The French Fast Reactor Program-Innovations in Support To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jules Horowitz Reactor (JHR), a High-Performance Material Test Reactor in Cadarache, France
The Swedish-French collaboration on the research reactors ASTRID & JHR Prof. Christophe Demazière Chalmers University of Technology Department of Applied Physics Division of Nuclear Engineering [email protected] Background − the ESS project • ESS: European Spallation Source – a European Union facility. • Will be built in Lund. • Participation of France is formalized in a contract between France and Sweden. • Sweden has to spend 400 MSEK on joint research in subjects relevant to France (energy and environment). • Out of this, 100 MSEK is devoted to fission-based nuclear energy. Background – the European research program • Vision: Sustainable Nuclear Energy Technology Platform (SNETP). • Planned facilities: – Jules Horowitz Reactor (JHR), a high-performance material test reactor in Cadarache, France. Start of operation: 2014. – MYRRHA facility in Mol, Belgium, a fast spectrum irradiation facility working as an ADS. Start of operation: ca. 2023. – ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a prototype Gen-IV sodium-cooled fast reactor to be built in France. Start of operation: ca. 2020. – VHTR, a first-of-a kind Very High Temperature Reactor for, among others, hydrogen production. VR Multi-project Grant in Nuclear Energy Research • 3 multi-grant projects granted by the Swedish Research Council in the spring of 2012 (projects in collaboration with CEA, France – French Alternative Energies and Atomic Energy Commission): – DEMO-JHR (coordinator: Prof. Christophe Demazière, Chalmers): 3 PhD projects. – ASTRID -
Presentation Title (On One Or Two Lines)
Energy Business Technology Strategy Yukihiko Kazao Executive Officer and Corporate Senior Vice President Energy Systems & Solutions Company Chief Technology Executive Toshiba Corporation October 18, 2016 © 2016 Toshiba Corporation Energy Business Technology Strategy Pursue clean energy and the related management system グリーンエネルギーの追求とそのマネジメントシステムでand aim to realize sustainable energy for society 持続可能なエネルギー社会の実現を目指す Variable power sources Generate Low carbon Nuclear Hydro- Geothermal Solar Hydrogen thermal power power power power Wind power Transmit Store ・Hydropower ・variable speed Rechargeable batteries Hydrogen water pumps Transformers Short-term Long-term storage storage Transmission Substations Storage and distribution systems Smart use Factories Transport Homes Buildings © 2016 Toshiba Corporation 2 Advancing Toward a Society Supported by Sustainable Energy I. Green energy ・ That pursues the world‘s highest level of safety in nuclear power ・ That aims for zero emissions by introducing high efficiency systems and carbon capture technologies in thermal power ・ That contributes to the stabilization of the power system with hydropower II. Energy management ・ Use next-generation technologies to pursue optimal control of the supply and demand balance Ⅲ. Cutting-edge technologies ・ Lead the world in cutting-edge technologies © 2016 Toshiba Corporation 3 Toshiba Group’s Nuclear Power Plants Global expansion with two reactors offering the world's highest safety levels High capacity BWR: ABWR Innovative PWR: AP1000™ ・ Dynamic + static safety -
ID-77-60 Overview of Nuclear Export Policies of Major Foreign Supplier
DCCUMENT FSUME 03705 - B2994241] Overview of Nuclear Export Policies of Major Foreign Supplier Nations. ID-77-60; 9-181963. OctobEr 21, 1977. 19 pp. + 5 appendices (41 pp.). Report b Charles D. Llylander (for J. K. Fasick, Director, International Div.). Issue Area: International Economic and Military Programs: International Security Through Controls Over Weapons and Destructive Elements (607). Contact: International Div. Budget Function: International Affairs: Conduct of Foreign Affairs (152). Organizaticn Concerned: Department of State; Energy Research and Development Administration; Nuclear Regulatory Commission; Export-Import Bank of the United States. Congressional Relevance: House Committee on International Relations; Senate Committee on Foreign Relations. Authority: Atomic Eergy Act of 1954, as amended (41 U.S.C. 2011). Energy Reorcanization Act of 1974 (.L. 93-438). Export Administration Act of 1969, as amended. Federal Atomic Fnergy Ccntrol Act [of] 1946. A study of the peaceful nuclear export policies of major foreign supplier nations indicated that the United States faces inreased competition from foreign suppliers. The United States and other supplier nations have reassessed their nuclear export programs and established the Nuclear Suppliers Group. Member nations have adopted some principles as a matter of national policy of future nuclear exports. There are no required international standards for the physical protection of nuclear material and equipment, and although foreign suppliers have procedures for regulating nuclear exports, in ost cases they have no independent regulatory agencies similar to the U.S. Nuclear Regulatory Commission. Findings/Conclusions: In recent years, the U.S. share of the available nuclear export market has decreased markedly. U.S. suppliers received 851 of such orders through 1972, but during the next years the U.S. -
Operational and Decommissioning Experience with Fast Reactors
IAEA-TECDOC-1405 Operational and decommissioning experience with fast reactors Proceedings of a technical meeting held in Cadarache, France, 11–15 March 2002 August 2004 IAEA-TECDOC-1405 Operational and decommissioning experience with fast reactors Proceedings of a technical meeting held in Cadarache, France, 11–15 March 2002 August 2004 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria OPERATIONAL AND DECOMMISSIONING EXPERIENCE WITH FAST REACTORS IAEA, VIENNA, 2004 IAEA-TECDOC-1405 ISBN 92–0–107804–8 ISSN 1011–4289 © IAEA, 2004 Printed by the IAEA in Austria August 2004 FOREWORD The fast reactor, which can generate electricity and breed additional fissile material for future fuel stocks, is a resource that will be needed when economic uranium supplies for the advanced water cooled reactors or other thermal-spectrum options diminish. Further, the fast-fission fuel cycle in which material is recycled offers the flexibility needed to contribute decisively towards solving the problem of growing ‘spent’ fuel inventories by greatly reducing the volume of high level waste that must be disposed of in long term repositories. This is a waste management option that also should be retained for future generations. The fast reactor has been the subject of research and development programmes in a number of countries for more than 50 years. Now, despite early sharing and innovative worldwide research and development, ongoing work is confined to China, France, India, Japan, the Republic of Korea, and the Russian Federation. Information generated worldwide will be needed in the future. -
Audition Sur Les Conséquences De L'arrêt Du Programme ASTRID
Paris, le 25 novembre 2020 Audition sur les conséquences de l’arrêt du programme ASTRID Audition de Madame Valérie Faudon, déléguée générale de la Société française d’énergie nucléaire (Sfen) par les parlementaires de l’Office parlementaire d'évaluation des choix scientifiques et technologiques (OPECST). Tout d’abord je souhaiterais vous remercier, au nom de la Sfen, de nous recevoir aujourd’hui. La Sfen est une société savante, qui rassemble les scientifiques et ingénieurs du nucléaire depuis 1973. Notre raison d’être est de « permettre aux esprits curieux de se faire de nouvelles idées sur le nucléaire » et notre nouvelle signature est « faire avancer le nucléaire ». La décision de l’arrêt du programme ASTRID et de la mise en place d’un nouveau programme structurant « Promouvoir une économie circulaire au sein de la filière » a été actée par la signature du Contrat stratégique de la filière nucléaire le 28 janvier 2019. Pour rappel, le Comité stratégique de la filière nucléaire (CSFN), qui a rédigé ce projet, a, comme tous les comités stratégiques de filière, une configuration tripartite : organisations syndicales – Etat – Industriels. Parmi ces derniers, on peut citer EDF, le CEA, et Orano. Il est important de rappeler qu’il y a eu consensus, au sein des industriels de la filière, sur cet accord. Au niveau de la Sfen, cette décision a d’abord été une déception pour beaucoup de nos adhérents, attachés à l’excellence de la recherche nucléaire française dans le domaine des réacteurs à neutrons rapides. L’avant-projet sommaire (APS) d’ASTRID a reçu en 2016 le grand prix Sfen, qui est la plus haute récompense française en matière de recherche scientifique sur le nucléaire. -
Status of Astrid Architecture in Starting of Basic Design Phase P
Status of astrid architecture in starting of basic design phase P. Amphoux, P. Gama, L. Raquin, B. Levoir To cite this version: P. Amphoux, P. Gama, L. Raquin, B. Levoir. Status of astrid architecture in starting of basic design phase. ICAPP 2017, Apr 2017, Fukui And Kyoto, Japan. cea-02435092 HAL Id: cea-02435092 https://hal-cea.archives-ouvertes.fr/cea-02435092 Submitted on 10 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proceedings of ICAPP 2017 April 24-28, 2017 - Fukui and Kyoto (Japan) Status of ASTRID architecture in starting of Basic Design phase Philippe AMPHOUX 1, Philippe GAMA 2, Loïc RAQUIN 3, Benoît LEVOIR 3 1: CEA Cadarache, DEN/DER/CPA, 13108 Saint-Paul lez Durance Cedex, France 2: AREVA NP, 10 rue Juliette Récamier 69456 Lyon Cedex 06, France 3 : NOX, 45/47 Bd Paul Vaillant-Couturier 94200 Ivry-sur-Seine, France Contact author: Philippe AMPHOUX, +3344225711, [email protected] Abstract - Sodium-cooled Fast Reactors (SFR) is one of the Generation IV reactor concepts selected to secure the I. INTODUCTION nuclear fuel resources and to manage radioactive waste. In the frame of the June 2006 French act on sustainable After 6 years of Conceptual Design phase (AVP), management of radioactive materials and wastes, French the Project is involved since January 2016 in Basic Government entrusted CEA (French Commission for Design. -
“Advanced” Isn't Always Better
SERIES TITLE OPTIONAL “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors Edwin Lyman March 2021 © 2021 Union of Concerned Scientists All Rights Reserved Edwin Lyman is the director of nuclear power safety in the UCS Climate and Energy Program. The Union of Concerned Scientists puts rigorous, independent science to work to solve our planet’s most pressing problems. Joining with people across the country, we combine technical analysis and effective advocacy to create innovative, practical solutions for a healthy, safe, and sustainable future. This report is available online (in PDF format) at www.ucsusa.org/resources/ advanced-isnt-always-better and https:// doi.org/10.47923/2021.14000 Designed by: David Gerratt, Acton, MA www.NonprofitDesign.com Cover photo: Argonne National Laboratory/Creative Commons (Flickr) Printed on recycled paper. ii union of concerned scientists [ contents ] vi Figures, Tables, and Boxes vii Acknowledgments executive summary 2 Key Questions for Assessing NLWR Technologies 2 Non-Light Water Reactor Technologies 4 Evaluation Criteria 5 Assessments of NLWR Types 8 Safely Commercializing NLWRs: Timelines and Costs 9 The Future of the LWR 9 Conclusions of the Assessment 11 Recommendations 12 Endnotes chapter 1 13 Nuclear Power: Present and Future 13 Slower Growth, Cost and Safety Concerns 14 Can Non-Light-Water Reactors -
ASTRID - LESSONS LEARNED Gilles Rodriguez CEA 30 July 2018
ASTRID - LESSONS LEARNED Gilles Rodriguez CEA 30 July 2018 Meet the presenter Dr. John E. Kelly is the Deputy Assistant Secretary for Nuclear Reactor Technologies in the U.S. Department of Energy’s Office of Nuclear Energy.is aHis senior office is expertresponsible engineer for the civilian at nuclearthe CEA/CADARACHE reactor research and Mrdevelopment. Gilles portfolio, Rodriguez which includes programs on Small Modular Reactors, Light Water Reactor Sustainability, and (FrenchAdvanced (GenerationAtomic Energy IV) Reactors Commission/Cadarache. His office also is responsible for center the design,) and development has been, and productionin the of positionradioisotope of power deputy systems, head principally of the for ASTRID missions of theProject U.S. National team Aeronautics since 2016. and Space He Administration. In the international arena, Dr. Kelly is the immediate past chair of the Generation IV International Forum (GIF) and the graduatedformer chair of fromthe International the University Atomic Energy of Lyon, Agency’s France Standing inAdvisory 1990 Group with on an Nuclear engineering Energy. degreePrior to joining in Chemistry the Department and of Energy earned in 2010, a Master Dr. Kelly spentof Science 30 years at in Sandia process National engineering Laboratories, where he was engaged in a broad spectrum of research programs in nuclear reactor safety, advanced nuclear energy fromtechnology, the andPolytechnic national security. University In the reactor of Toulouse,safety field, he France, led efforts toin establish 1991. the His scientific areas basis of for expertiseassessing the include risks of nuclear fast powerreactor plant technology, operation and specifically liquid metal those risks processes, associated with and potential process severe accident scenarios. -
The Significant Collaboration of Japan and France on the Design of Astrid Sodium Fast Reactor Since 2014 F
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication The significant collaboration of japan and france on the design of astrid sodium fast reactor since 2014 F. Varaine, G. Rodriguez, J.M. Hamy, S. Kubo, T. Iitsuka, H. Mochida To cite this version: F. Varaine, G. Rodriguez, J.M. Hamy, S. Kubo, T. Iitsuka, et al.. The significant collaboration of japan and france on the design of astrid sodium fast reactor since 2014. GIF Symposium Paris (France) 16-17 October 2018, Oct 2018, Paris, France. cea-02328977 HAL Id: cea-02328977 https://hal-cea.archives-ouvertes.fr/cea-02328977 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE SIGNIFICANT COLLABORATION OF JAPAN AND FRANCE ON THE DESIGN OF ASTRID SODIUM FAST REACTOR SINCE 2014 F. Varaine(1), G. Rodriguez(1), J. M. Hamy(2), S. Kubo(3), T. Iitsuka(4), H. Mochida(5) (1) French Atomic Energy and Alternative Energies Commission (CEA), F- 13 108 Saint Paul Lez Durance, France (2) Framatome, Lyon, France (3) JAEA - Japan Atomic Energy Agency (4) MHI – Mitsubishi Heavy Industry, Japan (5) MFBR – Mitsubishi Fast Breeder Reactors July 2017 by an additional contribution to Introduction enlarge Japanese involvement in a process called After 6 years of Conceptual Design phase “Joint Evaluation” to prepare a future potential (called AVP Phase), the ASTRID Project has Common Design. -
Nuclear Power in France
Nuclear Power in France Dr. Luc H . Geraets Vice President, GDF SUEZ Nuclear Activities May 13, 2010 1 Nuclear Power in France (and Belgium) Dr. Luc H . Geraets Vice President, GDF SUEZ Nuclear Activities May 13, 2010 2 Agenda 1. Nuclear in France ()(and Belgium) in a nutshell 2. Early steps 3. From GCR to PWR 4. Fuel cycle 5. Wastes 6. Decommissioning 7. Research & Development 8. Nuclear capacity maintenance and growth 9. Economics 10. Human Resources & Public Acceptance 11. Risks Conclusions 3 Agenda 1. Nuclear in France ()(and Belgium) in a nutshell 2. Early steps 3. From GCR to PWR 4. Fuel cycle 5. Wastes 6. Decommissioning 7. Research & Development 8. Nuclear capacity maintenance and growth 9. Economics 10. Human Resources & Public Acceptance 11. Risks Conclusions 4 Nuclear Power in France in a nutshell 75% o f Frenc h e lec tr ic ity from nuc lear or ig in France world largest net exporter of power 9 Low cost of generation 9 Huge benefit on the trade balance (MEUR 3,000/year) Development of nuclear technology and exports 9 Reactors 9 Fuel products and services New build of Generation III under way 5 Nuclear in Belgium: GDF SUEZ nuclear legacy and legitimacy Stakeholder in Western first commercial PWRs 9 BR 3 (1962-1987) 9 Chooz A (1967-1991) Operato r o f 7 reacto r s in B el gi um (3 at Tihange and 4 at Doel) Tihange The Group capacities : 5 930 MW 9 Belgium 4 060 MW 9 France 1 170 MW (ChoozB and Tricastin) 9 Germany 700 MW (Unterweser, Gundremmingen B&C, Krümmel) Stre ngt hs 9 Independent from suppliers & vendors. -
France's Nuclear Failures
France’s Nuclear Failures The great illusion of nuclear energy greenpeace.org Catalysing an energy revolution The French nuclear Contents industry’s key players: 3 Introduction The Commissariat à l’Énergie Atomique (CEA – Atomic Energy 4 France’s nuclear ‘success story’: Commissariat) was established as a public corporation in 1946 and charged with overseeing research and development, up to a 50-year history of failures the industrial stage, of all processes necessary for the military 6 Climate change and energy security: programme and subsequently for nuclear electricity generation, including uranium extraction, fuel manufacture and nuclear power’s marginal contribution management of spent fuel and waste. Currently, CEA is a large French research organisation working mainly on energy and 8 Economics: defence technology. the underestimated costs of nuclear power A branch of the CEA was created to manage all its industrial 10 Safety: activities, mainly through the Compagnie Générale des Matières lessons learned or lessons still to come? Nucléaires (Cogema – General Company for Nuclear Materials), a private company established in 1976. In 2001, this merged 12 Security: with Framatome, the nuclear reactor builder, to create the Areva secrecy and unpredictable scenarios group. Currently, 96% of the share capital of the Areva group is held by the French state and large French industries. 14 Waste and decommissioning: Electricité de France (EDF) was established in 1946 through complex issues, unresolved problems nationalisation of a number of state and private companies. First and foremost responsible for overseeing development of 16 Proliferation: the electricity supply across France, today EDF operates all 59 nuclear imperialism, world at risk nuclear reactors in service in France. -
Annual Activity Report 2018 Summary
Annual Activity Report 2018 Summary PROFILE SNFP INFORMATION ONǭTHEǭSHARE E ditorials 2 6 CAPITAL 103 Business card 4 6.1 Structure and evolution ofǾtheǾCompany’s Business model 6 share capital 104 6.2 Allocation of capital andǾvotingǾrights 105 MISCELLANEOUS INFORMATION 107 HIGHLIGHTS OF THE YEAR 9 7 7.1 Statutory Auditors 108 1 1.1 Highlights of the year 10 7.2 Review of regulated agreements 1.2 Other highlights of the year 11 andǾcommitments 109 7.3 Injunctions and fi nes forǾanti-competitive practices 111 SITUATION AND ACTIVITIES 7.4 Observations of the Works Council 111 2 OF THE COMPANY AND ITSǭSUBSIDIARIES DURING THE 7.5 Payment terms 112 7.6 Information on loans granted to other PAST YEAR SNFP 13 companies covered byǾarticlesǾ 2.1 Simplifi ed organization chart of the group – L.Ǿ511-6 andǾR. 511-2-1-1-II ofǾtheǾFrench Subsidiaries, interests and branch offi ces 14 Monetary andǾFinancial Code 112 2.2 The group’s businesses 16 2.3 Research and Development activities 28 2.4 Financial position of the Company and the APPENDICES TO THE ANNUAL group during the past year 29 8 ACTIVITY REPORT 113 2.5 Foreseeable developments and future 8.1 Consolidated fi nancial statements – prospects 39 YearǾendedǾDecemberǾ31, 2018 114 2.6 Signifi cant events since the date of closing 40 8.2 Company fi nancial statements – Year ended DecemberǾ31, 2018 187 8.3 Statutory Auditors’ report on the RISKS AND SAFEGUARDS SNFP 41 consolidated fi nancial statements for the 3 3.1 Risk mapping and risk management year ended DecemberǾ31, 2018 209 processes 42 8.4 Statutory