Discovery of Γ-Ray Emission from the Strongly Lobe

Total Page:16

File Type:pdf, Size:1020Kb

Discovery of Γ-Ray Emission from the Strongly Lobe The Astrophysical Journal, 808:74 (9pp), 2015 July 20 doi:10.1088/0004-637X/808/1/74 © 2015. The American Astronomical Society. All rights reserved. DISCOVERY OF γ-RAY EMISSION FROM THE STRONGLY LOBE-DOMINATED QUASAR 3C 275.1 Neng-Hui Liao1, Yu-Liang Xin1,2, Shang Li1,2, Wei Jiang1,2, Yun-Feng Liang1,2, Xiang Li1,2, Peng-Fei Zhang1,3, Liang Chen4, Jin-Ming Bai5, and Yi-Zhong Fan1 1 Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China; [email protected], [email protected] 2 University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China 3 Department of Physics, Yunnan University, Kunming 650091, China 4 Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China 5 Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China Received 2015 January 2; accepted 2015 June 7; published 2015 July 17 ABSTRACT We systematically analyze the 6 year Fermi/Large Area Telescope (LAT) data on lobe-dominated quasars (LDQs) in the complete LDQ sample from the Revised third Cambridge Catalogue of Radio Sources (3CRR) survey and report the discovery of high-energy γ-ray emission from 3C 275.1. The γ-ray emission of 3C 207 is confirmed and significant variability of the light curve is identified. We do not find statistically significant γ-ray emission from other LDQs. 3C 275.1 is the known γ-ray quasar with the lowest core dominance parameter (i.e., R = 0.11). We also show that both the northern radio hotspot and parsec jet models can reasonably reproduce the γ-ray data. The parsec jet model, however, is favored by the potential γ-ray variability on a timescale of months. We suggest that some dimmer γ-ray LDQs will be detected in the future and LDQs could contribute non-ignorably to the extragalactic γ-ray background. Key words: galaxies: active – galaxies: jets – quasars: individual (3C 275.1) – radiation mechanisms: non-thermal 1. INTRODUCTION consistent with the expectation that L is foreshortened at small viewing angles due to the geometrical projection effect (Hough Active galactic nuclei (AGNs) powered by accretion of & Readhead 1989). Observation of the parsec-scale morphol- material into super-massive black holes (SMBHs) are the most ogy of LDQs suggests that no counter jets are seen and the luminous and persistent sources of electromagnetic radiation in fi ( structural variations and the flux variability are mild (Hough the universe. In the orientation-based uni ed models Anto- ) nucci 1993; Urry & Padovani 1995), the observed diversity of et al. 2002 . These phenomena can be well understood via the AGNs has been ascribed to a few physical parameters such as orientation-dependent relativistic beaming scheme if such the orientation of the accretion disk/torus and jet to the objects are viewed at intermediate angles. This argument is supported by the anti-correlation between R and the width of observer, the accretion rate, and the mass and angular ( ) momentum of SMBHs (e.g., Antonucci 1984; Osterbrock & the broad line emissions e.g., Baker & Hunstead 1995 . Thus, Pogge 1985; Meier 1999; Ghisellini et al. 2009). the orientation angles of LDQs can be restricted by these ° °( ) The simple relativistic jet model (Blandford & Rees 1978) approaches, ranging from 10 to 40 Aars et al. 2005 . has thus far been reasonably successful in accounting for the Since the successful launch of the Fermi Gamma-ray Space ( ) primary properties of radio-loud AGNs, which constitute about Telescope Atwood et al. 2009 , our understanding of radio- 10% of all AGNs. In the unified scheme of radio-loud AGNs, it loud AGNs has been revolutionized. In the second Fermi/Large ( ) ( is postulated that blazars are viewed pole-on (Blandford & Area Telescope LAT source catalog 2FGL, Nolan ) γ Königl 1979; Antonucci & Ulvestad 1985) and hence the et al. 2012 , the extragalactic -ray sky is dominated by radiation of blazars is overwhelmed by the luminous and radio-loud AGNs. The vast majority of these sources are rapidly variable Doppler-boosted jet emission (Ulrich blazars (Ackermann et al. 2011). By comparison, MAGNs are et al. 1997). By comparison, radio-loud AGNs with misdir- not expected to be strong GeV sources (Abdo et al. 2010a). ected jets (i.e., the misaligned AGNs (MAGNs) including Recently, an analysis of 4 year LAT data shows that the radio galaxies and steep spectrum radio quasars, or SSRQs) number of significantly detected γ-ray MAGNs is still only a exhibit steep radio spectra and bipolar or quasi-symmetrical handful (Di Mauro et al. 2014). Nevertheless, detecting the γ- radio structures. Deboosted radio emissions from mildly ray emissions from MAGNs is attractive because they offer a relativistic outflows and/or extended radio lobes are significant different perspective than blazars for approaching high-energy for MAGNs, while relativistic core radio emissions are phenomena (Georganopoulos & Kazanas 2003a). In the dominant for blazars. The ratio of these two components, 2FGL, most γ-ray-detected MAGNs are Fanaroff–Riley type ( ) γ R º-SScore[] total S core (which is also called the core dom- FR, Fanaroff & Riley 1974 I radio galaxies whose -ray inance parameter, where S represents the observed flux density), emissions can be naturally explained by structured jet radiation is routinely used for classification (Orr & Browne 1982;Hough models (Georganopoulos & Kazanas 2003b; Ghisellini et al. & Readhead 1989; Yuan & Wang 2012).Lobe-dominated 2005). Since they are relatively nearby, γ-ray emissions have quasars (LDQs) are a special type of SSRQs with R <1. been well detected in these sources despite their large jet Since lobe emission should be orientation-unbiased, LDQs inclination angles and small R values. On the other hand, no FR are widely used to test the unified scheme of radio-loud AGNs. II sources at relatively high redshifts viewed at large angles, The anti-correlation between R and the projected linear size of such as strongly lobe-dominated quasars (R ; 0.1), have been a jet L in the complete sample of double-lobed radio quasars is reported in the 2FGL. The successful detection of γ-ray 1 The Astrophysical Journal, 808:74 (9pp), 2015 July 20 Liao et al. emissions from LDQs is valuable because such data may It has a large peak effective area (∼8000 cm2 for 1 GeV provide us with structural information about jets. Not only are photons) monitoring ;2.4 sr of the full sky with an angular the lobes of LDQs capable of generating strong radio resolution (68% containment radius) better than 1° at 1 GeV. In emissions, but also hotspots in the radio lobes are significant its routine survey mode, LAT performs a complete and uniform X-ray emitters (e.g., Massaro et al. 2011). Moreover, the coverage of the sky every 3 hr. modeling of multi-wavelength spectral energy distributions The latest Pass 7 reprocessed data used in our analysis were (SEDs) of these hotspots suggests that they could be potential collected in the energy range of 0.1–100 GeV during the first γ-ray emitters (e.g., Zhang et al. 2010). The discovery of 6 years of operation (i.e., from 2008 August 4 to 2014 August extended γ-ray emission from the nearby radio galaxy 4). Photon events belonging to the SOURCE class have been Centaurus A is in support of such a hypothesis (Abdo taken into account. The updated standard ScienceTools et al. 2010b).Ifγ-ray emissions from the hotspots of some software package version v9r33p0 together with the instrument LDQs have been detected, they may consist of a non-ignorable response functions of P7REP_V15 are adopted throughout the part of the extragalactic γ-ray background (EGB) and may be data analysis. The galactic diffuse model we use is accelerators of ultra-high-energy comic rays (Rachen & gll_iem_v05_rev1.fit and the isotropic diffuse emission Biermann 1993; Massaro & Ajello 2011). template is taken as iso_source_v05_rev1.txt.7 The entire In this work, we systematically analyze the 6 year Fermi/ data set is filtered with gtselect and gtmktime tasks following LAT data of the complete LDQ sample from the Revised third the standard analysis threads.8 Cambridge Catalogue of Radio Sources (3CRR) survey The binned likelihood algorithm implemented in the gtlike (Hough & Readhead 1989) to search for γ-ray counterparts. task has been adopted to extract the flux and spectrum. The This work is organized as follows. In Section 2 the LDQ region-of-interest (ROI) of each LDQ is taken to be a 20° ×20° sample and routines of Fermi/LAT and Chandra data analysis box centered at its radio position. Such a size is to match the are introduced. Results of γ-ray characteristics of the LDQs are broad point-spread function (PSF) of 100 MeV photons. The reported in Section 3. Finally, in Section 4 we summarize our data are binned into 30 logarithmically distributed energy bins results with some discussions. and 100 × 100 spatial bins with a size of 0 ◦.2. All sources from the 2FGL (Nolan et al. 2012) within 20° of the radio position 2. THE SAMPLE AND DATA ANALYSES are included. The flux and spectral parameters of sources within the ROI together with normalization factors of the two 2.1. The Sample diffuse backgrounds are set free, while parameters of other We analyze the complete LDQ sample (Hough & Read- sources are fixed to be those reported in the 2FGL. First, we ) ( ) add a presumed γ-ray source corresponding to the LDQ into the head 1989 from the 3CRR survey Laing et al.
Recommended publications
  • 1991Apj. . .370. . .78H the Astrophysical Journal
    The Astrophysical Journal, 370:78-101,1991 March 20 .78H . © 1991. The American Astronomical Society. All rights reserved. Printed in U.S.A. .370. SPATIALLY RESOLVED OPTICAL IMAGES OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS 1991ApJ. Timothy M. Heckman,12,3 Matthew D. Lehnert,1,2,4 Wil van Breugel,3,5 and George K. Miley2,3,6 Received 1990 June 21 ; accepted 1990 August 29 ABSTRACT We present and discuss the results of a program of deep optical imaging of 19 high-redshift (z > 2) radio- loud QSOs. These data represent the first large body of nonradio detections of spatially resolved structure surrounding high-redshift QSOs. _1 In 15 of 18 cases, the Lya emission is spatially resolved, with a typical size of 100 kpc (for H0 = 75 km s 1 44 _1 Mpc“ ; q0 = 0). The luminosity of the resolved Lya is «10 ergs s («10% of the total Lya luminosity). The nebulae are usually asymmetric and/or elongated with a morphological axis that aligns with the radio source axis to better than « 30°. These properties are quite similar to those of the Lya nebulae associated with high-z radio galaxies. The brighter side of the nebula is generally on the same side as the brighter radio emis- sion and/or one-sided, jetlike radio structure. There is no strong correlation between the Lya isophotal and radio sizes (the Lya nebulae range from several times larger than the radio source to several times smaller). None of the properties of the nebulae correlate with the presence or strength of C iv “associated” absorption C^abs ^ ^em)* It is likely that the nebulae are the interstellar or circumgalactic medium of young or even protogalaxies being photoionized by QSO radiation that escapes anisotropically along the radio axis.
    [Show full text]
  • Extragalactic Radio Jets
    Annual Reviews www.annualreviews.org/aronline Ann. Rev. Astron.Astrophys. 1984. 22 : 319-58 Copyright© 1984 by AnnualReviews Inc. All rights reserved EXTRAGALACTIC RADIO JETS Alan H. Bridle National Radio AstronomyObservatory, 1 Charlottesville, Virginia 22901 Richard A. Perley National Radio Astronomy Observatory, Socorro, New Mexico 87801 1. INTRODUCTION Powerful extended extragalactic radio sources pose two vexing astro- physical problems [reviewed in (147) and (157)]. First, from what energy reservoir do they draw their large radio luminosities (as muchas 10a8 W between 10 MHzand 100 GHz)?Second, how does the active center in the parent galaxy or QSOsupply as muchas 10~4 J in relativistic particles and fields to radio "lobes" up to several hundredkiloparsecs outside the optical object? Newaperture synthesis arrays (68, 250) and new image-processing algorithms (66, 101, 202, 231) have recently allowed radio imaging subarcsecond resolution with high sensitivity and high dynamicrange; as a result, the complexityof the brighter sources has been revealed clearly for the first time. Manycontain radio jets, i.e. narrow radio features between compact central "cores" and more extended "lobe" emission. This review examinesthe systematic properties of such jets and the dues they give to the by PURDUE UNIVERSITY LIBRARY on 01/16/07. For personal use only. physics of energy transfer in extragalactic sources. Wedo not directly consider the jet production mechanism,which is intimately related to the Annu. Rev. Astro. Astrophys. 1984.22:319-358. Downloaded from arjournals.annualreviews.org first problemnoted above--for reviews, see (207) and (251). 1. i Why "’Jets"? Baade & Minkowski(3) first used the term jet in an extragalactic context, describing the train of optical knots extending ,-~ 20" from the nucleus of M87; the knots resemble a fluid jet breaking into droplets.
    [Show full text]
  • Near Infrared Observations of Quasars with Extended Ionized Envelopes
    A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: 11.01.2; 11.06.2; 11.09.2; 11.16.1; 11.17.3; 13.09.1 ASTROPHYSICS Near infrared observations of quasars with extended ionized envelopes ⋆ I. M´arquez1,2, F. Durret2,3, and P. Petitjean2,3 1 Instituto de Astrof´ısica de Andaluc´ıa (C.S.I.C.), Apartado 3004 , E-18080 Granada, Spain 2 Institut d’Astrophysique de Paris, CNRS, 98bis Bd Arago, F-75014 Paris, France 3 DAEC, Observatoire de Paris, Universit´eParis VII, CNRS (UA 173), F-92195 Meudon Cedex, France Received, ; accepted, Abstract. We have observed a sample of 15 and 8 1. Introduction quasars with redshifts between 0.11 and 0.87 (mean value 0.38) in the J and K’ bands respectively. Eleven of the Attempts to understand properties of active galactic nu- quasars were previously known to be associated with ex- clei (AGN) and their cosmological evolution has led to the tended emission line regions. After deconvolution of the conclusion that the AGN activity as a whole is most likely image, substraction of the PSF when possible, and identi- to be described as a succession of episodic and time lim- fication of companions with the help of HST archive im- ited events happening in most if not all galaxies (Cavaliere ages when available, extensions are seen for at least eleven & Padovani 1989, Collin-Souffrin 1991). The most plausi- quasars. However, average profiles are different from that ble explanation for the onset of activity is fuelling of the of the PSF in only four objects, for which a good fit is nucleus by gas streaming towards the center of the galaxy obtained with an r1/4 law, suggesting that the underlying as a result of interaction, accretion or merging events.
    [Show full text]
  • JRP Angel and HS Stockman.“Optical and Infrared Polarization of Active
    Bibliography J.R.P. Angel and H.S. Stockman. \Optical and infrared polarization of active extragalactic objects.". Ann. Rev. Astron. Astrophys., 8:321{361, 1980. S. Ant¶on and I. Browne. \Host galaxies of Flat Radio Spectrum Sources.". In L.O. Takalo and A. SillanpÄaÄa, editors, BL Lac Phenomenon, volume 159 of A.S.P. Conference Series, pages 377{380, 1999. R.R.J. Antonucci. \Polarization of active galactic nuclei and quasars". In M. Kafatos, editor, Supermassive Black Holes, Proceedings of the 3rd George Mason Astrophysics Workshop, pages 26{38. Cambridge Univer- sity Press, Cambridge, 1988. R.R.J. Antonucci and J.S. Ulvestad. \Extended radio emission and the nature of blazars.". Astrophys. J., 294:158{182, 1985. W. Baade. \Polarization in the jet of Messier 87.". Astrophys. J., 123: 550{551, 1956. J. N. Bahcall, S. Kirhakos, D. H. Saxe, and D. P. Schneider. \Hubble Space Telescope Images of a Sample of 20 Nearby Luminous Quasars". Astro- phys. J., 479:642{658, 1997. J.N. Bahcall, S. Kirhakos, D.P. Schneider, R.J. Davis, T.W.B. Muxlow, S.T. Garrington, R.G. Conway, and S.C. Unwin. \HST and MERLIN observations of the jet in 3C 273.". Astrophys. J., Lett., 452:L91{L93, 1995. R. Barvainis. \Free-free emission and the big blue bump in Active Galactic Nuclei.". Astrophys. J., 412:513{523, 1993. 152 BIBLIOGRAPHY S. A. Baum, C. P. O'Dea, G. Giovannini, J. Biretta, W. B. Cotton, S. de Ko®, L. Feretti, D. Golombek, L. Lara, F. D. Macchetto, G. K. Miley, W. B. Sparks, T.
    [Show full text]
  • The Astrology of Space
    The Astrology of Space 1 The Astrology of Space The Astrology Of Space By Michael Erlewine 2 The Astrology of Space An ebook from Startypes.com 315 Marion Avenue Big Rapids, Michigan 49307 Fist published 2006 © 2006 Michael Erlewine/StarTypes.com ISBN 978-0-9794970-8-7 All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher. Graphics designed by Michael Erlewine Some graphic elements © 2007JupiterImages Corp. Some Photos Courtesy of NASA/JPL-Caltech 3 The Astrology of Space This book is dedicated to Charles A. Jayne And also to: Dr. Theodor Landscheidt John D. Kraus 4 The Astrology of Space Table of Contents Table of Contents ..................................................... 5 Chapter 1: Introduction .......................................... 15 Astrophysics for Astrologers .................................. 17 Astrophysics for Astrologers .................................. 22 Interpreting Deep Space Points ............................. 25 Part II: The Radio Sky ............................................ 34 The Earth's Aura .................................................... 38 The Kinds of Celestial Light ................................... 39 The Types of Light ................................................. 41 Radio Frequencies ................................................. 43 Higher Frequencies ...............................................
    [Show full text]
  • Not Yet Imagined: a Study of Hubble Space Telescope Operations
    NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR NOT YET IMAGINED NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2020-4237 Library of Congress Cataloging-in-Publication Data Names: Gainor, Christopher, author. | United States. NASA History Program Office, publisher. Title: Not Yet Imagined : A study of Hubble Space Telescope Operations / Christopher Gainor. Description: Washington, DC: National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2020] | Series: NASA history series ; sp-2020-4237 | Includes bibliographical references and index. | Summary: “Dr. Christopher Gainor’s Not Yet Imagined documents the history of NASA’s Hubble Space Telescope (HST) from launch in 1990 through 2020. This is considered a follow-on book to Robert W. Smith’s The Space Telescope: A Study of NASA, Science, Technology, and Politics, which recorded the development history of HST. Dr. Gainor’s book will be suitable for a general audience, while also being scholarly. Highly visible interactions among the general public, astronomers, engineers, govern- ment officials, and members of Congress about HST’s servicing missions by Space Shuttle crews is a central theme of this history book. Beyond the glare of public attention, the evolution of HST becoming a model of supranational cooperation amongst scientists is a second central theme. Third, the decision-making behind the changes in Hubble’s instrument packages on servicing missions is chronicled, along with HST’s contributions to our knowledge about our solar system, our galaxy, and our universe.
    [Show full text]
  • Radio Galaxies Dominate the High-Energy Diffuse Gamma-Ray
    FERMILAB-PUB-16-128-A Prepared for submission to JCAP Radio Galaxies Dominate the High-Energy Diffuse Gamma-Ray Background Dan Hoopera;b;c Tim Lindend and Alejandro Lopeze;a aFermi National Accelerator Laboratory, Center for Particle Astrophysics, Batavia, IL 60510 bUniversity of Chicago, Department of Astronomy and Astrophysics, Chicago, IL 60637 cUniversity of Chicago, Kavli Institute for Cosmological Physics, Chicago, IL 60637 dOhio State University, Center for Cosmology and AstroParticle Physcis (CCAPP), Colum- bus, OH 43210 eMichigan Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, MI 48109 E-mail: [email protected], [email protected], [email protected] Abstract. It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes, radio luminosity function, and redshift distribution of this source class, we +25:4 find that radio galaxies dominate the diffuse gamma-ray background, generating 77:2−9:4 % of this emission at energies above 1 GeV. We discuss the implications of this result and point out that it provides support for∼ scenarios in which IceCube's high-energy astrophysical arXiv:1604.08505v2 [astro-ph.HE] 8 Aug 2016 neutrinos also originate from the same population of radio galaxies.
    [Show full text]
  • Photoabsorption
    UC San Diego UC San Diego Electronic Theses and Dissertations Title The fine-structure constant and wavelength calibration Permalink https://escholarship.org/uc/item/3sp9x7ss Author Whitmore, Jonathan Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO The Fine-Structure Constant and Wavelength Calibration A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Jonathan Whitmore Committee in charge: Professor Kim Griest, Chair Professor Bruce Driver Professor Hans Paar Professor Barney Rickett Professor Arthur Wolfe 2011 Copyright Jonathan Whitmore, 2011 All rights reserved. The dissertation of Jonathan Whitmore is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii EPIGRAPH The important thing in science is not so much to obtain new facts as to discover new ways of thinking about them. |William Lawrence Bragg iv TABLE OF CONTENTS Signature Page.................................. iii Epigraph..................................... iv Table of Contents.................................v List of Figures.................................. vii List of Tables................................... viii Acknowledgements................................ ix Vita and Publications..............................x Abstract of the Dissertation........................... xi Chapter 1 Introduction............................1 1.1 Physical Constants.....................2 1.2 Theoretical Motivations and Implications.........7 1.3 Current Constraints on the Fine-Structure Constant...9 1.3.1 Atomic Clocks....................9 1.3.2 Oklo Reactor.................... 10 1.3.3 Meteorite Dating.................. 13 1.3.4 Cosmic Microwave Background.......... 14 1.3.5 Big Bang Nucleosynthesis............. 17 1.4 Atomic Physics as a Fine-Structure Constancy Probe.
    [Show full text]
  • AN ASTROPHYSICS DATA PROGRAM INVESTIGATION of P
    f AN ASTROPHYSICS DATA PROGRAM INVESTIGATION OF p_ A SYNOPTIC STUDY OF QUASAR CONTINUA NASA Grant NAG8-689 FINAL REPORT For the Period 1 October 1987 through 30 September 1990 Principal Investigator Martin Elvis September 1991 ) ¢ Prepared for: National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 Smithsonian Institution t_ Astrophysical Observatory Cambridge, Massachusetts 02138 The Smithsonian Astrophysical Observatory is a member of the Harvard-Smithsonian Center for Astrophysics The NASA Technical Officer for this grant is Ms. Donna M. Havrisik, Code EM25 George C. Marshall Space Flight Center, Marshall Space Flight Center, Alabama 3,3 S-_i-. t9_)0 (?_l,.ithsoni..3n Astro_hy_ic:_l _incl,_s ,Ibs.,rv,tory) Z'.-,,4 i, C$CL 0:_,[ :., ,.5/9C, 0,,),_,517"; < ] J I :_ i¸ _ : iii_i ..... ii : Final Management Report ADP: 'Synoptic Study of Quasar Continua' P.I.: Martin Elvis This report summarizes the work undertaken on the above ADP grant. The work is now complete, with the submission of the major product, the 'Atlas of Quasar Energy Distributions' (Appendix A) being finalized for submission to the Astrophysical Journal Supplements. Other papers written as a result of this grant are included in Appendix B. The overall themes developed under this grant will b_ pursued in a Long Term Space Astrophysics Program grant, which will build on the data and methodology established under the ADP. The aim of the Long Term program will be to exte'nd our knowledge of the quasar continuum shapes to high redshifts. Once the QED (Quasar Energy Distributions) data base became sufficiently complete we began our 'synoptic' (i.e.
    [Show full text]
  • Extended Inverse-Compton Emission from Distant, Powerful Radio Galaxies
    Mon. Not. R. Astron. Soc. 371, 29–37 (2006) doi:10.1111/j.1365-2966.2006.10660.x Extended inverse-Compton emission from distant, powerful radio galaxies M. C. Erlund,1⋆ A. C. Fabian,1 Katherine M. Blundell,2 A. Celotti3 and C. S. Crawford1 1Institute of Astronomy, Madingley Road, Cambridge CB3 0HA 2University of Oxford, Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH 3SISSA/ISAS, via Beirut 4, 34014 Trieste, Italy Accepted 2006 May 26. Received 2006 May 25; in original form 2006 March 17 ABSTRACT We present Chandra observations of two relatively high redshift FR II radio galaxies, 3C 432 and 3C 191 (z 1.785 and 1.956, respectively), both of which show extended X-ray emis- = sion along the axis of the radio jet or lobe. This X-ray emission is most likely to be due to inverse-Compton scattering of cosmic microwave background (CMB) photons. Under this as- sumption, we estimate the minimum energy contained in the particles responsible. This can be extrapolated to determine a rough estimate of the total energy. We also present new, deep radio observations of 3C 294, which confirm some association between radio and X-ray emission along the north-east–south-west radio axis and also that radio emission is not detected over the rest of the extent of the diffuse X-ray emission. This together with the offset between the peaks of the X-ray and radio emissions may indicate that the jet axis in this source is precessing. Key words: galaxies: jets – X-rays: individual: 3C 191 – X-rays: individual: 3C 294 – X-rays: individual: 3C 432.
    [Show full text]
  • Margaret Burbidge Journal Papers: Alphabetical
    Margaret Burbidge Journal Papers: Alphabetical Anneila I. Sargent and Malcolm S. Longair 27 May 2020 This bibliography contains only scientific papers which appeared in the major peer-reviewed journals. The journals involved are: Astrophysical Journal, Astrophysical Journal Letters, Astronomical Journal, Reviews of Modern Physics, Proceedings of the Astronomical Society of the Pacific, Monthly Notices of the Royal Astronomical Society, and Astronomy and Astrophysics. The Burbidge's book Quasars (1967) is included for conve- nience at the end of this bibliography. References Peachey, E. M. (1942). Some recent changes in the spectrum of γ Cas- siopeiæ, Monthly Notices of the Royal Astronomical Society, 102, 166{ 168. doi: 10.1093/mnras/102.3.166. Gregory, C. C. L. and Peachey, E. M. (1946). The spectrum of T Coronae Borealis on 1946 February 11, Monthly Notices of the Royal Astronomical Society, 106, 135{136. doi: 10.1093/mnras/106.2.135. Burbidge, G. R., Burbidge, E. M., Robinson, A. C., Gerhard, D. J., and the Director. (1949). Stellar Parallaxes Determined at the University of London Observatory, Mill Hill, Monthly Notices of the Royal Astronomical Society, 109, 478{480. There are no authors in the printed paper and it does not appear in the NASA-ADS catalogue. It was communicated by the Director of the Mill Hill Observatory. It is in the journal but not in the index. Burbidge, G. R. and Burbidge, E. M. (1950). Stellar Parallaxes Determined at the University of London Observatory, Mill Hill (second List), Monthly Notices of the Royal Astronomical Society, 110, 618{620. There are no authors in the printed paper and it does not appear in the NASA-ADS 1 catalogue.
    [Show full text]
  • II Cluster Catalog Donald J
    Dartmouth College Dartmouth Digital Commons Open Dartmouth: Faculty Open Access Articles 2008 The ARPSW Survey. VII. The ARPSW ‐II Cluster Catalog Donald J. Horner NASA Goddard Space Flight Center Eric S. Perlman University of Maryland-Baltimore County Harald Ebeling Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI Laurence Jones University of Birmingham Caleb A. Scharf Columbia University See next page for additional authors Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Astrophysics and Astronomy Commons Recommended Citation Horner, Donald J.; Perlman, Eric S.; Ebeling, Harald; Jones, Laurence; Scharf, Caleb A.; Wegner, Gary; Malkan, Matthew; and Maughan, Ben, "The AW RPS Survey. VII. The AW RPS‐II Cluster Catalog" (2008). Open Dartmouth: Faculty Open Access Articles. 3497. https://digitalcommons.dartmouth.edu/facoa/3497 This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Authors Donald J. Horner, Eric S. Perlman, Harald Ebeling, Laurence Jones, Caleb A. Scharf, Gary Wegner, Matthew Malkan, and Ben Maughan This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/3497 The Astrophysical Journal Supplement Series, 176:374Y413, 2008 June # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE WARPS SURVEY. VII. THE WARPS-II CLUSTER CATALOG Donald J. Horner,1 Eric S. Perlman,2,3 Harald Ebeling,4 Laurence R. Jones,5 Caleb A. Scharf,6 Gary Wegner,7 Matthew Malkan,8 and Ben Maughan9 Received 2007 November 19; accepted 2007 December 26 ABSTRACT We present the galaxy cluster catalog from the second, larger phase of the Wide Angle ROSAT Pointed Survey (WARPS), an X-ray selected survey for high-redshift galaxy clusters.
    [Show full text]