Mars Pathfinder Landing Site Workshop Ii: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington

Total Page:16

File Type:pdf, Size:1020Kb

Mars Pathfinder Landing Site Workshop Ii: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington /, NASA-CR-200508 L / MARS PATHFINDER LANDING SITE WORKSHOP II: CHARACTERISTICS OF THE ARES VALLIS REGION AND FIELD TRIPS IN THE CHANNELED SCABLAND, WASHINGTON LPI Technical Report Number 95-01, Part 1 Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI/TR--95-01, Part 1 "lp MARS PATHFINDER LANDING SITE WORKSHOP II: CHARACTERISTICS OF THE ARES VALLIS REGION AND FIELD TRIPS IN THE CHANNELED SCABLAND, WASHINGTON Edited by M. P. Golombek, K. S. Edgett, and J. W. Rice Jr. Held at Spokane, Washington September 24-30, 1995 Sponsored by Arizona State University Jet Propulsion Laboratory Lunar and Planetary Institute National Aeronautics and Space Administration Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Technical Report Number 95-01, Part 1 LPI/TR--95-01, Part 1 Compiled in 1995 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the University Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may he copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This report may he cited as Golomhek M. P., Edger K. S., and Rice J. W. Jr., eds. ( 1992)Mars Pathfinder Landing Site Workshop 11: Characteristics of the Ares Vallis Region and Field Trips to the Channeled Scabland, Washington. LPI Tech. Rpt. 95-01, Part 1, Lunar and Planetary Institute, Houston. 63 pp. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Mail order requestors will be invoiced for the cost of shipping and handling. Cover:. Regional mosaic showing the Mars Pathf'mder landing site (I00 km x 200 km landing ellipse shown). The mosaic shows large catastrophic outflow channels debouching into Chryse Planitia. Ares Vallis flowed to the northwest (from the southeast) across the landing site. Tiu Valles is just to the west of Ares Vallis and may also have flowed across the landing area. The landing site itself is a very smooth depositional surface, where the flood waters deposited the sediments carved from the channels. Landing at this location should allow analysis of a wide variety of rock types deposited by the flood. These catastrophic outflow channels on Mars are much larger analogs to the Channeled Scabland in Washington state. LPI Technical Report 95-01, Part 1 iii Preface This volume contains papers that have been accepted for presentation at the Mars Pathfinder Landing Site Workshop II: Characteristics of the Ares Vallis Region, September 24-30, 1995, in Spokane, Washington. Also included in this volume is the field trip guide to the Channeled Scabland and Missoula Lake Breakout. The organizer for this workshop was Matthew Golombek from Jet Propulsion Laboratory. The field trip organizers were Kenneth Edgett and James Rice Jr. from Arizona State University. Logistics and administrative and publications support were provided by the Publications and Program Services Department staff at the Lunar and Planetary Institute. LPI Technical Report 95-01, Part 1 v Contents Mission Description ............................................................................................................................. 1 Abstracts Estimates of the Maximum and Minimum Flow Velocities of the Circum-Chryse Outflow Channels R. A. Craddock and K. L. Tanaka .................................................................................................. 9 Geologic Mapping Traverse of the Highland-to-Lowland Transition in an Area Adjacent to the Mars Pathfinder Region L. S. Crumpler .............................................................................................................................. 10 After the Flood: A Preview of Eolian Features at the Mars Pathfinder Landing Site in Ares Vallis K. S. Edgen ................................................................................................................................... 12 Viking IRTM Observations of the Anticipated Mars Pathfinder Landing Site at Ares Vallis K. S. Edgett ................................................................................................................................... 12 Size-Frequency Distributions of Rocks on Mars M. Golombek and D. Rapp ........................................................................................................... 13 Characteristics of the Mars Pathfinder Landing Site M. P. Golombek, T. J. Parker, H. J. Moore, M. A. Slade, R. F. Jurgens, and D. L. Mitchell ................................................................................................................................ 15 Assessment of Pathfinder Landing Site with Goldstone Radar Ranging and Goldstone- VLA Dual-Polarization Imaging A. F. C. Haldemann, D. O. Muhleman, R. F. Jurgens, and M. A. Slade ..................................... 16 Radar Scattering Characteristics of Ares Vallis and Environs from Arecibo Observations J. K. Harmon and B. A. Campbell ................................................................................................ 17 Possibility of Highly Contrasting Rock Types at Martian Highland/Lowland Contact G. G. Kochemasov ........................................................................................................................ 18 Catastrophic Paleoflooding at the Pathfinder Landing Site: Ares Vallis, Mars G. Komatsu and V. R. Baker ........................................................................................................ 19 Mars Pathfinder: Geology of the Landing Site Ellipse R. O. Kuzmin and R. Greeley ....................................................................................................... 20 Ground Ice at the Mars Pathfinder Landing Site M. T. Mellon ................................................................................................................................. 21 vi Mars Pathfinder Landing Site Workshop H What Will Pathfinder See and Do on Mars? H. J. Moore ................................................................................................................................... 22 Viking Stereo of the Ares Vallis Site: Sedimentological Implications T. J. Parker ................................................................................................................................... 23 The Geologic Mapping of the Ares Vallis Region J. W. Rice Jr .................................................................................................................................. 24 Facies on Mars: A Model for the Chryse Basin Outflow Sediments Based on Analog Studies of Icelandic Sandar and the Ephrata Fan of the Channeled Scabland, Washington J. W. Rice Jr. and K. S. Edgett ..................................................................................................... 24 A Sojourner's Prospectus: Provenance of Flood-transported Clasts at the Mars Pathfinder Landing Site J. W. Rice Jr. and K. S. Edgett ..................................................................................................... 25 Spatial Statistical Analysis of the Ares Vallis Region from Viking Orbiter and Worst-Case Scenario for Subpixel-Scale Roughness M. K. Shepard, E. A. Guinness, and R. E. Arvidson .................................................................... 26 Dual-Polarization Continuous-Wave (CW) Observations from the Ares VaUis Site and Environs M. A. Slade, D. L. Mitchell, and R. F. Jurgens ............................................................................ 26 A Targeting Strategy for Ensuring a Hillside View at Ares Valles P. 1-1. Smith .................................................................................................................................... 27 Sedimentary Stratigraphy of Chryse Planitia, Mars K. L. Tanaka ................................................................................................................................. 28 Hardpan and Other Diagenetic "Rock" in the Catchment of Ares Vallis and Surrounding Areas A. H. Treiman ............................................................................................................................... 28 Field Guide Field Trips Accompanying the Mars Pathfinder Landing Site Workshop II: Channeled Scabland and Lake Missoula Break-Out Areas in Washington and Idaho ...................... 31 LPI Technical Report 95-01, Part 1 I Mission Description INTRODUCTION The Mars Pathfinder Project received a new start in Octo- ber 1993 as one of the next missions in NASA's long-term Mars exploration program. The mission involves landing a single vehicle on the surface of Mars in 1997. The project is one of the first Discovery-class missions and is required to be a quick, low-cost mission ($150M development cost cap, excluding launch vehicle and mission operations, in less than a three-year development period) and achieve a set of signifi- cant but focused engineering, science, and technology objec- tives. The primary objective is to demonstrate a low-cost cruise, entry, descent, and landing system required to place a payload on the martian surface in a safe, operational configu- ration. Additional objectives include the deployment and operation of various science instruments and a microrover (an additional $22M development). Pathfinder paves the way for a cost-effective
Recommended publications
  • Curiosity's Candidate Field Site in Gale Crater, Mars
    Curiosity’s Candidate Field Site in Gale Crater, Mars K. S. Edgett – 27 September 2010 Simulated view from Curiosity rover in landing ellipse looking toward the field area in Gale; made using MRO CTX stereopair images; no vertical exaggeration. The mound is ~15 km away 4th MSL Landing Site Workshop, 27–29 September 2010 in this view. Note that one would see Gale’s SW wall in the distant background if this were Edgett, 1 actually taken by the Mastcams on Mars. Gale Presents Perhaps the Thickest and Most Diverse Exposed Stratigraphic Section on Mars • Gale’s Mound appears to present the thickest and most diverse exposed stratigraphic section on Mars that we can hope access in this decade. • Mound has ~5 km of stratified rock. (That’s 3 miles!) • There is no evidence that volcanism ever occurred in Gale. • Mound materials were deposited as sediment. • Diverse materials are present. • Diverse events are recorded. – Episodes of sedimentation and lithification and diagenesis. – Episodes of erosion, transport, and re-deposition of mound materials. 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 2 Gale is at ~5°S on the “north-south dichotomy boundary” in the Aeolis and Nepenthes Mensae Region base map made by MSSS for National Geographic (February 2001); from MOC wide angle images and MOLA topography 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 3 Proposed MSL Field Site In Gale Crater Landing ellipse - very low elevation (–4.5 km) - shown here as 25 x 20 km - alluvium from crater walls - drive to mound Anderson & Bell
    [Show full text]
  • Minutes of the January 25, 2010, Meeting of the Board of Regents
    MINUTES OF THE JANUARY 25, 2010, MEETING OF THE BOARD OF REGENTS ATTENDANCE This scheduled meeting of the Board of Regents was held on Monday, January 25, 2010, in the Regents’ Room of the Smithsonian Institution Castle. The meeting included morning, afternoon, and executive sessions. Board Chair Patricia Q. Stonesifer called the meeting to order at 8:31 a.m. Also present were: The Chief Justice 1 Sam Johnson 4 John W. McCarter Jr. Christopher J. Dodd Shirley Ann Jackson David M. Rubenstein France Córdova 2 Robert P. Kogod Roger W. Sant Phillip Frost 3 Doris Matsui Alan G. Spoon 1 Paul Neely, Smithsonian National Board Chair David Silfen, Regents’ Investment Committee Chair 2 Vice President Joseph R. Biden, Senators Thad Cochran and Patrick J. Leahy, and Representative Xavier Becerra were unable to attend the meeting. Also present were: G. Wayne Clough, Secretary John Yahner, Speechwriter to the Secretary Patricia L. Bartlett, Chief of Staff to the Jeffrey P. Minear, Counselor to the Chief Justice Secretary T.A. Hawks, Assistant to Senator Cochran Amy Chen, Chief Investment Officer Colin McGinnis, Assistant to Senator Dodd Virginia B. Clark, Director of External Affairs Kevin McDonald, Assistant to Senator Leahy Barbara Feininger, Senior Writer‐Editor for the Melody Gonzales, Assistant to Congressman Office of the Regents Becerra Grace L. Jaeger, Program Officer for the Office David Heil, Assistant to Congressman Johnson of the Regents Julie Eddy, Assistant to Congresswoman Matsui Richard Kurin, Under Secretary for History, Francisco Dallmeier, Head of the National Art, and Culture Zoological Park’s Center for Conservation John K.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Guide to the Betty J. Meggers and Clifford Evans Papers
    Guide to the Betty J. Meggers and Clifford Evans papers Tyler Stump and Adam Fielding Funding for the processing of this collection was provided by the Smithsonian Institution's Collections Care and Preservation Fund. December 2015 National Anthropological Archives Museum Support Center 4210 Silver Hill Road Suitland, Maryland 20746 [email protected] http://www.anthropology.si.edu/naa/ Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 2 Scope and Contents........................................................................................................ 5 Arrangement..................................................................................................................... 5 Bibliography...................................................................................................................... 6 Names and Subjects ...................................................................................................... 6 Container Listing ............................................................................................................. 8 Series 1: Personal, 1893-2012................................................................................. 8 Series 2: Writings, 1944-2011...............................................................................
    [Show full text]
  • Eighteenth-Century English and French Landscape Painting
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 12-2018 Common ground, diverging paths: eighteenth-century English and French landscape painting. Jessica Robins Schumacher University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Other History of Art, Architecture, and Archaeology Commons Recommended Citation Schumacher, Jessica Robins, "Common ground, diverging paths: eighteenth-century English and French landscape painting." (2018). Electronic Theses and Dissertations. Paper 3111. https://doi.org/10.18297/etd/3111 This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. COMMON GROUND, DIVERGING PATHS: EIGHTEENTH-CENTURY ENGLISH AND FRENCH LANDSCAPE PAINTING By Jessica Robins Schumacher B.A. cum laude, Vanderbilt University, 1977 J.D magna cum laude, Brandeis School of Law, University of Louisville, 1986 A Thesis Submitted to the Faculty of the College of Arts and Sciences of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Master of Arts in Art (C) and Art History Hite Art Department University of Louisville Louisville, Kentucky December 2018 Copyright 2018 by Jessica Robins Schumacher All rights reserved COMMON GROUND, DIVERGENT PATHS: EIGHTEENTH-CENTURY ENGLISH AND FRENCH LANDSCAPE PAINTING By Jessica Robins Schumacher B.A.
    [Show full text]
  • 2021 Transpacific Yacht Race Event Program
    TRANSPACTHE FIFTY-FIRST RACE FROM LOS ANGELES 2021 TO HONOLULU 2 0 21 JULY 13-30, 2021 Comanche: © Sharon Green / Ultimate Sailing COMANCHE Taxi Dancer: © Ronnie Simpson / Ultimate Sailing • Hamachi: © Team Hamachi HAMACHI 2019 FIRST TO FINISH Official race guide - $5.00 2019 OVERALL CORRECTED TIME WINNER P: 808.845.6465 [email protected] F: 808.841.6610 OFFICIAL HANDBOOK OF THE 51ST TRANSPACIFIC YACHT RACE The Transpac 2021 Official Race Handbook is published for the Honolulu Committee of the Transpacific Yacht Club by Roth Communications, 2040 Alewa Drive, Honolulu, HI 96817 USA (808) 595-4124 [email protected] Publisher .............................................Michael J. Roth Roth Communications Editor .............................................. Ray Pendleton, Kim Ickler Contributing Writers .................... Dobbs Davis, Stan Honey, Ray Pendleton Contributing Photographers ...... Sharon Green/ultimatesailingcom, Ronnie Simpson/ultimatesailing.com, Todd Rasmussen, Betsy Crowfoot Senescu/ultimatesailing.com, Walter Cooper/ ultimatesailing.com, Lauren Easley - Leialoha Creative, Joyce Riley, Geri Conser, Emma Deardorff, Rachel Rosales, Phil Uhl, David Livingston, Pam Davis, Brian Farr Designer ........................................ Leslie Johnson Design On the Cover: CONTENTS Taxi Dancer R/P 70 Yabsley/Compton 2019 1st Div. 2 Sleds ET: 8:06:43:22 CT: 08:23:09:26 Schedule of Events . 3 Photo: Ronnie Simpson / ultimatesailing.com Welcome from the Governor of Hawaii . 8 Inset left: Welcome from the Mayor of Honolulu . 9 Comanche Verdier/VPLP 100 Jim Cooney & Samantha Grant Welcome from the Mayor of Long Beach . 9 2019 Barndoor Winner - First to Finish Overall: ET: 5:11:14:05 Welcome from the Transpacific Yacht Club Commodore . 10 Photo: Sharon Green / ultimatesailingcom Welcome from the Honolulu Committee Chair . 10 Inset right: Welcome from the Sponsoring Yacht Clubs .
    [Show full text]
  • 50 Years of Petrology
    spe500-01 1st pgs page 1 The Geological Society of America 18888 201320 Special Paper 500 2013 CELEBRATING ADVANCES IN GEOSCIENCE Plates, planets, and phase changes: 50 years of petrology David Walker* Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA ABSTRACT Three advances of the previous half-century fundamentally altered petrology, along with the rest of the Earth sciences. Planetary exploration, plate tectonics, and a plethora of new tools all changed the way we understand, and the way we explore, our natural world. And yet the same large questions in petrology remain the same large questions. We now have more information and understanding, but we still wish to know the following. How do we account for the variety of rock types that are found? What does the variety and distribution of these materials in time and space tell us? Have there been secular changes to these patterns, and are there future implications? This review examines these bigger questions in the context of our new understand- ings and suggests the extent to which these questions have been answered. We now do know how the early evolution of planets can proceed from examples other than Earth, how the broad rock cycle of the present plate tectonic regime of Earth works, how the lithosphere atmosphere hydrosphere and biosphere have some connections to each other, and how our resources depend on all these things. We have learned that small planets, whose early histories have not been erased, go through a wholesale igneous processing essentially coeval with their formation.
    [Show full text]
  • Mars Reconnaissance Orbiter and Opportunity Observations Of
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Mars Reconnaissance Orbiter and Opportunity 10.1002/2014JE004686 observations of the Burns formation: Crater Key Point: hopping at Meridiani Planum • Hydrated Mg and Ca sulfate Burns formation minerals mapped with MRO R. E. Arvidson1, J. F. Bell III2, J. G. Catalano1, B. C. Clark3, V. K. Fox1, R. Gellert4, J. P. Grotzinger5, and MER data E. A. Guinness1, K. E. Herkenhoff6, A. H. Knoll7, M. G. A. Lapotre5, S. M. McLennan8, D. W. Ming9, R. V. Morris9, S. L. Murchie10, K. E. Powell1, M. D. Smith11, S. W. Squyres12, M. J. Wolff3, and J. J. Wray13 1 2 Correspondence to: Department of Earth and Planetary Sciences, Washington University in Saint Louis, Missouri, USA, School of Earth and Space R. E. Arvidson, Exploration, Arizona State University, Tempe, Arizona, USA, 3Space Science Institute, Boulder, Colorado, USA, 4Department of [email protected] Physics, University of Guelph, Guelph, Ontario, Canada, 5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 6U.S. Geological Survey, Astrogeology Science Center, Flagstaff, Arizona, USA, 7 8 Citation: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA, Department Arvidson, R. E., et al. (2015), Mars of Geosciences, Stony Brook University, Stony Brook, New York, USA, 9NASA Johnson Space Center, Houston, Texas, USA, Reconnaissance Orbiter and Opportunity 10Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA, 11NASA Goddard Space Flight Center, observations of the Burns formation: Greenbelt, Maryland, USA, 12Department of Astronomy, Cornell University, Ithaca, New York, USA, 13School of Earth and Crater hopping at Meridiani Planum, J.
    [Show full text]
  • 100M Dash (5A Girls) All Times Are FAT, Except
    100m Dash (5A Girls) All times are FAT, except 2 0 2 1 R A N K I N G S A L L - T I M E T O P - 1 0 P E R F O R M A N C E S 1 12 Nerissa Thompson 12.35 North Salem 1 Margaret Johnson-Bailes 11.30a Churchill 1968 2 12 Emily Stefan 12.37 West Albany 2 Kellie Schueler 11.74a Summit 2009 3 9 Kensey Gault 12.45 Ridgeview 3 Jestena Mattson 11.86a Hood River Valley 2015 4 12 Cyan Kelso-Reynolds 12.45 Springfield 4 LeReina Woods 11.90a Corvallis 1989 5 10 Madelynn Fuentes 12.78 Crook County 5 Nyema Sims 11.95a Jefferson 2006 6 10 Jordan Koskondy 12.82 North Salem 6 Freda Walker 12.04c Jefferson 1978 7 11 Sydney Soskis 12.85 Corvallis 7 Maya Hopwood 12.05a Bend 2018 8 12 Savannah Moore 12.89 St Helens 8 Lanette Byrd 12.14c Jefferson 1984 9 11 Makenna Maldonado 13.03 Eagle Point Julie Hardin 12.14c Churchill 1983 10 10 Breanna Raven 13.04 Thurston Denise Carter 12.14c Corvallis 1979 11 9 Alice Davidson 13.05 Scappoose Nancy Sim 12.14c Corvallis 1979 12 12 Jada Foster 13.05 Crescent Valley Lorin Barnes 12.14c Marshall 1978 13 11 Tori Houg 13.06 Willamette Wind-Aided 14 9 Jasmine McIntosh 13.08 La Salle Prep Kellie Schueler 11.68aw Summit 2009 15 12 Emily Adams 13.09 The Dalles Maya Hopwood 12.03aw Bend 2016 16 9 Alyse Fountain 13.12 Lebanon 17 11 Monica Kloess 13.14 West Albany C L A S S R E C O R D S 18 12 Molly Jenne 13.14 La Salle Prep 9th Kellie Schueler 12.12a Summit 2007 19 9 Ava Marshall 13.16 South Albany 10th Kellie Schueler 12.01a Summit 2008 20 11 Mariana Lomonaco 13.19 Crescent Valley 11th Margaret Johnson-Bailes 11.30a Churchill 1968
    [Show full text]
  • Magnetite Biomineralization and Ancient Life on Mars Richard B Frankel* and Peter R Buseckt
    Magnetite biomineralization and ancient life on Mars Richard B Frankel* and Peter R Buseckt Certain chemical and mineral features of the Martian meteorite with a mass distribution unlike terrestrial PAHs or those from ALH84001 were reported in 1996 to be probable evidence of other meteorites; thirdly, bacterium-shaped objects (BSOs) ancient life on Mars. In spite of new observations and up to several hundred nanometers long that resemble fos­ interpretations, the question of ancient life on Mars remains silized terrestrial microorganisms; and lastly, 10-100 nm unresolved. Putative biogenic, nanometer magnetite has now magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) become a leading focus in the debate. crystals. These minerals were cited as evidence because of their similarity to biogenic magnetic minerals in terrestrial Addresses magnetotactic bacteria. *Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA; e-mail: [email protected] The ancient life on Mars hypothesis has been extensively tDepartments of Geology and Chemistry/Biochemistry, Arizona State challenged, and alternative non-biological processes have University, Tempe, Arizona 85287-1404, USA; e-mail: [email protected] been proposed for each of the four features cited by McKay et al. [4]. In this paper we review the current situa­ tion regarding their proposed evidence, focusing on the Abbreviations putative biogenic magnetite crystals. BCM biologically controlled mineralization BIM biologically induced mineralization BSO bacterium-shaped object Evidence for and against ancient Martian life PAH polycyclic aromatic hydrocarbon PAHs and BSOs Reports of contamination by terrestrial organic materials [5°,6°] and the similarity of ALH84001 PAHs to non-bio­ genic PAHs in carbonaceous chondrites [7,8] make it Introduction difficult to positively identify PAHs of non-terrestrial, bio­ A 2 kg carbonaceous stony meteorite, designated genic origin.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Salt Triggered Melting of Permafrost in the Chaos Regions of Mars
    Lunar and Planetary Science XXXVII (2006) 2218.pdf SALT TRIGGERED MELTING OF PERMAFROST IN THE CHAOS REGIONS OF MARS. Popa I.C., Università degli Studi "G. d'Annunzio" Chieti-Pescara, Pescara, Viale Pindaro 42, Italy. ([email protected]) Introduction: Mars surface bears traces of many landing site (Chryse Planitia) is the place where Ares fluvial-like features, geomorphic identified as outflow outflow channel is depositing its transporting channels, valley networks etc. Among these a particular materials. The following Martian landers Pathfinder one stands above others from the dimensional point of [6] and MER A Spirit [7], and MER B Opportunity [8] view. Outflow channels bear unique water erosion also revealed high soluble salts contents in places characteristics, that led Baker and Milton (1974) [1] to possibly genetically connected. Recently OMEGA believe that are caused by a surface runoff of large aboard Mars Express spacecraft has proven the amounts of water, in short geological time. Water existence of gypsum and other highly soluble salts (e.g origin, necessary for these processes was the topic of kieserite and epsomite) in localized deposits in places around Valles Marineris, and Iani Chaos [9]. many works. Among these theories one generally Freezing point depression of water solutions: accepted idea considers that water is originating from The freezing point of pure water at 1 bar is 0°C melting of permafrost layers positioned in the places of (273K). This melting point can be easily depressed by today chaos’. Here is an investigation that takes into adding impurities or soluble salts to the solvent. In the account the exoergic salt-ice dissolution reaction, along case of halite (NaCl) salt it is known that a 10% NaCl with freezing point depression of formed salty solutions, solution lowers the melting point of about -6°C (267K) as a complentary or a stand-alone process in chaos- and a 20% salt solution lowers it to -16°C (257K).
    [Show full text]