Scale Effects of Ecological Diversification and Environment on Biodiversity
Total Page:16
File Type:pdf, Size:1020Kb
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Plot-Level to large-scale effects of ecological diversification and environment on biodiversity Wüest, Rafael Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-88782 Dissertation Published Version Originally published at: Wüest, Rafael. Plot-Level to large-scale effects of ecological diversification and environment on biodiver- sity. 2013, University of Zurich, Faculty of Science. PLOT-‐LEVEL TO L ARGE-‐SCALE E FFECTS OF E COLOGICAL DIVERSIFICATION AND ENVIRONMENT ON B IODIVERSITY Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-‐naturwissenschaftlichen Fakultät der Universität Zürich von Rafael Wüest aus Ruswil LU Promotionskomitee Prof. Dr. H. Peter Linder (Vorsitz) Dr. Peter B. Pearman (Leitung) Dr. Niklaus E. Zimmermann Dr. Michael Kessler Dr. Frank Schurr (Gutachter) Prof. Dr. -‐Christian Jens Svenning (Gutachter) Zürich, 2013 1 SYNOPSIS Humanity’s desire to preserve current biodiversity for future generations requires sound understanding of how present-‐day biodiversity evolved in the past and how it is structured today. Evolutionary biology traditionally investigates how a single ancestor can give rise to enormous amounts of species, and ecology inquires species-‐environment interactions and how these lead to observed biodiversity patterns. For example, an evolutionary biologist, standing in a highly diverse alpine meadow, could ask how all these diverse flowering plants have evolved from a single ancestor. The ecologist, however, standing in the same meadow, would seek to identify the key environmental factors that determine which of the 250,000-‐400,000 flowering plant species make it into a diverse alpine meadow. In the light of on-‐going global change we realize that the ecologist and the evolutionary biologist have to talk each other, that the two disciplines must better integrate to develop successful measures that protect today’s biodiversity. In this thesis, I combined s methodologie from both research fields in an attempt to further integrate ecological and evolutionary research. The influence of patterns in trait and niche evolution on the assembly of communities constituted my main research focus, which I investigated in Restionaceae (Poales) of the Cape Floristic Region in South Africa. In addition, I examined how differential ecological settings among continents influenced ecological diversification in the replicated radiation of the grass subfamily Danthonioideae. In CHAPTER II, I investigated how reseeder-‐resprouter ratios of local Restionaceae assemblages change with environmental conditions in the Cape Floristic Region (CFR). While resprouter species generally survive fire and resprout from their rhizomes, reseeder species do not survive fire and have to regenerate from seeds. I designed a field sampling and tested with ordination and mixed effect models whether reseeder-‐resprouter ratios differ among contrasting habitats and climatic conditions. I found that the reseeder-‐resprouter ratio varies with climate and soil type, being highest in dry, seasonal climate and nutrient-‐poor soils. 3 However, reseeder-‐resprouter ratio does not differ among wet and dry habitats. My results are unexpected because they contradict results from other cape plant groups and suggest that generalities regarding the fire survival strategies in the CFR should be avoided. In CHAPTER III, I focused on evolutionary patterns in the fire-‐survival strategies. The life history dichotomy of reseeding vs. resprouting has been proposed to explain the exceptional plant species richness of the CFR. I contrasted the patterns of trait-‐specific diversification and niche evolution in the replicated Restionaceae radiations of South Africa and Australia. The employed Bayesian approach inferred faster diversification rates eders for rese in South Africa, but not in Australia. Further, I showed that climatic niches evolved faster in reseeder than in resprouter lineages and that niche optima are different between the two strategies. The results indicate that rapid shifts between fire-‐survival strategies can promote speciation if the two strategies are separated ecologically and the landscape is heterogeneous. In CHAPTER IV, I tested the hypothesis that the importance of competition in assembling species varies along an environmental harshness gradient. I developed an integrative ecophylogenetics framework that allows to evaluate how estimated phylogenetic structure of local ies assemblages var along an environmental gradient and at the same time incorporates potentially confounding effects like phylogenetic scale and species pool composition. Results indicate that phylogenetic clustering in Restionaceae assemblages decreases with increasing drought stress, consistent with the hypothesis. In addition, analyses under the framework revealed that phylogenetic scale affects estimated phylogenetic structure of local assemblages more than does species pool composition. The integrative ecophylogenetics framework provides a flexible framework and, as such, is well suited to examine the generality of my findings in a range of organisms and ecosystems. In CHAPTER V, I studied how inter-‐continental s climate difference affected the occupancy of climatic niches in Danthonioideae. The Danthonioideae have radiated repeatedly on several continents and, therefore, are ideal to investigate 4 effects of available climatic conditions on ecological diversification. I demonstrated that danthonioid niches differ significantly among continents. This could partly be explained by niche truncation, where the full potential range of the lineage cannot be expressed due to the regional absence of suitable climates. Further, I propose that niches, during diversification, have shifted towards regionally available climatic space. Finally, evolution of climatic niches in Danthonioideae follows a punctuational pattern, and most niche shifts appear to be associated with the colonization of new continents. Overall, the work presented in my thesis demonstrates that combining evolutionary and ecological concepts and methodologies furthers our understanding of the genesis and maintenance of present-‐day biodiversity. However, my research is only one further step towards the integration of ecology and evolutionary biology. Many have to follow to achieve the synthetic comprehension that is needed to successfully protect biodiversity for future generations. 5 ZUSAMMENFASSUNG Das menschliche Bedürfnis, die heutige Biodiversität für kommende Generationen zu bewahren setz voraus, dass wir verstehen rsität wie Biodive im Lauf der Evolution entstanden ist und wie sie heute strukturiert ist. Die Evolutionsbiologie befasst sich traditionell mit der Entstehung einer unglaublichen Anzahl an Arten aus einer einzigen Art, während die Ökologie untersucht, wie Arten mit ihrer Umwelt interagieren und wie diese Interaktionen ten zu beobachte Biodiversitäts-‐ Strukturen führten. Man stelle sich einen Evolutionsbiologen in einer artenreichen Alpwiese vor: er fragt sich, wie aus einer einzigen Pflanze die Vielfalt an Blütenpflanzen entstanden sein kann. Ein Ökologe in genau der gleichen Wiese dagegen, versucht die Umweltfaktoren zu identifizieren, die bestimmen, welche der insgesamt 250,000-‐400,000 Blütenpflanzen weltweit in genau dieser Wiese vorkommen. Im Licht des voranschreitenden globalen Wandels realisieren wir schnell, dass der Evolutionsbiologe und der Ökologe miteinander kommunizieren müssen und dass die beiden Disziplinen integral vernetzt werden müssen, um die Möglichkeit zu schaffen, die heutige Biodiversität zu schützen. In meiner Dissertation habe ich Methoden aus beiden Forschungsfeldern kombiniert, um die notwendige Vernetzung von Evolutionsbiologie ologie und Ök voranzutreiben. Mein Schwerpunktthema, der Einfluss von Prozessen rn und Muste in der Evolution ökologischer Nischen auf die Vergesellschaftung von Arten, untersuchte ich an den Südafrikanischen Restionaceae (Poales). Darüber hinaus erforschte ich, wie sich unterschiedlichen klimatischen Bedingungen rschiedenen auf ve Kontinenten auf die ökologische Diversifizierung einer Gras-‐Unterfamilie (Danthonioideae) auswirkten. In KAPITEL II untersuchte ich, ob sich das Reseeder-‐Resprouter Verhältnis in Restionaceae-‐Gesellschaften der Kap-‐Region Südafrikas entlang von Umweltgradienten verändert. Resprouter-‐Arten überleben Feuer normalerweise und Teile des Wurzelsystems keimen („resprouten“) wieder. Reseeder sterben bei Feuer dagegen komplett ab und sind darauf angewiesen, aus Samen zu keimen (zu „reseeden“). Ich habe eine Datenerhebung geplant, die es mir erlaubte, mit 7 Hilfe von Ordinationsmethoden und mixed-‐effect sten, Modellen zu te ob sich das Reseeder-‐Resprouter Verhältnissen in verschiedenen Habitaten und Umweltbedingungen unterscheidet. Das Verhältnis unterscheidet sich tatsächlich und ist in trockenem, saisonalem Klima mem und auf nährstoffar Boden am grössten. Meine Resultate sind etwas unerwartet, weil sie älteren Forschungsresultaten wiedersprechen. Die neuen Erkenntnisse deuten darauf hin, dass Verallgemeinerungen bezüglich umweltspezifischer der-‐Resprouter Resee Verhältnisse von einzelnen auf alle Arten vermieden werden sollten. KAPITEL III befasst sich mit evolutionären Mustern im Zusammenhang mit Reseeder-‐ und Resprouter-‐Strategien