph Bryson October 2014 Acknowledgements First and foremost, I would like to acknowledge my supervisors, Richard Harrison and Simon Redfern. Without Richard’s hard work, dedication, supervision and direction this project would not have been possible, and I feel privileged to have worked with him. Simon should be thanked for his guidance, hours of entertainment and awful jokes. I would like to acknowledge all of my collaborators, in particular Nathan Church, Claire Nichols, Roberts Blukis, Julia Herrero-Albillos, Florian Kronast, Takeshi Kasama and Francis Nimmo. Each has played an invaluable role in acquiring and understanding the data in this thesis and I would not have reached this point without their expertise and help. Martin Walker must be thanked for his assistance and calming influence. I would like to also thank Ioan Lascu for proof-reading this thesis and general advice.
    [Show full text]
  • Evolution of the Lunar Crust Recorded in the Meteoritic
    EVOLUTION OF THE LUNAR CRUST RECORDED IN THE METEORITIC FELDSPATHIC REGOLITH BRECCIAS NORTHWEST AFRICA 10291 AND 11182: INSIGHTS INTO THE HETEROGENEITY AND PETROGENESIS OF CRUSTAL LITHOLOGIES USING PETROLOGY AND MINERAL CHEMISTRY By SHANNON BOYLE A thesis submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Science Graduate Program in Earth and Planetary Science Written under the direction of Doctor Juliane Gross And approved by _____________________________________ _____________________________________ _____________________________________ _____________________________________ New Brunswick, New Jersey October 2019 TITLE PAGE ABSTRACT OF THE THESIS Evolution of the lunar crust recorded in the meteoritic feldspathic regolith breccias Northwest Africa 10291 and 11182: Insights into the heterogeneity and petrogenesis of crustal lithologies using petrology and mineral chemistry by SHANNON BOYLE Thesis Director: Doctor Juliane Gross Abstract The geology of the Moon represents nearly a continuous geological record from its formation during the giant impact that resulted in the Earth-Moon system, to its state today. Therefore, it is a prime location for understanding one path of planetary evolution. Lunar meteorites are on average samples of rock and regolith from random areas on the lunar surface. As such, they represent our best available tools to study the crustal evolution of the Moon because they provide data on lunar petrology, geochemistry, and chronology, as well as data on the variety of existing lunar lithologies different from Apollo and Luna mission sample return sites. We investigated two lunar feldspathic regolith breccias found in 2017, Northwest Africa (NWA) 10291 and NWA 11182, to understand their petrogenetic origin and, more broadly, the evolution of lithologies present in unsampled areas of the Moon and place constraints on lunar crustal evolution in these areas.
    [Show full text]
  • Download Version of Record (PDF / 6MB)
    Open Research Online The Open University’s repository of research publications and other research outputs An Isotopic Investigation Of Early Planetesimal Differentiation Processes Thesis How to cite: Windmill, Richard Joseph (2021). An Isotopic Investigation Of Early Planetesimal Differentiation Processes. PhD thesis The Open University. For guidance on citations see FAQs. c 2020 Richard Joseph Windmill https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.00012472 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk AN ISOTOPIC INVESTIGATION OF EARLY PLANETESIMAL DIFFERENTIATION PROCESSES Richard J. Windmill Supervisors: Dr. I. A. Franchi Professor M. Anand Dr. R. C. Greenwood Submitted to the School of Physical Sciences at The Open University in accordance with the requirements for the degree of Doctor of Philosophy June 2020 School of Physical Sciences Robert Hooke Building The Open University Walton Hall Milton Keynes MK7 6AA United Kingdom Abstract The differentiation and early evolution of planetesimals is relatively poorly understood. The Main- Group pallasites (PMGs) and IIIAB irons are differentiated meteorite groups from deep planetesimal interiors. They provide a window into the early evolution of rocky planets because of the abundance of samples from these groups and because a common planetary provenance has been proposed. Oxygen isotope analyses are crucial in understanding these relationships.
    [Show full text]
  • PSRD: Meteorite Collection in Moscow, Russia
    PSRD: Meteorite collection in Moscow, Russia October 31, 2018 Better Know A Meteorite Collection: Fersman Mineralogical Museum in Moscow, Russia Written by Linda M. V. Martel Hawai'i Institute of Geophysics and Planetology PSRD highlights places and people around the world who play central roles in caring for and analyzing meteorites. Join us as we visit the meteorite collection at the Fersman Mineralogical Museum in Moscow and talk with the people who help make history and discoveries come alive. Next to one of Moscow's oldest gardens (the Neskuchny, which aptly translates to "not boring" garden) stands the similarly fascinating Fersman Mineralogical Museum that celebrated its 300th anniversary in 2016. Among the museum's gem and mineral treasures is a collection of meteorites of historical significance, including Pallas' Iron found in 1749 in Siberia, also known as the Krasnojarsk pallasite, pictured above [Data link from the Meteoritical Bulletin]. PSRD had the golden opportunity to visit the Fersman Mineralogical Museum in July 2018, along with other attendees of the 81st Meteoritical Society meeting, in the company of Dr. Mikhail Generalov, Collection Chief Curator, pictured below standing next to a large sample of the Seymchan meteorite [Data link from Meteoritical Bulletin]. In this article we highlight a selection of the extraordinary pieces in this meteorite collection. http://www.psrd.hawaii.edu/Oct18/Meteorites.Moscow.Museum.html PSRD: Meteorite collection in Moscow, Russia Dr. Mikhail Generalov stands next to a large sample of the Seymchan meteorite. http://www.psrd.hawaii.edu/Oct18/Meteorites.Moscow.Museum.html PSRD: Meteorite collection in Moscow, Russia A closer view of the cut, polished, and etched surface of the Seymchan meteorite showing the large schreibersite mineral grains (darker areas) and Widmanstätten pattern in the iron-nickel metal.
    [Show full text]
  • Mars Pathfinder Landing Site Workshop Ii: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington
    /, NASA-CR-200508 L / MARS PATHFINDER LANDING SITE WORKSHOP II: CHARACTERISTICS OF THE ARES VALLIS REGION AND FIELD TRIPS IN THE CHANNELED SCABLAND, WASHINGTON LPI Technical Report Number 95-01, Part 1 Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI/TR--95-01, Part 1 "lp MARS PATHFINDER LANDING SITE WORKSHOP II: CHARACTERISTICS OF THE ARES VALLIS REGION AND FIELD TRIPS IN THE CHANNELED SCABLAND, WASHINGTON Edited by M. P. Golombek, K. S. Edgett, and J. W. Rice Jr. Held at Spokane, Washington September 24-30, 1995 Sponsored by Arizona State University Jet Propulsion Laboratory Lunar and Planetary Institute National Aeronautics and Space Administration Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Technical Report Number 95-01, Part 1 LPI/TR--95-01, Part 1 Compiled in 1995 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the University Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may he copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This report may he cited as Golomhek M. P., Edger K. S., and Rice J. W. Jr., eds. ( 1992)Mars Pathfinder Landing Site Workshop 11: Characteristics of the Ares Vallis Region and Field Trips to the Channeled Scabland, Washington. LPI Tech. Rpt. 95-01, Part 1, Lunar and Planetary Institute, Houston. 63 pp.
    [Show full text]
  • Critically Testing Olivine-Hosted Putative Martian Biosignatures in the Yamato 000593
    1 Critically testing olivine-hosted putative Martian biosignatures in the Yamato 000593 2 meteorite - geobiological implications 3 4 Abstract: 5 On rocky planets such as Earth and Mars the serpentinization of olivine in ultramafic crust 6 produces hydrogen that can act as a potential energy source for life. Direct evidence of fluid-rock 7 interaction on Mars comes from iddingsite alteration veins found in Martian meteorites. In the 8 Yamato 000593 meteorite putative biosignatures have been reported from altered olivines in the 9 form of microtextures and associated organic material that have been compared to tubular 10 bioalteration textures found in terrestrial sub-seafloor volcanic rocks. Here we use a suite of 11 correlative, high-sensitivity, in-situ chemical and morphological analyses to characterize and re- 12 evaluate these microalteration textures in Yamato 000593, a clinopyroxenite from the shallow sub- 13 surface of Mars. We show that the altered olivine crystals have angular and micro-brecciated 14 margins and are also highly strained due to impact induced fracturing. The shape of the olivine 15 microalteration textures is in no way comparable to microtunnels of inferred biological origin 16 found in terrestrial volcanic glasses and dunites, and rather we argue that the Yamato 000593 17 microtextures are abiotic in origin. Vein filling iddingsite extends into the olivine microalteration 18 textures and contains amorphous organic carbon occurring as bands and sub-spherical 19 concentrations <300 nm across. We propose that a Martian impact event produced the micro- 20 brecciated olivine crystal margins that reacted with subsurface hydrothermal fluids to form 21 iddingsite containing organic carbon derived from abiotic sources.
    [Show full text]