OF Zys2 MUTATIONS in the YEAST SACCHAROMYCES CEREVZSZAE

Total Page:16

File Type:pdf, Size:1020Kb

OF Zys2 MUTATIONS in the YEAST SACCHAROMYCES CEREVZSZAE PATTERNS OF GENETIC AND PHENOTYPIC SUPPRESSION OF Zys2 MUTATIONS IN THE YEAST SACCHAROMYCES CEREVZSZAE BHARAT B. CHATTOO', EDWARD PALMER, BUN-ICHIRO ON02 and FRED SHERMAN Department of Radiation Biology and Biophysics University of Rochester School of Medicine and Dentistry Rochester, New York 14642 Manuscript received April 19, 1979 ABSTRACT A total of 358 lys2 mutants of Saccharomyces cerevisiae have been charac- terized for suppressibility by the following suppressors: UAA and UAG suppressors that insert tyrosine, serine or leucine; a putative UGA suppres- sor; an omnipotent suppressor SUP46; and a frameshift suppressor SUFI-1. In addition, the lys2 mutants were examined for phenotypic suppression by the aminoglycoside antibiotic paromomycin, for osmotic remediability and for temperature sensitivity. The mutants exhibited over 50 different patterns of suppression and most of the nonsense mutants appeared similar to nonsense mutants previously described. A total of 24% were suppressible by one or more of the UAA suppressors, 4% were suppressible by one or more of the UAG suppressors, while only one was suppressible by the UGA suppressor and only one was weakly suppressible by the frameshift suppressor. One mutant responded to both UAA and UAG suppressors, indicating that UAA or UAG mutations at certain rare sites can be exceptions to the specific action of UAA and UAG suppressors. Some of the mutants appeared to re- quire certain types of amino acid replacements at the mutant sites in order to produce a functional gene product, while others appeared to require sup- pressors that were expressed at high levels. Many of the mutants suppressi- ble by SUP46 and paromomycin were not suppressible by any of the UAA, UAG or UGA suppressors, indicating that omnipotent suppression and phe- notypic suppression need not be restricted to nonsense mutations. All of the mutants suppressible by SUP46 were also suppressible by paromomycin, suggesting a common mode of action of omnipotent suppression and phe- notypic misreading. STUDIES with the iso-I -cytochrome c system of Saccharomyces cerevisiae have revealed nonsense suppressors that insert tyrosine, serine or leucine resi- dues at the site of either UAA or UAG mutations (GILMORE,STEWART and SHERMAN1971; LIEBMAN,STEWART and SHERMAN1975; 1976; BRANDRISSet al. 1976; LIEBMANet al. 1977; ONO, STEWARTand SHERMAN1979a,b; SHERMAN, ONO and STEWART1979). These suppressors have been instrumental in identi- 1 Present address: Sarabhai Research Centre, Post Box 162, Baroda 390 007, India. 2 Present address: Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700 Japan. Genetics 93: 67-79 September, 1979. 68 B. B. CHATTOO, et d. fying nucleotide sequence at the mutant sites of numerous suppressible markers and aiding in the identification of mutationally altered tRNAs with suppressor activity. Suppressible markers characterized with the defined suppressors have proved to be invaluable in a wide range of investigations. In particular, certain of the nutritional markers responding to suppressors that insert only certain amino acids have aided in the isolation of specific classes of suppressors (ONO, STEWARTand SHERMAN1979b). In this paper we show that suppressible mark- ers also can be useful for revealing relationships between genetic suppression due to altered tRNAs, genetic suppression presumably due to altered ribosomes and phenotypic suppression due to misreading. In order to extend the range of available suppressible markers, we have char- acterized a large number of Zys2 mutants. Recently Zys2 mutants have become easily obtainable by a selection procedure based on the observation that, unlike normal strains, Zys2 strains can utilize a-aminoadipate as a principal nitrogen source (CHATTOOet al. 1979). The following properties of 358 Zys2 mutations are reported in this study: suppressibility by UAA and UAG suppressors insert- ing tyrosine, serine or leucine; suppressibility by a putative UGA suppressor; suppressibility by an omnipotent suppressor probably having abnormal ribo- somes; suppressibiilty by a frameshift suppressor; phenotypic suppressibility by the aminoglycoside antibiotic paromomycin; osmotic remediability ; and temper- ature sensitivity. While most of the suppressible Zys2 mutants uncovered in this study were similar to the suppressible mutants commonly observed, some excep- tional Zys2 mutants exhibited restricted ra,nges of suppressibility and others ex- hibited extended ranges not previously reported. The patterns of suppressibility of the Zys2 mutants suggested a similarity in the action of omnipotent suppres- sion and phenotypic suppression. MATERIALS AND METHODS Strains: All of the lys2 mutants examined in this investigation were of independent origin and all of them arose spontaneously from the strain AS2-2A (a trpl-1). These Zys2 mutants were selected on AA medium as previously described by CHATTOOet al. (1979). The supres- sor tester strains, listed in Table 1, were obtained from other studies (GILMORE,STEWART and SHERMAN1971; LIEBMAN,STEWART and SHERMAN1975; 1976; LIEBMANet al. 1977; ONO, STEWARTand SHERMAN1979a, b) or were specially constructed for this study. Nonsuppressible Zys2 markers were sometimes introduced into suppressor-bearing strains by simply plating the strain on AA medium and testing the resultant colonies (CHATTOOet al. 1979). A putative UGA suppressor was isolated by the co-reversion of the leu2-2 and his4-166 markers that were kindly provided by G. FINK (Cornell University). This suppressor does not act on standard UAA and UAG markers, but it does act on the Zed-2, his4166 and lysl-101 markers, which are also suppressed by omnipotent suppressors. Evidence suggesting that this SUP-UGA suppressor acts on UGA mutations will be presented elsewhere. Media: The standard complex and synthetic media used in this study have been described by SHERMANand LAWRENCE(1974). The synthetic minimal medium contained 0.67% Bacto-yeast nitrogen base without amino acids, 2% dextrose, 2% Bacto-agar when needed for solidification, 30 mg per 1 lysine, 20 mg per 1 tryptophan, and other supplements (SHERMAN and LAWRENCE1974) when required. The main AA medium used in this study contained 0.167% Bacto-yeast nitrogen base without amino acids and without ammonium sulfate, 2% dextrose, 0.2% D,L-a-aminoadipic acid, 20 mg per 1 L-lysine, 20 mg per 1 L-tryptophan and GENETIC AND PHENOTYPIC SUPPRESSION IN YEAST 69 TABLE 1 List of tester strains Strain number Pertinent genotype SL334-6C LY SUPS-a lys2-1 leu2-1 his5-2 aro7-1 cycl-179 AA-1 a SUPl6-a lys2 lysl-l leu2-1 aro7-l trpl-1 metd-l canl-100 cycl-179 BClO5-1 B Q! SUP52-a lys2-1 metd-l ilvl-I aro7-I AA-2 $- 01 SUP44 lys2 leul-12 ilv3 his5-2 trp5-48 cycl-13 AA-3 P+ (Y SUP16-o lys2 leu2-1 his5-2 ade2-1 canl-100 ilvl-2 cycl-72 AA4 $+ (Y SUP27-0 lys2 leu2-1 his5-2 ade2-1 canl-I00 ilvl-2 cycl-72 B0506-7D $+ (Y SUP-UGA lys2-1 leu2-2 his4-166 aro7-1 ura4-l AA-5 $+ a SUP46 lys2 leu2-2 his4-I66 metb-1 AA-6 9- 01 SUFI-I lys2 his4-519 The lys2 markers were introduced in the AA strains by selection on AA medium. 2% Bacto-agar (CHATOOet al. 1979). Other AA media contained the above ingredients, plus other standard supplements that were required by various auxotrophis strains. Genetic suppression: The suppressibility of the lys2 mutants was determined by crossing each mutant to the a tester strains listed in Table 1. These tester strains contain one or another of the suppressors, a nonsuppressible lys2 marker, and usually one or more auxotrophic markers complementary to the marker in the parent strain AS2-2A (a trpl-I). (Some of the UAG suppressor strains also contain the UAG mutation trpl-I, which does not pre- vent prototrophic selections of the diploid strains.) Diploid strains were isolated from the mating mixtures on a synthetic medium supplemented with lysine. The suppression of the lys2 mutations was determined by examining the level of growth of these diploid strains after two to three days incubation on a synthetic medium lacking lysine. Equivalent results were obtained by spotting the mating mixtures instead of the diploid strains on lysineless medium. In addition to examining the suppressibility in strains heterozygous for the suppressors and heteroallelic for the lys2 markers, the diploid strains were sporulated and the sporulated cul- tures were spotted on a lysineless medium supplemented with the requirements of the other markers. This latter test is equivalent to testing haploid strains having the suppressors coupled with the lys2 markers. Phenotypic suppression: Identification of the lys2 mutants phenotypically suppressed by paromomycin was carried out by the procedure described by PALMER,WILMHELM and SHER- MAN (1979a). Approximately 107 cells of each strain were spread on separate plates of a synthetic medium lacking lysine and containing tryptophan. A paper disc saturated with approximately 7 pmoles of paromomycin was placed in the center of each and the plates were incubated at 30" for seven days. In some instances the degree of phenotypic suppression was estimated more quantitively by the level of growth in liquid synthetic media lacking lysine and containing various amounts of paromomycin (PALMER,WILHEZM and SHERMAN1979b). Ten ml of synthetic media, in 125 ml side-arm flasks, was inoculated to an initial titer of 106 cells per ml, and the growth of the cultures vigorously shaken at 30" was determined after 36 hr by measuring the turbidity with a Klett-Summerson colorimeter containing a No. 60 (560-650 nm) light filter. Osmotic remediability and temperature sensitivity: Cell suspensions of the lys2 mutants were spotted on synthetic media supplemented with tryptophan and containing either 1.5 M KC1, 1.0 M KC1, 0.5 M KC1 or no additions of KC1. The plates were incubated at a",30" and 37" for five days to identify mutants that exhibited temperature-sensitive growth and osmotic remedial growth, as well as those that exhibited growth that was dependent on the interac- tion of these two factors.
Recommended publications
  • From the President's Desk
    JAN/FEB 2006 From the President’s desk: 2006, the 75th anniversary of the Genetics Society of America, will be marked by a number of initiatives to reinvigorate the Society’s mission of promoting research and education in genetics. A highlight was the recently held GSA sponsored conference, “Genetic Analysis: From Model Organisms to Human Biology” in San Diego from January 5-7. This conference emphasized the importance of model organism research by illustrating the crucial contributions to human biology resulting from discoveries in these organisms. The National Institutes of Health (NIH) supported this conference both financially and by participation of key NIH administrators, including Jeremy M. Berg, director of the National Institute of General Medical Sciences. In addition to the superb science talks by international leaders the MOHB conference showcased other important and new GSA initiatives including education, public policy advocacy, graduate student support and recognition of outstanding model organism geneticists. Robin Wright, Education Committee chair, led a round table discussion on undergraduate education and the Joint Steering Committee for Public Policy and the Congressional Liaison Committee sponsored a session on science advocacy and public policy. There was a mentor lunch to support graduate students and postdocs in the next steps of their careers, and the three GSA medals were presented during the banquet, with Victor Ambros receiving the GSA Medal, Fred Sherman the Beadle Award, and Masatoshi Nei the Morgan Award. (For research highlights at the meeting, see pages 6 and 7 of this issue.) The 75th anniversary will also usher in changes to our society’s journal, GENETICS.
    [Show full text]
  • Fred Sherman: a Pioneer in Genetics
    CLASS NOTES TRIBUTE Fred Sherman: A Pioneer in Genetics Fred Sherman, a pioneer in genetics and long hours of laboratory work, large doses mance of Indian dance (dance was a major molecular biology, was a member of the of Fred’s zany humor, and after-hours interest and activity of Fred’s), his thoughts Rochester faculty for 52 years, from 1961 sampling of the local night-life. It provided and conversation quickly returned to yeast. until his death last September. The breadth an introduction to yeast for many scientists His encyclopedic memory of 50 years of of his scientific contributions over the span who went on to become leaders in modern yeast genetics included much information of years that saw the development of that was never published and is now, modern molecular biology is simply sadly, lost. Fortunately, his engagement breathtaking. Fred’s early scientific with science was tempered by humor studies focused on the gene encoding that found expression both in a staple the protein cytochrome c in baker’s of often-repeated jokes for every occa- yeast, establishing this as a power- sion and in carefully crafted comedic ful system that allowed him to make remarks that he proffered in the guise fundamental contributions to the initial of questions and comments at scientific deciphering of the genetic code. His seminars. He semi-seriously referred to determination of the DNA sequence himself as the world’s expert in yeast of the gene encoding cytochrome c, genetic nomenclature, and once tried one of the first eukaryotic genes to be to win a dispute with an editor about sequenced, served as the basis for the the naming of a particular yeast gene first cloning of a gene from a eukary- by announcing that he had tattooed otic organism.
    [Show full text]
  • Molecular and Cellular Biology
    MOLECULAR AND CELLULAR BIOLOGY VOLUME 3 * NUMBER 1 o JANUARY 1983 Aaron J. Shatkin, Editor-in-Chief (1985) Roche Instituite of Molecular Biology Nutlex, N.J. Harvey F. Lodish, Editor (1986) Louis Siminovitch, Editor (1985) Massachuisetts Institute of Technology Hospital for Sick Children Cambridge Toronto, Canadal David J. L. Luck, Editor (1987) Paul S. Sypherd, Editor (1985) Rockefeller Unis'ersity University of California Ness York, N.Y. Irvine EDITORIAL BOARD Renato Baserga (1985) Ira Herskowitz (1984) Daniel B. Rifkin (1985) Alan Bernstein (1984) Larry Kedes (1985) Robert G. Roeder (1985) J. Michael Bishop (1984) Marilyn Kozak (1985) James E. Rothman (1984) Joan Brugge (1985) Elias Lazarides (1985) David Sabatini (1985) Breck Byers (1985) John B. Little (1985) Phillip A. Sharp (1985) John A. Carbon (1984) William F. Loomis, Jr. (1985) Fred Sherman (1985) Lawrence A. Chasin (1985) Paul T. Magee (1985) Pamela Stanley (1985) Nam-Hai Chua (1985) Robert L. Metzenberg (1985) Joan A. Steitz (1985) Terrance G. Cooper (1984) Robert K. Mortimer (1985) James L. Van Etten (1985) James E. Darnell, Jr. (1985) Harvey L. Ozer (1985) Jonathan R. Warner (1984) Gary Felsenfeld (1985) Mary Lou Pardue (1985) Robert A. Weinberg (1984) Norton B. Gilula (1985) Mark Pearson (1985) I. Bernard Weinstein (1985) James E. Haber (1984) Jeremy Pickett-Heaps (1985) Harold Weintraub (1985) Benjamin Hall (1985) Robert E. Pollack (1985) Reed B. Wickner (1985) Ari Helenius (1984) Keith R. Porter (1985) Leslie Wilson (1985) Susan A. Henry (1985) John R. Pringle (1985) Edward Ziff (1985) Helen R. Whiteley, Chairman, Publications Board Walter G. Peter III, Director, Puiblications Linda M.
    [Show full text]
  • Fred Sherman an Introduction to the Genetics and Molecular
    Fred Sherman An Introduction to the Genetics and Molecular Biology of the Yeast Saccharomyces cerevisiae. (2001) http://dbb.urmc.rochester.edu/labs/sherman_f/yeast/index.html Table of Contents • 1 Yeast as a Model Eukaryote • 11 Manipulating the Genome In • 2 Information on Yeast Vitro with Plasmids • 3 Yeast Strains 11.1 Cloning by Complementation • 4 Growth and Life Cycles 11.2 Mutagenesis In Vitro • 5 The Yeast Genome 11.3 Two-step Gene Replacement • 6 Genetic Nomenclature 11.4 Gene Disruption and One-step 6.1 Chromosomal Genes Gene Replacement 6.2 Mitochondrial Gene 11.5 Plasmid Shuffle 6.3 Non-Mendelian Determinants 11.6 Recovering mutant alleles • 7 Genetic Analyses • 12 Interactions of Genes 7.1 Overviews with Examples 12.1 Heterozygosity and Dominant- 7.2 Tetrad Analysis negative Mutations 7.3 Non-Mendelian Inheritance 12.2 Intragenic Complementation • 8 Transformation 12.3 Nonallelic Non- 8.1 Yeast Vector and DNA complementation Fragments 12.4 Suppressors 8.2 Synthetic Oligonucleotides 12.5 Synthetic Enhancement and 8.3 Mitochondrial Transformation Epistatic Relationships • 9 Yeast Vectors • 13 Genomic Analysis 9.1 YIp Vectors • 14 Analyses with Yeast Systems 9.2 YEp Vectors 14.1 Two-hybrid Systems 9.3 YCp Vectors 14.2 Yeast Artificial Chromosomes • 10 Genes Important for Genetic (YACs) Studies 14.3 Expression of Heterologous 10.1 URA3 and LYS2 Protein in Yeast 10.2 ADE1 and ADE2 • Key Words 10.3 GAL1 Promoter • Bibliography 10.4 lacZ and Other Reporters 1 1 Yeast is a Model Eukaryote mutations can be conveniently isolated and manifested in haploid strains, and This chapter deals only with the yeast S.
    [Show full text]
  • Differential Regulation of the Duplicated Isocytochrome C Genes in Yeast (Yeast Regulation/Heme Deficiency/Glucose Repression/Cytochrome C Regulation) THOMAS M
    Proc. NatI. Acad. Sci. USA Vol. 81, pp. 4475-4479, July 1984 Genetics Differential regulation of the duplicated isocytochrome c genes in yeast (yeast regulation/heme deficiency/glucose repression/cytochrome c regulation) THOMAS M. LAZ, DENNIS F. PIETRAS, AND FRED SHERMAN Departments of Biochemistry and of Radiation Biology and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 Communicated by Herschel L. Roman, March 26, 1984 ABSTRACT The two unlinked genes CYCI and CYC7 en- acid (ALA) synthetase (10, 12); since ALA is an intermedi- code iso-l-cytochrome c and iso-2-cytochrome c, respectively, ate in the biosynthesis of heme, hemi mutants are deficient in the yeast Saccharomyces cerevisiae. An examination of the in heme and all heme-containing proteins, including the iso- steady-state level of CYCI and CYC7 mRNAs in normal and cytochromes c. In contrast, the CYC2 and CYC3 genes ap- mutant strains grown under different conditions, along with pear to affect only the isocytochromes c. These mutants may previous results of apoprotein levels, demonstrate that CYCI be involved in some aspect of the enzymatic attachment of a and CYC7 have similar and different modes of regulation. heme to the apoisocytochromes c or the transport of the apo- Both CYCI and CYC7 mRNAs are diminished after anaerobic cytochromes c into the mitochondria (9). Whereas hemi and growth. In contrast, CYCI mRNA but not CYC7 mRNA is de- cyc3 mutations can completely block the isocytochrome c creased by heme deficiency in hem) mutants. Although both production, the cyc2 mutation can block at most only 90% of CYCI and CYC7 mRNAs are substantially lowered after the isocytochromes c.
    [Show full text]
  • A Yeast Model for Batten Disease
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 11341–11345, September 1999 Cell Biology Phenotypic reversal of the btn1 defects in yeast by chloroquine: A yeast model for Batten disease DAVID A. PEARCE*, CARRIE J. CARR,BISWADIP DAS, AND FRED SHERMAN Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 Contributed by Fred Sherman, July 27, 1999 ABSTRACT BTN1 of Saccharomyces cerevisiae encodes an that encode the protein, nor does the stored protein have a ortholog of CLN3, the human Batten disease gene. We have different encoded sequence from that for normal individuals reported previously that deletion of BTN1, btn1-⌬, resulted in (11, 12). Furthermore, slower degradation of mitochondrial a pH-dependent resistance to D-(؊)-threo-2-amino-1-[p- ATP synthase subunit c was found to occur in NCL fibroblasts nitrophenyl]-1,3-propanediol (ANP). This phenotype was compared with normal cells. Although initially located in the caused by btn1-⌬ strains having an elevated ability to acidify mitochondria, mitochondrial ATP synthase subunit c accumu- growth medium through an elevated activity of the plasma lated in lysosomes of NCL cells, whereas the degradation of ؉ membrane H -ATPase, resulting from a decreased vacuolar another mitochondrial inner membrane protein, cytochrome pH during early growth. We have determined that growing oxidase subunit IV, was unaffected, with no lysosomal accu- btn1-⌬ strains in the presence of chloroquine reverses the mulation (13, 14). resistance to ANP, decreases the rate of medium acidification, Genes encoding predicted proteins with high sequence ؉ decreases the activity of plasma membrane H -ATPase, and similarity to Cln3p have been identified in mouse, dog, rabbit, elevates vacuolar pH.
    [Show full text]
  • Transcriptional Regulation of the Yeast Cytochrome C Gene (Cloned Cycl Gene/RNA Half-Lives) RICHARD S
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 8, pp. 3627-3631, August 1979 Biochemistry Transcriptional regulation of the yeast cytochrome c gene (cloned cycl gene/RNA half-lives) RICHARD S. ZITOMER*, DONNA L. MONTGOMERYt, DIANE L. NICHOLS*, AND BENJAMIN D. HALO *Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222; and tGenetics Department SK-50, University of Washington, Seattle, Washington 98195 Communicated by Herschel L. Roman, April 23, 1979 ABSTRACT DNA from the cloned yeast iso-l-cytochrome medium lacking adenine (3), with 2% raffinose for derepression. c, cycl, gene was used in a hybridization assay to measure levels For the growth of the four haploid strains, the medium was and rates of synthesis of cycl RNA. Derepressed cells synthe- supplemented with 0.01% Difco Bacto yeast extract and 0.02% sized cycl RNA at 6 times the rate of that of glucose-repressed All were maintained in cells. Upon glucose addition to a derepressed culture, the tran- Difco Bacto peptone. cultures expo- scription of the cycl gene was repressed within 2.5 min. The nential growth for at least 16 hr before labeling. For pulse-label half-life of hybridizable cycl RNA was determined to be 12-13.5 experiments, cells were grown to a density of 2.7 X 107 cells per min under repressed and derepressed conditions and during ml, then 200 ,Ci of [3H]adenine (55 Ci/mmol, ICN Chemical repression. The results demonstrate that the expression of the and Radioisotope) was added to 2 ml of culture for the desig- cycl gene is subject to transcriptional regulation.
    [Show full text]
  • A Yeast Model for Batten Disease
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 11341–11345, September 1999 Cell Biology Phenotypic reversal of the btn1 defects in yeast by chloroquine: A yeast model for Batten disease DAVID A. PEARCE*, CARRIE J. CARR,BISWADIP DAS, AND FRED SHERMAN Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 Contributed by Fred Sherman, July 27, 1999 ABSTRACT BTN1 of Saccharomyces cerevisiae encodes an that encode the protein, nor does the stored protein have a ortholog of CLN3, the human Batten disease gene. We have different encoded sequence from that for normal individuals reported previously that deletion of BTN1, btn1-⌬, resulted in (11, 12). Furthermore, slower degradation of mitochondrial a pH-dependent resistance to D-(؊)-threo-2-amino-1-[p- ATP synthase subunit c was found to occur in NCL fibroblasts nitrophenyl]-1,3-propanediol (ANP). This phenotype was compared with normal cells. Although initially located in the caused by btn1-⌬ strains having an elevated ability to acidify mitochondria, mitochondrial ATP synthase subunit c accumu- growth medium through an elevated activity of the plasma lated in lysosomes of NCL cells, whereas the degradation of ؉ membrane H -ATPase, resulting from a decreased vacuolar another mitochondrial inner membrane protein, cytochrome pH during early growth. We have determined that growing oxidase subunit IV, was unaffected, with no lysosomal accu- btn1-⌬ strains in the presence of chloroquine reverses the mulation (13, 14). resistance to ANP, decreases the rate of medium acidification, Genes encoding predicted proteins with high sequence ؉ decreases the activity of plasma membrane H -ATPase, and similarity to Cln3p have been identified in mouse, dog, rabbit, elevates vacuolar pH.
    [Show full text]
  • In Saccharomyces Cerevisiae JOHN M
    MOLECULAR AND CELLULAR BIOLOGY, OCt. 1988, p. 4533-4536 Vol. 8, No. 10 0270-7306/88/104533-04$02.00/0 Copyright © 1988, American Society for Microbiology Efficiency of Translation Initiation by Non-AUG Codons in Saccharomyces cerevisiae JOHN M. CLEMENTS,'* THOMAS M. LAZ,2t AND FRED SHERMAN'2 Departments ofBiochemistry' and Biophysics,2 University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 Received 5 April 1988/Accepted 14 June 1988 The quantitative levels of initiation of protein synthesis at codons other than AUG were determined with a CYC7-lacZ fused gene in the yeast Saccharomyces cerevisiae. AUG was the only codon which efficiently initiated translation, although some non-AUG codons allowed initiation at very low efficiency, below 1% of the normal level. Since translation initiates at codons other than AUG in at least two wild-type genes from eucaryotes, other factors presumably play a role in enhancing the activity of non-AUG codons. The codon AUG is used to initiate translation of most late reductase mRNA initiated from a mutant ACG codon proteins in procaryotes, eucaryotes, and organelles. Other with an efficiency as high as 5% when the ACG codon was in codons, GUG, UUG, and AUU, have been found to initiate an optimal context (18). Thus, eucaryotes can initiate trans- translation of a limited number of wild-type proteins in lation from non-AUG codons, sometimes at surprisingly Escherichia coli, and there are examples of mutant genes high levels. using AUA as an initiation codon (10). When GUG (12) or The sole use of the AUG codon for efficient initiation of UUG (19) initiator codons of E.
    [Show full text]
  • Fred Sherman (1932–2013)
    PERSONAL NEWS Fred Sherman (1932–2013) Fred Sherman, an internationally famous istry and Biophysics from 1982 to 1999 several hours at a stretch. These lectures yeast geneticist passed away on 16 Sep- (till his retirement). Even after retire- at Cold Spring Harbor were not only tember 2013 at the age of 81. He was ment, Sherman was quite active in sci- attended by students who had registered born in Minneapolis, Minnesota, USA, in ence and used to serve the scientific for this course, but also by well-known 1932. Sherman enrolled at the University community with the same vigour and personalities such as Jim Watson, Alfred of Minnesota with chemistry major and energy as before. Hershey, Barbara McClintock, Max Del- earned his Bachelor’s degree (B A) in bruk and many others. 1954. Then he moved to the University Sherman published more than 250 of California, Berkeley, for graduate papers in reputed journals. He served on programme in biophysics. Here, he met the editorial board of numerous interna- one of the leading yeast geneticists, tional journals. Starting from 1962 to Robert K. Mortimer, who introduced 2013, during his long and successful ca- Sherman to the beauty of yeast genetics reer, Sherman taught a large number of and its power in unveiling complex bio- graduate (Ph D) students and also trained logical processes. Sherman worked with many postdoctoral fellows from several Mortimer on the induction of – mito- countries around the world. Almost all chondrial mutants at elevated tempera- the people trained by Sherman became ture in the baker’s yeast Saccharomyces leaders in their respective fields.
    [Show full text]
  • Genet Honors and Awards 719..72
    Copyright Ó 2006 by the Genetics Society of America The 2006 GSA Honors and Awards The Genetics Society of America annually honors members who have made outstanding contributions to genetics. The Thomas Hunt Morgan Medal recognizes a lifetime contribution to the science of genetics. The Genetics Society of America Medal recognizes particularly outstanding contributions to the science of genetics within the past 15 years. The George W. Beadle Medal recognizes distinguished service to the field of genetics and the community of geneticists. We are pleased to announce the 2006 awards. The 2006 Thomas Hunt Morgan Medal Masatoshi Nei Masatoshi Nei ASATOSHI Nei has been a major contributor to elegant statistic involving allele frequencies from two M population and evolutionary genetics theory populations that, under the infinite alleles mutation throughout his career. He is one of a select group to model, had an expected value proportional to the time have a statistic named for him: ‘‘Nei’s genetic distance’’ since those populations had diverged from an ancestral is a cornerstone of population genetic analyses. His body population. The measure therefore provided a natural of work includes two influential textbooks and a remark- basis for reconstructing phylogenies and it was quickly able 55 (of nearly 300) articles with over 100 citations adopted for distance-based methods for building evo- each, 9 of which have over 1100 citations and 1 of which lutionary trees. Nei provided further discussion of the has over 12,000. sampling properties of his distance statistic in Genetics When Nei received the International Prize for Biology in 1978. His most widely cited work is his 1987 article in 2002, the Japan Society for the Promotion of Science with Saitou in Molecular Biology and Evolution, said: ‘‘Through these achievements, Dr.
    [Show full text]
  • HERSCHEL L. ROMAN September 29, 1914–July 2, 1989
    NATIONAL ACADEMY OF SCIENCES HERSC H E L L . R OMAN 1914—1989 A Biographical Memoir by M ICH A E L S . E S P OSITO Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1996 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Courtesy of Caryl Roman HERSCHEL L. ROMAN September 29, 1914–July 2, 1989 BY MICHAEL S. ESPOSITO ERSCHEL L. ROMAN, PROFESSOR emeritus and founding chair- Hperson of the Department of Genetics at the Univer- sity of Washington, made fundamental contributions to studies of the nature of the gene and chromosome behavior in maize during the early phase of his career. Later he led the emergence of Saccharomyces cerevisiae, budding yeast, as a premier unicellular organism for study of the basic genetics of eukaryotes. Hersch, as he preferred to be called, was a brilliant researcher, an inspired teacher, and a stalwart col- league of those who shared his love for genetic experimen- tation and his commitment to the welfare of genetic biol- ogy. An innovator of pace-setting tools for genetic analysis, Hersch was the recipient of numerous distinguished na- tional and international honors in addition to his election to the National Academy of Sciences: Guggenheim fellow, Paris; Fulbright research scholar, Paris; president, Genetics Society of America; American Academy of Arts and Sciences; Gold Medal, Christian Hansen Foundation, Copenhagen; Thomas Hunt Morgan Medal, Genetics Society of America; honorary doctorate, University of Paris; Doctor of Science, honoris causa, University of Missouri-Columbia; and presi- 349 350 BIOGRAPHICAL MEMOIRS dent of the International Congress of Yeast Genetics and Molecular Biology.
    [Show full text]