Non-Alcoholic Fatty Liver Disease: Disease Burden and Development

Total Page:16

File Type:pdf, Size:1020Kb

Non-Alcoholic Fatty Liver Disease: Disease Burden and Development Non-Alcoholic Fatty Liver Disease: Disease burden and development of novel fibrosis diagnostic and prognostic signatures Marie Patricia Boyle A thesis submitted for the degree of Doctor of Philosophy Institute of Cellular Medicine Newcastle University January 2020 I ABSTRACT .................................................................................................................................. I TABLE OF CONTENTS ................................................................................................................ II INDEX OF FIGURES .................................................................................................................... V TABLE OF TABLES ................................................................................................................... VII ABBREVIATIONS ..................................................................................................................... XII CO-AUTHOR CONTRIBUTIONS ............................................................................................... XIX ACKNOWLEDGMENTS .......................................................................................................... XXII DECLARATION ....................................................................................................................... XXII PUBLICATIONS AND PRESENTATIONS ASSOCIATED WITH THIS THESIS .............................. XXIII I ABSTRACT Background This thesis investigates novel diagnostic and prognostic disease biomarkers in NAFLD and explores both the quality of life (QoL) and economic burden associated with NAFLD. Methods To estimate HRQL burden, 147 patients completed validated QoL assessments within 6 months of diagnostic liver biopsy. NAFLD out-patient service utilisation was evaluated and micro-costed over a 12-month period. The clinical utility of serum collagen neo-epitope biomarkers to identify advanced fibrosis was established. DNA methylation was evaluated in circulating cell free DNA as a diagnostic biomarker in NAFLD using pyrosequencing and evaluated by whole genome bisulfide sequencing (WGBS) from paired liver biopsy tissue to characterise NAFLD prognostic signatures. Results HRQL Burden: Grade of lobular inflammation influenced CLDQ scores and FIS scores. One way ANCOVA analyses showed that CLDQ scores were influenced by fibrosis stage (F=1.910, p=0.014, effect size 0.814) Economic Burden: Multivariate regression analysis established the main cost drivers to be the number of clinic appointments (p=0.042) and the presence of advanced disease (p=0.001). Collagen Neo-epitope biomarkers the novel “FIBC3” diagnostic panel including PROC3 exhibited improved accuracy and outperformed other fibrosis indices for the detection of advanced fibrosis DNA methylation fibrosis biomarkers PPARγ CpG methylation displayed uniform hypermethylation at each CpG site between the liver fibrosis cohorts relative to uniform hypomethylation irrespective of liver disease aetiology DNA methylation prognostic signature; > 657 novel methylation signatures to distinguish low and high risk disease were identified. Conclusion Multiple factors negatively impact on reported HRQL, notably fatigue and lobular inflammation. The direct medical costs associated with NAFLD are substantial and increase with the presence of advanced disease. The ‘FIBC3’ panel is an accurate tool with a single threshold value that maintains both sensitivity and specificity for the identification of advanced fibrosis (F≥3). The first methylome map of low versus high risk disease in NAFLD suggest that high and low risk NAFLD while interrelated, may be biologically distinct from disease onset. Extending this towards clinical utility, uniform hypermethylation at the PPARγ gene promoter confirms this as a potential methylation signature for fibrosis progression in chronic liver disease. I TABLE OF CONTENTS ABSTRACT ........................................................................................................................................ I CHAPTER 1. .................................................................................................................................... 1 Introduction and Background ........................................................................................................ 1 CHAPTER 2. .................................................................................................................................. 35 NAFLD Disease Burden: Exploring emotional, mental, physical and social functioning in NAFLD: Data from the European NAFLD Registry; an analysis of Patient reported outcomes (PROs) in NAFLD ........................................................................................................................................... 35 2.1 INTRODUCTION .......................................................................................................................... 37 2.2. MATERIALS AND METHODS ....................................................................................................... 41 2.3. RESULTS ..................................................................................................................................... 46 2.4. DISCUSSION ............................................................................................................................... 70 2.5. CONCLUSION .............................................................................................................................. 81 CHAPTER 3. .................................................................................................................................. 82 Cost of Illness study associated with the prevalence, severity and patterns of clinical practice in outpatient visits for NAFLD– the United Kingdom CONSTANS STUDY ........................................ 82 3.1. INTRODUCTION .......................................................................................................................... 84 3.2. MATERIALS AND METHODS ....................................................................................................... 90 3.3. RESULTS ..................................................................................................................................... 94 3.4. DISCUSSION ............................................................................................................................. 117 3.5. CONCLUSION ............................................................................................................................ 129 CHAPTER 4. ................................................................................................................................ 130 An initial exploration of proteomic biomarkers in NASH ........................................................... 130 4.1. INTRODUCTION ........................................................................................................................ 132 4.2. MATERIALS AND METHODS ..................................................................................................... 137 II 4.3. RESULTS ................................................................................................................................... 140 4.4. DISCUSSION ............................................................................................................................. 166 4.5. CONCLUSION ............................................................................................................................ 172 CHAPTER 5. ................................................................................................................................ 173 Performance of the PROC3 Collagen Neo-Epitope Biomarker in NAFLD ................................... 173 5.1. INTRODUCTION ....................................................................................................................... 175 5.2. MATERIALS AND METHODS ................................................................................................... 179 5.3. RESULTS ................................................................................................................................... 182 5.4. DISCUSSION ............................................................................................................................. 208 5.5. CONCLUSION ............................................................................................................................ 216 CHAPTER 6. ................................................................................................................................ 217 Plasma DNA methylation as a biomarker for stratification of mild and severe liver fibrosis in non- alcoholic fatty liver disease ........................................................................................................ 217 6.1. INTRODUCTION ....................................................................................................................... 219 6.2. MATERIALS AND METHODS ..................................................................................................... 222 6.3. RESULTS ................................................................................................................................... 229 6.4. DISCUSSION ............................................................................................................................. 237 6.5. CONCLUSION ...........................................................................................................................
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • ZMYND10 Functions in a Chaperone Relay During Axonemal Dynein
    RESEARCH ARTICLE ZMYND10 functions in a chaperone relay during axonemal dynein assembly Girish R Mali1†‡, Patricia L Yeyati1†, Seiya Mizuno2, Daniel O Dodd1, Peter A Tennant1, Margaret A Keighren1, Petra zur Lage3, Amelia Shoemark4, Amaya Garcia-Munoz5, Atsuko Shimada6, Hiroyuki Takeda6, Frank Edlich7,8, Satoru Takahashi2,9, Alex von Kreigsheim5,10, Andrew P Jarman3, Pleasantine Mill1* 1MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom; 2Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan; 3Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; 4Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom; 5Systems Biology Ireland, University College Dublin, Dublin, Ireland; 6Department of Biological Sciences, University of Tokyo, Tokyo, Japan; 7Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany; 8BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany; 9Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; 10Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom *For correspondence: [email protected] †These authors contributed Abstract Molecular chaperones promote the folding and macromolecular assembly of a diverse equally to this work set of ‘client’ proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative Present address: ‡MRC Laboratory of Molecular Biology, proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the Cambridge, United Kingdom FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility.
    [Show full text]
  • Test Catalogue August 2019
    Test Catalogue August 2019 www.centogene.com/catalogue Table of Contents CENTOGENE CLINICAL DIAGNOSTIC PRODUCTS AND SERVICES › Whole Exome Testing 4 › Whole Genome Testing 5 › Genome wide CNV Analysis 5 › Somatic Mutation Analyses 5 › Biomarker Testing, Biochemical Testing 6 › Prenatal Testing 7 › Additional Services 7 › Metabolic Diseases 9 - 21 › Neurological Diseases 23 - 47 › Ophthalmological Diseases 49 - 55 › Ear, Nose and Throat Diseases 57 - 61 › Bone, Skin and Immune Diseases 63 - 73 › Cardiological Diseases 75 - 79 › Vascular Diseases 81 - 82 › Liver, Kidney and Endocrinological Diseases 83 - 89 › Reproductive Genetics 91 › Haematological Diseases 93 - 96 › Malformation and/or Retardation Syndromes 97 - 107 › Oncogenetics 109 - 113 ® › CentoXome - Sequencing targeting exonic regions of ~20.000 genes Test Test name Description code CentoXome® Solo Medical interpretation/report of WES findings for index 50029 CentoXome® Solo - Variants Raw data; fastQ, BAM, Vcf files along with variant annotated file in xls format for index 50028 CentoXome® Solo - with CNV Medical interpretation/report of WES including CNV findings for index 50103 Medical interpretation/report of WES in index, package including genome wide analyses of structural/ CentoXome® Solo - with sWGS 50104 large CNVs through sWGS Medical interpretation/report of WES in index, package including genome wide analyses of structural/ CentoXome® Solo - with aCGH 750k 50122 large CNVs through 750k microarray Medical interpretation/report of WES in index, package including genome
    [Show full text]
  • Mouse Cfap298 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Cfap298 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Cfap298 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cfap298 gene (NCBI Reference Sequence: NM_026502.2 ; Ensembl: ENSMUSG00000022972 ) is located on Mouse chromosome 16. 7 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 7 (Transcript: ENSMUST00000023694). Exon 2~3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Cfap298 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-100B13 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 16.09% of the coding region. The knockout of Exon 2~3 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 3420 bp, and the size of intron 3 for 3'-loxP site insertion: 2407 bp. The size of effective cKO region: ~1746 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 7 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Cfap298 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Novel Gene Discovery in Primary Ciliary Dyskinesia
    Novel Gene Discovery in Primary Ciliary Dyskinesia Mahmoud Raafat Fassad Genetics and Genomic Medicine Programme Great Ormond Street Institute of Child Health University College London A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy University College London 1 Declaration I, Mahmoud Raafat Fassad, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Primary Ciliary Dyskinesia (PCD) is one of the ‘ciliopathies’, genetic disorders affecting either cilia structure or function. PCD is a rare recessive disease caused by defective motile cilia. Affected individuals manifest with neonatal respiratory distress, chronic wet cough, upper respiratory tract problems, progressive lung disease resulting in bronchiectasis, laterality problems including heart defects and adult infertility. Early diagnosis and management are essential for better respiratory disease prognosis. PCD is a highly genetically heterogeneous disorder with causal mutations identified in 36 genes that account for the disease in about 70% of PCD cases, suggesting that additional genes remain to be discovered. Targeted next generation sequencing was used for genetic screening of a cohort of patients with confirmed or suggestive PCD diagnosis. The use of multi-gene panel sequencing yielded a high diagnostic output (> 70%) with mutations identified in known PCD genes. Over half of these mutations were novel alleles, expanding the mutation spectrum in PCD genes. The inclusion of patients from various ethnic backgrounds revealed a striking impact of ethnicity on the composition of disease alleles uncovering a significant genetic stratification of PCD in different populations.
    [Show full text]
  • CFAP298 CRISPR/Cas9 KO Plasmid (M): Sc-426869
    SANTA CRUZ BIOTECHNOLOGY, INC. CFAP298 CRISPR/Cas9 KO Plasmid (m): sc-426869 BACKGROUND APPLICATIONS The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CFAP298 CRISPR/Cas9 KO Plasmid (m) is recommended for the disruption of CRISPR-associated protein (Cas9) system is an adaptive immune response gene expression in mouse cells. defense mechanism used by archea and bacteria for the degradation of foreign genetic material (4,6). This mechanism can be repurposed for other 20 nt non-coding RNA sequence: guides Cas9 functions, including genomic engineering for mammalian systems, such as to a specific target location in the genomic DNA gene knockout (KO) (1,2,3,5). CRISPR/Cas9 KO Plasmid products enable the U6 promoter: drives gRNA scaffold: helps Cas9 identification and cleavage of specific genes by utilizing guide RNA (gRNA) expression of gRNA bind to target DNA sequences derived from the Genome-scale CRISPR Knock-Out (GeCKO) v2 library developed in the Zhang Laboratory at the Broad Institute (3,5). Termination signal Green Fluorescent Protein: to visually REFERENCES verify transfection CRISPR/Cas9 Knockout Plasmid CBh (chicken β-Actin 1. Cong, L., et al. 2013. Multiplex genome engineering using CRISPR/Cas hybrid) promoter: drives systems. Science 339: 819-823. 2A peptide: expression of Cas9 allows production of both Cas9 and GFP from the 2. Mali, P., et al. 2013. RNA-guided human genome engineering via Cas9. same CBh promoter Science 339: 823-826. Nuclear localization signal 3. Ran, F.A., et al. 2013. Genome engineering using the CRISPR-Cas9 system. Nuclear localization signal SpCas9 ribonuclease Nat. Protoc. 8: 2281-2308.
    [Show full text]
  • Mapping Transmembrane Binding Partners for E-Cadherin Ectodomains
    SUPPLEMENTARY INFORMATION TITLE: Mapping transmembrane binding partners for E-cadherin ectodomains. AUTHORS: Omer Shafraz 1, Bin Xie 2, Soichiro Yamada 1, Sanjeevi Sivasankar 1, 2, * AFFILIATION: 1 Department of Biomedical Engineering, 2 Biophysics Graduate Group, University of California, Davis, CA 95616. *CORRESPONDING AUTHOR: Sanjeevi Sivasankar, Tel: (530)-754-0840, Email: [email protected] Figure S1: Western blots a. EC-BioID, WT and Ecad-KO cell lysates stained for Ecad and tubulin. b. HRP-streptavidin staining of biotinylated proteins eluted from streptavidin coated magnetic beads incubated with cell lysates of EC-BioID with (+) and without (-) exogenous biotin. c. C-BioID, WT and Ecad-KO cell lysates stained for Ecad and tubulin. d. HRP-streptavidin staining of biotinylated proteins eluted from streptavidin coated magnetic beads incubated with cell lysates of C-BioID with (+) and without (-) exogenous biotin. (+) Biotin (-) Biotin Sample 1 Sample 2 Sample 3 Sample 4 Sample 1 Sample 2 Sample 3 Sample 4 Percent Percent Percent Percent Percent Percent Percent Percent Gene ID Coverage Coverage Coverage Coverage Coverage Coverage Coverage Coverage CDH1 29.6 31.4 41.1 36.5 10.8 6.7 28.8 29.1 DSG2 26 14.6 45 37 0.8 1.9 1.6 18.7 CXADR 30.2 26.2 32.7 27.1 0.0 0.0 0.0 6.9 EFNB1 24.3 30.6 24 30.3 0.0 0.0 0.0 0.0 ITGA2 16.5 22.2 30.1 33.4 1.1 1.1 5.2 7.2 CDH3 21.8 9.7 20.6 25.3 1.3 1.3 0.0 0.0 ITGB1 11.8 16.7 23.9 20.3 0.0 2.9 8.5 5.8 DSC3 9.7 7.5 11.5 13.3 0.0 0.0 2.6 0.0 EPHA2 23.2 31.6 31.6 30.5 0.8 0.0 0.0 5.7 ITGB4 21.8 27.8 33.1 30.7 0.0 1.2 3.9 4.4 ITGB3 23.5 22.2 26.8 24.7 0.0 0.0 5.2 9.1 CDH6 22.8 18.1 28.6 24.3 0.0 0.0 0.0 9.1 CDH17 8.8 12.4 20.7 18.4 0.0 0.0 0.0 0.0 ITGB6 12.7 10.4 14 17.1 0.0 0.0 0.0 1.7 EPHB4 11.4 8.1 14.2 16.3 0.0 0.0 0.0 0.0 ITGB8 5 10 15 17.6 0.0 0.0 0.0 0.0 ITGB5 6.2 9.5 15.2 13.8 0.0 0.0 0.0 0.0 EPHB2 8.5 4.8 9.8 12.1 0.0 0.0 0.0 0.0 CDH24 5.9 7.2 8.3 9 0.0 0.0 0.0 0.0 Table S1: EC-BioID transmembrane protein hits.
    [Show full text]
  • Modelling the Developmental Spliceosomal Craniofacial Disorder
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.094029; this version posted May 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Modelling the developmental spliceosomal craniofacial disorder Burn -McKeown syndrome using induced pluripotent stem cells Short title: Modelling Burn -McKeown Syndrome using induced pluripotent stem cells Katherine A. Wood 1,2 , Charlie F. Rowlands 1,2 , Huw B. Thomas 1, Steven Woods 3, Julieta O’Flaherty 3, Sofia Dou zg ou 1,2 , Su san J. Kimbe r3, William G. Newman 1,2 *,Raymond T. O’Keefe 1* 1Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK 2Manchester Centre for Genomic Medicine , Manchester University NHS Foundation Trust , Manchester Academic Health Science Centre, Manc hester, UK 3Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK *To whom correspondence should be addressed. Email: [email protected] ; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.094029; this version posted May 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Protein List
    Protein Accession Protein Id Protein Name P11171 41 Protein 4.
    [Show full text]
  • Whole Exome Sequencing Gene Package Multiple Congenital Anomaly, Version 8.1, 31-1-2020
    Whole Exome Sequencing Gene package Multiple congenital anomaly, version 8.1, 31-1-2020 Technical information DNA was enriched using Agilent SureSelect DNA + SureSelect OneSeq 300kb CNV Backbone + Human All Exon V7 capture and paired-end sequenced on the Illumina platform (outsourced). The aim is to obtain 10 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate and non-unique reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA-MEM algorithm (reference: http://bio-bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A4GALT [Blood group, P1Pk system, P(2) phenotype], 111400 [Blood group, P1Pk system, p phenotype], 111400 NOR poly607922 146 100 100 99 AAAS Achalasia-addisonianism-alacrimia syndrome, 231550 605378 102 100 100 100
    [Show full text]
  • TEST CATALOGUE October 2020 ACHIEVING a POSITIVE CHANGE
    TEST CATALOGUE October 2020 ACHIEVING A POSITIVE CHANGE ... CENTOGENE IS DEDICATED TO TRANSFORMING THE SCIENCE OF GENETIC INFORMATION INTO SOLUTIONS AND HOPE FOR PATIENTS WITH RARE DISEASES AND THEIR FAMILIES. BOSTON We achieve this by: › Leveraging the world’s largest database in rare genetic disorders with genetic, proteomic, metabolomic, and clinical information – CentoMD® › Applying our knowledge derived from our global diagnostic testing services – addressing the worldwide heterogeneity in ethnicities › Guaranteeing the highest quality in our processes based on the highest level of accreditation OUR GLOBAL FOOTPRINT The outcome of growth and expansion at CENTOGENE is the inauguration of new locations. As a cosmopolitan company, we have a strong international footprint. ROSTOCK HAMBURG BERLIN DELHI FRANKFURT VIENNA DUBAI SOLID GROWTH IN JUST OVER A DECADE Metabolomic Oncogenetic Biomarkers MLPA >180 NGS panels platform testing CentoCard® qPCR Whole exome 2006 The logistic solution sequencing Diagnostics in neurogenetic diseases Non-invasive Carrier > 9,000 Whole genome prenatal testing screening different test sequencing 2016 (CentoNIPT®) (CentoScreen®) assays CentoMD® Proteomic Microarrays High throughput Transcriptomics The mutation platform genomic facility 2018 database iPSC program IPO Artificial Intelligence 2020+ initiative 2019 Providing world-class genetic testing and life-changing solutions for all rare disease patients 2019 WHAT DRIVES CENTOGENE Our goal: providing precise medical diagnosis of inherited diseases at the earliest possible moment; transforming medical expertise and analytical information into actionable results for physicians, patients, and pharmaceutical partners. Our commitment: life-long support for our patients and partners - driven by the continuous improvement of our diagnostic quality and therapeutic options for individual patients. Our work does not end by just delivering a medical diagnosis.
    [Show full text]
  • Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia
    International Journal of Molecular Sciences Review Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia Steven K Brennan 1,* , Thomas W Ferkol 1 and Stephanie D Davis 2 1 Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Campus Box 8116, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; [email protected] 2 Department of Pediatrics, University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC 27514, USA; [email protected] * Correspondence: [email protected] Abstract: Primary ciliary dyskinesia (PCD) is a rare inherited condition affecting motile cilia and leading to organ laterality defects, recurrent sino-pulmonary infections, bronchiectasis, and severe lung disease. Research over the past twenty years has revealed variability in clinical presentations, ranging from mild to more severe phenotypes. Genotype and phenotype relationships have emerged. The increasing availability of genetic panels for PCD continue to redefine these genotype-phenotype relationships and reveal milder forms of disease that had previously gone unrecognized. Keywords: primary ciliary dyskinesia; molecular genetics; genotype-phenotype association Citation: Brennan, S.K.; Ferkol, T.W.; 1. Introduction Davis, S.D. Emerging Genotype- Phenotype Relationships in Primary Motile ciliopathies are a group of disorders where motile cilia lining embryonic cells, Ciliary Dyskinesia. Int. J. Mol. Sci. airways, sinus and inner ear cavities, and ventricles in the brain are dysfunctional. The 2021, 22, 8272. https://doi.org/ primary function of these hair-like projections is to facilitate the movement of fluid (i.e., 10.3390/ijms22158272 mucus that lines the airways, cerebrospinal fluid) within various body cavities to be either recirculated or expelled [1].
    [Show full text]