Dspace Cover Page

Total Page:16

File Type:pdf, Size:1020Kb

Dspace Cover Page Surveys, simulation and single-cell assays relate function and phylogeny in a lake ecosystem The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Preheim, Sarah P. et al. “Surveys, Simulation and Single-Cell Assays Relate Function and Phylogeny in a Lake Ecosystem.” Nature Microbiology 1.9 (2016): 16130. As Published http://dx.doi.org/10.1038/nmicrobiol.2016.130 Publisher Nature Publishing Group Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/108409 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. 1 Title: 2 Surveys, simulation, and single-cell assays relate function and phylogeny in a lake ecosystem 3 4 Authors: 5 Sarah P. Preheima,b†, Scott W. Olesena†, Sarah J. Spencera, Arne Maternac, Charuleka 6 Varadharajand, Matthew Blackburne, Jonathan Friedmanf, Jorge Rodríguezg, Harold Hemondh 7 and Eric J. Alma,* 8 9 a Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 10 02139 11 b Department of Geography and Environmental Engineering, Johns Hopkins University, 12 Baltimore, MD 21218 13 c Qiagen Corp., Aarhus, Denmark 14 d Lawrence Berkeley National Laboratory, Berkeley, CA 94720 15 e École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 16 f Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 17 g Institute Centre for Water and Environment (iWater), Masdar Institute of Science and 18 Technology, Abu Dhabi, UAE 19 h Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 20 Cambridge, MA 02139 21 22 † These authors contributed equally to this work. 23 24 * To whom correspondence should be addressed 25 26 27 Summary paragraph: 28 Much remains unknown about what drives microbial community structure and diversity. 29 Highly structured environments might offer clues. For example, it may be possible to 30 identify metabolically similar species as groups of organisms that correlate spatially with 31 the geochemical processes they carry out. Here, we use a 16S ribosomal RNA gene survey 32 in a lake that has chemical gradients across its depth to identify groups of spatially correlated but 33 phylogenetically diverse organisms. Some groups had distributions across depth that aligned 34 with the distributions of metabolic processes predicted by a biogeochemical model, suggesting 35 these groups performed biogeochemical functions. A single-cell genetic assay showed, however, 36 that the groups associated with one biogeochemical process, sulfate reduction, contained only a 37 few organisms that have the genes required to reduce sulfate. These results raise the possibility 38 that some of these spatially-correlated groups are consortia of phylogenetically diverse and 39 metabolically different microbes that cooperate to carry out geochemical functions. 40 41 Keywords: ecology / 16S / function / gradient / phylogeny / lake / co-occurrence 42 Introduction 43 Explaining the vast diversity of microbes found in many ecosystems 1,2 is a challenge for 44 microbial ecology. Environments with chemical or other abiotic gradients like temperature have 45 been a key resource for studying microbial ecology. For example, studies in Winogradsky 46 columns 3, microbial mats 4, mine drainage sites 5, hydrothermal vents 6, and dimictic lakes 7 47 have provided insight about the relationships between environmental parameters, microbial 48 diversity, and ecosystem functions. Microbial surveys with spatial scales comparable to those of 49 the ecosystem gradients can identify groups of spatially-correlated organisms and relate the 50 distribution of those organisms to the environmental gradients. 51 52 There are challenges to interpreting the relationship between organisms in spatially-correlated 53 groups and environmental information. First, the relationship between an organism’s spatial 54 distribution and environmental parameters can be complicated. For example, a naïve expectation 55 might be that sulfate-reducing organisms are abundant where sulfate concentrations are highest. 56 In fact, the distribution of sulfate-reducing organisms also depends on the distribution of more 57 favorable electron acceptors and the transport of sulfur compounds around the ecosystem. Even 58 more subtly, bacterial populations may be capable of performing multiple metabolisms, and they 59 can even be simply inactive. Thus, there is a need to develop techniques that provide quantitative 60 expectations about factors that shape organismal distributions given observed environmental 61 information. 62 63 A second challenge is that there are multiple experimental methods that can verify the 64 relationships between function and phylogeny, but most of these methods are in vitro or perturb 65 the environment 8. A method that relates phylogeny and function without perturbing the natural 66 ecosystem would clarify the in situ functional relationships between organisms in a spatially- 67 correlated group. Deep metagenomic sequencing along with differential genome binning 68 techniques can produce draft genomes from complex communities 9 but is expensive and cannot 69 target specific functions. 70 71 A third challenge to studying spatially-correlated organisms in ecosystems with gradients is 72 relating the groups’ diversities to their environmental functions, especially if these organisms are 73 unrelated. Organisms in these groups could use similar resources, as it is know that many traits 74 are widespread in the tree of life 10, or could have recently exchange genes through horizontal 75 gene transfer 11. Unrelated organisms with similar distributions could also be found together 76 because they are part of multispecies, symbiotic associations 12. The challenge lies in 77 differentiating between these or other possibilities. 78 79 In this paper, we investigate spatially-correlated organisms in an ecosystem with gradients. First, 80 we conducted a microbial survey of a dimictic lake. Second, we constructed a quantitative, 81 dynamic biogeochemical model that shows how bacteria can drive the creation of chemical 82 gradients. Third, we show that there are many groups of spatially-correlated organisms in this 83 lake and relate those groups to the biogeochemical model. Finally, we used a single-cell assay to 84 investigate the functional capabilities of the groups of spatially-correlated bacteria related to one 85 modeled process, sulfate reduction. We show that, taken together, these results raise the 86 possibility that these spatially-correlated groups are multispecies, symbiotic associations of 87 microbes, that is, consortia 13. 88 89 Results 90 Community structure is influenced by geochemistry. We performed our study in Upper 91 Mystic Lake, a dimictic, eutrophic freshwater lake outside Boston, MA because this lake is 92 seasonally stratified and supports complex microbial communities that catalyze well- 93 characterized biogeochemical cycles 14-19. The seasonal stratification means that the deepest 94 three-quarters of this lake is anoxic, supporting fewer predators that can complicate microbial 95 distribution patterns, and that the deeper parts of the lake are relatively isolated from external 96 inputs. 97 98 To characterize microbial diversity, we conducted amplicon-based bacterial surveys (16S rRNA 99 gene library from DNA samples) along a vertical transect in the lake, collecting samples at 100 approximately each meter of depth. We grouped 16S rRNA gene sequences into operational 101 taxonomic units (OTUs) using the ecologically-informed distribution-based clustering algorithm, 102 which merges sequences from related organisms that have similar spatial distributions 20. We 103 also measured major geochemical parameters (temperature, specific conductivity, dissolved 104 oxygen, nitrate, iron and sulfate; Fig. S1-S3). 105 106 The 16S rRNA gene survey showed that biogeochemistry had a major influence on the bacterial 107 community structure (Fig. 1). Transitions in community structure lined up with the lake’s major 108 geochemical features: the thermocline, oxycline, and nitrocline (Fig. 1b). Cyanobacteria were 109 most abundant near the surface (Fig. 1a). Bacteroidetes, Actinobacteria, and Proteobacteria were 110 abundant across depths. δ-Proteobacteria, which include most of the known sulfate-reducing 111 bacteria, were abundant only below the nitrocline where more favorable terminal electron 112 acceptors were exhausted. The differences in geochemistry and bacterial community structure 113 across depths suggest that organisms exploiting similar resources should have correlated 114 distributions across depths. 115 116 Multiple groups of spatially-correlated OTUs in the lake. To identify groups of spatially- 117 correlated organisms, we used hierarchical clustering to group the 536 most abundant OTUs into 118 49 groups based on the similarity of the OTUs’ distributions across depths. We call these groups 119 operational ecological units (OEUs) because they are groups of organisms that we expect have 120 functional or ecological relationships (thus “ecological”) but were defined in a purely statistical 121 way (thus “operational” 21). 122 123 Most OEUs contained OTUs from multiple phyla. OEUs ranged in size from 2 to 33 OTUs and 124 contained 1 to 10 phyla. The number of phyla in each OEU (0.34 additional phyla per OTU 125 beyond the
Recommended publications
  • Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens
    microorganisms Article Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens Maryam Rezadehbashi and Susan A. Baldwin * Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-822-1973 Received: 2 January 2018; Accepted: 17 February 2018; Published: 23 February 2018 Abstract: Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations.
    [Show full text]
  • Qt9d3054wm.Pdf
    Lawrence Berkeley National Laboratory Recent Work Title Surveys, simulation and single-cell assays relate function and phylogeny in a lake ecosystem. Permalink https://escholarship.org/uc/item/9d3054wm Journal Nature microbiology, 1(9) ISSN 2058-5276 Authors Preheim, Sarah P Olesen, Scott W Spencer, Sarah J et al. Publication Date 2016-08-15 DOI 10.1038/nmicrobiol.2016.130 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Surveys, simulation and single-cell assays relate function and phylogeny in a lake ecosystem Sarah P. Preheim , Scott W. Olesen , Sarah J. Spencer , Arne Materna , Charuleka Varadharajan , Matthew Blackburn , Jonathan Friedman , Jorge Rodríguez , Harold Hemond & Eric J. Alm Nature Microbiology volume1, Article number: 16130 (2016) | Download Citation Abstract Much remains unknown about what drives microbial community structure and diversity. Highly structured environments might offer clues. For example, it may be possible to identify metabolically similar species as groups of organisms that correlate spatially with the geochemical processes they carry out. Here, we use a 16S ribosomal RNA gene survey in a lake that has chemical gradients across its depth to identify groups of spatially correlated but phylogenetically diverse organisms. Some groups had distributions across depth that aligned with the distributions of metabolic processes predicted by a biogeochemical model, suggesting that these groups performed biogeochemical functions. A single-cell genetic assay showed, however, that the groups associated with one biogeochemical process, sulfate reduction, contained only a few organisms that have the genes required to reduce sulfate. These results raise the possibility that some of these spatially correlated groups are consortia of phylogenetically diverse and metabolically different microbes that cooperate to carry out geochemical functions.
    [Show full text]
  • An Integrated Metagenomics and Metabolomics Approach Implicates the Microbiome-Gut-Brain-Axis in the Pathogenesis of Huntington’S Disease Transgenic Mice
    An integrated metagenomics and metabolomics approach implicates the microbiome-gut-brain-axis in the pathogenesis of Huntington’s disease transgenic mice Geraldine Kong The Florey Institute of Neuroscience and Mental Health Susan Ellul University of Melbourne Vinod Narayana University of Melbourne Komal Kanojia University of Melbourne Harvey Tran Thai Ha The Florey Institute of Neuroscience and Mental Health Shanshan Li The Florey Institute of Neuroscience and Mental Health Thibault Renoir The Florey Institute of Neuroscience and Mental Health Kim-Anh Le Cao University of Melbourne Anthony Hannan ( anthony.hannan@≈orey.edu.au ) Florey Institute of Neuroscience and Mental Health, University of Melbourne https://orcid.org/0000- 0001-7532-8922 Research Keywords: Gut microbiome, Huntington’s disease, metagenomics, metabolomics, brain disorder, mouse model DOI: https://doi.org/10.21203/rs.2.23316/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/30 Abstract Background: Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder with onset and severity of symptoms in≈uenced by various environmental factors. Recent discoveries have highlighted the importance of the gastrointestinal microbiome in mediating the bidirectional communication between the central and enteric nervous system via circulating factors. Using shotgun sequencing, we investigated the gut microbiome composition in the R6/1 transgenic mouse model of HD from 4 to 12 weeks of age (early adolescent through to adult stages). Targeted metabolomics was also performed on the blood plasma of these mice (n=9 per group) at 12 weeks of age to investigate potential effects of gut dysbiosis on the plasma metabolome proƒle.
    [Show full text]
  • The University of Oklahoma Graduate College
    THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE ISOTOPIC FRACTIONATION AND ANAEROBIC PHYSIOLOGY OF n-ALKANE DEGRADATION BY BACTERIAL ISOLATES AND MIXED COMMUNITIES A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By BRANDON E. L. MORRIS Norman, OK 2011 ISOTOPIC FRACTIONATION AND ANAEROBIC PHYSIOLOGY OF n-ALKANE DEGRADATION BY BACTERIAL ISOLATES AND MIXED COMMUNITIES A DISSERTATION APPROVED FOR THE DEPARTMENT OF BOTANY AND MICROBIOLOGY BY ____________________________ Dr. Joseph M. Suflita, Chair ____________________________ Dr. Michael J. McInerney ____________________________ Dr. Paul A. Lawson ____________________________ Dr. Tyrrell Conway ____________________________ Dr. Paul F. Cook © Copyright by BRANDON E. L. MORRIS, 2011 All Rights Reserved. Acknowledgements First and foremost, I would like to gratefully acknowledge the guidance of my advisor Dr. Joseph Suflita and his role in my development as a scientific researcher. I hereby recognize my committee members, Dr. Michael McInerney, Dr. Paul Cook, Dr. Tyrrell Conway, and Dr. Paul Lawson for their support and thoughtful discussions throughout my graduate career at the University of Oklahoma. All of these admirable researchers were principle in helping me develop scientific judgment and the ability to carry out meaningful research. My colleagues in the Suflita lab past and present, including Dr. Lisa Gieg, Dr. Victoria Parisi, Dr. Irene Davidova, Dr. Deniz Aktas, Carolina Berdugo, Margarita Mendivelso, and Chris Lyles deserve recognition for their support and contribution to my skill set, including the ability to investigate anaerobic hydrocarbon degradation, cultivate anaerobic organisms, and develop analytical methods. Roughly two years of my graduate career was spent in collaboration with Dr.
    [Show full text]
  • Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens
    microorganisms Article Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens Maryam Rezadehbashi and Susan A. Baldwin * Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-822-1973 Received: 2 January 2018; Accepted: 17 February 2018; Published: 23 February 2018 Abstract: Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations.
    [Show full text]
  • Microbial Community Composition Reflects Subduction Geochemistry in the Costa Rica Convergent Margin
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2019 Microbial Community Composition Reflects Subduction Geochemistry in the Costa Rica Convergent Margin Katherine Marie Fullerton University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Fullerton, Katherine Marie, "Microbial Community Composition Reflects Subduction Geochemistry in the Costa Rica Convergent Margin. " Master's Thesis, University of Tennessee, 2019. https://trace.tennessee.edu/utk_gradthes/5439 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Katherine Marie Fullerton entitled "Microbial Community Composition Reflects Subduction Geochemistry in the Costa Rica Convergent Margin." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Microbiology. Karen G. Lloyd, Major Professor We have read this thesis and recommend its acceptance: Allison Buchan, Frank Loeffler, Ania Sszynkiewicz Accepted for the Council: Dixie L. Thompson Vice Provost
    [Show full text]
  • Biogeochemistry of a Low-Activity Cold Seep in the Larsen B Area, Western Weddell Sea, Antarctica
    Biogeosciences, 6, 2383–2395, 2009 www.biogeosciences.net/6/2383/2009/ Biogeosciences © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Biogeochemistry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica H. Niemann1,2, D. Fischer3, D. Graffe4, K. Knittel1, A. Montiel5, O. Heilmayer4,6, K. Nothen¨ 4, T. Pape3, S. Kasten4, G. Bohrmann3, A. Boetius1,4, and J. Gutt4 1Max Planck Institute for Marine Microbiology, Bremen, Germany 2Institute for Environmental Geosciences, University of Basel, Basel, Switzerland 3MARUM – Center for Marine Environmental Sciences and Department of Geosciences, Univ. of Bremen, Bremen, Germany 4Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany 5Universidad de Magallanes, Punta Arenas, Chile 6German Aerospace Centre, Bonn, Germany Received: 29 May 2009 – Published in Biogeosciences Discuss.: 18 June 2009 Revised: 6 October 2009 – Accepted: 7 October 2009 – Published: 2 November 2009 Abstract. First videographic indication of an Antarctic cold 1 Introduction seep ecosystem was recently obtained from the collapsed Larsen B ice shelf, western Weddell Sea (Domack et al., Ocean research of the last decade has provided evidence 2005). Within the framework of the R/V Polarstern expe- for a variety of fascinating ecosystems associated with fluid, dition ANTXXIII-8, we revisited this area for geochemical, gas and mud escape structures. These so-called cold seeps microbiological and further videographical examinations. are often colonized by thiotrophic bacterial mats, chemosyn- During two dives with ROV Cherokee (MARUM, Bremen), thetic fauna and associated animals (Jørgensen and Boetius, several bivalve shell agglomerations of the seep-associated, 2007).
    [Show full text]
  • PDF (Chapter 2)
    32 Chapter2 CHARACTERIZATION OF MICROBIAL ASSOCIATIONS WITH METHANOTROPHIC ARCHAEA AND SULFATE-REDUCING BACTERIA THROUGH STATISTICAL COMPARISON OF NESTED MAGNETO-FISH ENRICHMENTS 33 Abstract Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to a consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly
    [Show full text]
  • Hidden Microbial Diversity at High Temperatures
    Hidden microbial diversity at high temperatures Anna-Louise Reysenbach [email protected] www.alrlab.pdx.edu The microbial world still has a lot of surprises • Genomes – 30-50% coding capacity unknown • Estimates of <1% grown in the lab • High biochemical diversity – Promise for improving processes – Production of high value chemicals/biofuels • Unknown provides ideal targets for discovery using a host of different approaches including creative culturing, metabolic modeling etc. • Consortia/more complex systems are now tractable (& help maintain optimal conditions for production) • Historical- where there is energy, microbes will ‘engineer themselves… Silicon chips, PCBs etc.. Overview: • Generally, what do we know about the diversity in high temp systems? (who are some of the key players? 50- 80C thermophily happens) • Examples of targeting discovery • Any interesting targets out there? – Next wave of pyrosequencing insights • Any conclusions? 1 Kamchatka No close relative in culture, Iceland new genus species New species 2 Costa Rica, new species from Rincon volcano intra-cytoplasmic structures And so on…. 0.5 µm •only explored with undersea vehicles less than 1 % of the mid-oceanic ridge zone which accounts for more than 90 % of the earth's volcanic activity •Yet relatively little is known about microbial diversity (surprising as many of our thermophilic archaeal isolates are from these systems) 3 Emerging patterns of biodiversity Bacteria Dominated by epsilon proteobacteria Uncultivated groups Others, e.g. Aquificales,Thermotogales, Thermales Archaea Methanogens Thermococcales Archaeoglobales Korarchaeota, Nanoarchaeum Uncultured groups--- Deep-sea Hydrothermal Vent Groups, especially, DHVE2 All cultures are neutrophiles, at best acido tolerant or mildly acidophilic (pH 6.0) DHVE2 Uncultivated Archaea For many years we and others asked… • 1.
    [Show full text]
  • A Deep-Sea Sulfate Reducing Bacterium Directs the Formation Of
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436689; this version posted March 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A deep-sea sulfate reducing bacterium directs the formation 2 of zero-valent sulfur via sulfide oxidation 3 Rui Liu1,2,5, Yeqi Shan1,2,3,5, Shichuan Xi3,4,5, Xin Zhang4,5, Chaomin Sun1,2,5* 1 4 CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of 5 Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China 2 6 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine 7 Science and Technology, Qingdao, China 3 8 College of Earth Science, University of Chinese Academy of Sciences, Beijing, China 4 9 CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, 10 Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China 5 11 Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China 12 13 * Corresponding author 14 Chaomin Sun Tel.: +86 532 82898857; fax: +86 532 82898857. 15 E-mail address: [email protected] 16 17 Key words: sulfate reducing bacteria, cold seep, zero-valent sulfur, in situ, 18 sulfide oxidation 19 Running title: Formation of zero-valent sulfur by SRB 20 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436689; this version posted March 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • This Is a Pre-Copyedited, Author-Produced Version of an Article Accepted for Publication, Following Peer Review
    This is a pre-copyedited, author-produced version of an article accepted for publication, following peer review. Spang, A.; Stairs, C.W.; Dombrowski, N.; Eme, E.; Lombard, J.; Caceres, E.F.; Greening, C.; Baker, B.J. & Ettema, T.J.G. (2019). Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nature Microbiology, 4, 1138–1148 Published version: https://dx.doi.org/10.1038/s41564-019-0406-9 Link NIOZ Repository: http://www.vliz.be/nl/imis?module=ref&refid=310089 [Article begins on next page] The NIOZ Repository gives free access to the digital collection of the work of the Royal Netherlands Institute for Sea Research. This archive is managed according to the principles of the Open Access Movement, and the Open Archive Initiative. Each publication should be cited to its original source - please use the reference as presented. When using parts of, or whole publications in your own work, permission from the author(s) or copyright holder(s) is always needed. 1 Article to Nature Microbiology 2 3 Proposal of the reverse flow model for the origin of the eukaryotic cell based on 4 comparative analysis of Asgard archaeal metabolism 5 6 Anja Spang1,2,*, Courtney W. Stairs1, Nina Dombrowski2,3, Laura Eme1, Jonathan Lombard1, Eva Fernández 7 Cáceres1, Chris Greening4, Brett J. Baker3 and Thijs J.G. Ettema1,5* 8 9 1 Department of Cell- and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, 10 Uppsala, Sweden 11 2 NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and 12 Biogeochemistry, and Utrecht University, P.O.
    [Show full text]
  • Supplemental Materials Oxidation of Ammonium by Feammox Acidimicr
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019 Supplemental Materials Oxidation of Ammonium by Feammox Acidimicr:ae sp. A6 in Anaerobic Microbial Electrolysis Cells Melany Ruiz-Urigüen, Daniel Steingart, Peter R. Jaffé Corresponding author: P.R. Jaffé: [email protected] Reduction potential calculation for anaerobic ammonium oxidation to nitrite + The anaerobic ammonium (NH4 ) oxidation reaction that takes place in the absence of + - + iron oxides, in MECs is NH4 + 2H2O NO2 + 3H2 + 2H , where the anode functions as the electron acceptor. The reduction potential (△Eº) difference between two half reactions measured in volts (V) (△Eº = Eanode – Eº’substrate) determines the feasibility of such reaction. Therefore, to make the reaction feasible, Eanode needs to be above Eº’substrate which is equal to 0.07 V as shown in the calculations below based on equation S1. Eº’ = Eº’acceptor – Eº’donor (Eq. S1) Anodic half reaction in MEC Eº’ Reference - + - + NO3 + 10H + 8e ⇌ NH4 + 3H2O 0.36 V (Schwarzenbach et al. 2003) - + - - NO3 + 2H + 2e ⇌ NO2 + H2O 0.43 V (Schwarzenbach et al. 2003) - + - + NO2 + 8H + 6 e ⇌ NH4 + 2H2O - 0.07 V or + - + - NH4 + 2H2O ⇌ NO2 + 8H + 6 e 0.07 V Figure S1. Average current density measured in MECs with pure live A6 in Feammox medium + without NH4 under stirring conditions. Marks show the mean and lines the standard error (n=3). a. b. 0.8 1.2 0 mM ) 0.125 mM n 1 ) o 0.6 i t M 0.25 mM c 0.8 a m 0.5 mM r ( f ( - 0.4 1 mM 0.6 0 mM 2 ) I O I 0.125 mM ( 0.4 N 0.2 e 0.25 mM F 0.2 0.5 mM 1 mM 0 0 0 2 4 6 0 2 4 6 Time (days) Time (days) - - Figure S2.
    [Show full text]