Etablierung Des E2F1-Interaktoms Metastasierungsrelevanter Faktoren Durch Integration Bioinformatischer Und Experimenteller Methoden

Total Page:16

File Type:pdf, Size:1020Kb

Etablierung Des E2F1-Interaktoms Metastasierungsrelevanter Faktoren Durch Integration Bioinformatischer Und Experimenteller Methoden Etablierung des E2F1-Interaktoms metastasierungsrelevanter Faktoren durch Integration bioinformatischer und experimenteller Methoden Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) der Mathematisch‐Naturwissenschaftlichen Fakultät der Universität Rostock vorgelegt von Stephan Marquardt, geboren am 05.07.1981 in Berlin Rostock, Oktober 2019 https://doi.org/10.18453/rosdok_id00003004 Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung-Nicht kommerziell 4.0 International Lizenz. Gutachter: Frau Prof. Dr. med. Dr. rer. nat. Brigitte M. Pützer, Institut für Experimentelle Gentherapie und Tumorforschung an der Universitätsmedizin Rostock Herr Prof. Dr. rer. nat. Lars Kaderali, Institut für Bioinformatik der Universität Greifswald Jahr der Einreichung: 2019 Jahr der Verteidigung: 2020 Vorwort „Ich werde Pflanzen und Tiere sammeln, die Wärme, die Elastizität, den magnetischen und elektrischen Gehalt der Atmosphäre untersuchen, sie zerlegen, geografische Längen und Breiten bestimmen, Berge messen – aber alles dies ist nicht Zweck meiner Reise. Mein eigentlicher, einziger Zweck ist, das Zusammen- und Ineinander-Weben aller Naturkräfte zu untersuchen, den Einfluss der toten Natur auf die belebte Tier- und Pflanzenschöpfung.“ Alexander von Humboldt (1769 ‐ 1859) in „Versuch über den politischen Zustand des Königreichs Neu‐ Spanien“ (1813) Inhaltsverzeichnis I. Einleitung ..................................................................................................................... 1 I.1. Der Transkriptionsfaktor E2F1 ..................................................................................... 5 I.1.1. E2F1 als Schlüsselprotein im Zellzyklus ................................................................ 6 I.1.2. E2F1 als Tumorsuppressor ‐ Regulator der DNA‐Integrität und Auslöser der Apoptose ...................................................................................................................... 10 I.1.3. E2F1 als Onkogen – Auslöser von Tumorwachstum und Metastasierung ......... 12 I.1.4. E2F1 ist in zahlreiche weitere zelluläre Prozesse involviert ............................... 14 I.2. Genregulatorische Netzwerke ................................................................................... 16 I.3. Zielsetzung ................................................................................................................. 19 II. Material und Methoden ............................................................................................ 21 II.1. Material .................................................................................................................... 21 II.1.1. Geräte ................................................................................................................ 21 II.1.2. Chemikalien und Enzyme ................................................................................... 22 II.1.3. Kits ...................................................................................................................... 23 II.1.4. Plasmide ............................................................................................................. 23 II.1.5. Adenovirale Vektoren ........................................................................................ 23 II.1.6. Lentivirale Vektoren ........................................................................................... 24 II.1.7. Zelllinien ............................................................................................................. 25 II.1.8. Antikörper .......................................................................................................... 26 II.1.9. Oligonukleotide .................................................................................................. 27 II.1.10. Online‐Datenbanken und Software ................................................................. 27 II.2. Methoden ................................................................................................................. 30 II.2.1. RNA‐Arbeitstechniken ........................................................................................ 30 II.2.2. DNA‐Arbeitstechniken ....................................................................................... 31 II.2.3. Protein‐Arbeitstechniken ................................................................................... 33 II.2.4. Zellbiologische Arbeitstechniken ....................................................................... 35 II.2.5. Konstruktion und Analyse des E2F1‐Interaktionsnetzwerkes ........................... 38 II.2.6. Akquisition von Daten aus bioinformatischen Datenbanken ............................ 39 III. Ergebnisse ................................................................................................................ 47 III.1. Das E2F1‐Interaktom ............................................................................................... 47 III.1.1. Modellierung des E2F1‐Interaktions‐Netzwerkes zur E2F1‐Map ..................... 47 III.1.2. Systembiologische Analyse der E2F1‐Map ....................................................... 54 III.1.3. Validierung der Ergebnisse der in silico‐Simulationen in Tumorzelllinien ....... 57 III.1.4. Analyse von Brust‐ und Blasenkrebs‐Patientendaten der TCGA‐Datenbank ... 69 III.2. Das Koregulom von E2F1 und TGFβ ........................................................................ 73 IV III.2.1. Screening bekannter und potentieller Zielgene von E2F1 und SMAD2‐4 mithilfe von ChIP‐seq‐Daten ..................................................................................................... 74 III.2.2. Sequenzbasierte Suche von TFBS im Humangenom durch PWM .................... 75 III.2.3. Identifizierung von E2F1‐ und SMAD2‐4‐regulierten Genen in humanen Zelllinien mit Hilfe von Transkriptomdaten ................................................................. 76 III.2.4. Zuordnung der potentiellen Zielgene zu TGFβ‐assoziierten Signalwegkaskaden 77 III.2.5. Überlappung der potentiellen Zielgene mit bekannten EMT‐Markern und EMT‐ assoziierten Faktoren ................................................................................................... 77 III.2.6. Korrelations‐Analyse von Expressionsdaten der TCGA‐Datenbank ................. 80 III.2.7. Zusammenfassung und Auswertung der gesammelten Daten mithilfe einer multi‐objektiven Optimierungsfunktion ...................................................................... 81 IV. Diskussion ............................................................................................................... 85 IV.1. Beispiele systembiologischer und bioinformatischer Arbeiten .............................. 86 IV.2. Die kombinierte Netzwerkanalyse als Werkzeug für die Identifizierung tumorrelevanter Mechanismen/Signaturen – E2F1 als EMT‐induzierender Faktor ....... 88 IV.3. TGFβ als EMT‐induzierender Faktor ........................................................................ 94 IV.4. Das Koregulom zweier potentieller Onkogene ....................................................... 96 IV.5. Zusammenfassung ................................................................................................... 99 V. Anhang ........................................................................................................................ i V Abkürzungsverzeichnis 4‐OHT 4‐Hydroxy‐Tamoxifen AK mk/pk Antikörper, monoklonal/polyklonal BLCA TCGA Bladder Cancer Kohorte bp Basenpaare BRCA TCGA Breast Cancer Kohorte BS Binding Site/Bindestelle cDNA komplementäre DNA CMV Cytomegalovirus DBD DNA Bindedomäne DMEM Dulbecco’s Modified Eagle’s Medium DNA Desoxyribonukleinsäure ECM Extracellular Matrix/Extrazelluläre Matrix EGFR Epidermal Growth Factor Receptor EMT epithelial‐mesenchymale Transition FBL Feedback Loop FBS fetal bovin Serum FC Fold Change FFL Feedforward Loop FGFR1 Fibroblast Growth Factor Receptor 1 GEO Gene Expression Omnibus GFP Green Fluorescent Protein GO Gene Ontology GRN Genregulatorisches Netzwerk HRP Horseradish Peroxidase iPC induced pluripotent cells mRNA messenger Ribonukleinsäure MOI Multiplicity of Infection NES Nuclear Export Signal/Sequence NLS Nuclear Localization Signal/Sequence VI PBS phosphatgepufferte Saline PCR Polymerase‐Kettenreaktion PPI Protein‐Protein‐Interaktion PWM Position Weight Matrix RIPA Radio‐Immun‐Präzipitations‐Assay‐Puffer Rb Retinoblastoma Protein rpm rounds per minute RPMI Roswell Park Memorial Institute‐Medium RT Raumtemperatur TBS(T) Tris‐gepufferte Saline (mit 0,1% Tween 20) TCGA The Cancer Genome Atlas TF Transkriptionsfaktor TFBS Transkriptionsfaktor‐Bindestelle TGFβ(R1/2) Tumor Growth Factor beta (Receptor 1 und 2) Tm primerspezifische Schmelztemperatur TME Tumormicroenvironment/Tumormikromilieu TSS Transcription Start Site UV Ultraviolett VII I. Einleitung Krebs ist zur zweithäufigsten Erkrankung des Menschen avanciert. Die Zahl der Neuerkrankungen im Jahr 2018 wird 18,1 Millionen übersteigen, die Todesfallrate liegt mit 9,6 Millionen bei mehr als der Hälfte (IARC, 2018). Diese Entwicklung ist auf eine Vielzahl von Ursachen zurückzuführen. Zum einen sind es äußere Faktoren, die die Tumorentstehung hervorrufen oder zumindest begünstigen. Dazu zählen Lebens‐ und Ernährungsgewohnheiten wie Rauchen, Alkoholkonsum, Übergewicht, mangelnde körperliche Bewegung, Dysstress und Umwelteinflüsse wie die UV‐Belastung und Luftverschmutzung, die das Risiko an Krebs zu erkranken besonders in Industrienationen erhöhen.
Recommended publications
  • Isoform-Specific Monobody Inhibitors of Small Ubiquitin-Related Modifiers Engineered Using Structure-Guided Library Design
    Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design Ryan N. Gilbretha, Khue Truongb, Ikenna Madub, Akiko Koidea, John B. Wojcika, Nan-Sheng Lia, Joseph A. Piccirillia,c, Yuan Chenb, and Shohei Koidea,1 aDepartment of Biochemistry and Molecular Biology, and cDepartment of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637; and bDepartment of Molecular Medicine, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010 Edited by David Baker, University of Washington, Seattle, WA, and approved March 16, 2011 (received for review February 10, 2011) Discriminating closely related molecules remains a major challenge which SUMOylation alters protein function appears to be in the engineering of binding proteins and inhibitors. Here we through SUMO-mediated interactions with other proteins con- report the development of highly selective inhibitors of small ubi- taining a short peptide motif known as a SUMO-interacting motif quitin-related modifier (SUMO) family proteins. SUMOylation is (SIM) (4, 7, 8). involved in the regulation of diverse cellular processes. Functional There are few inhibitors of SUMO/SIM interactions, a defi- differences between two major SUMO isoforms in humans, SUMO1 ciency that limits our ability to finely dissect SUMO biology. In and SUMO2∕3, are thought to arise from distinct interactions the only reported example of such an inhibitor, a SIM-containing mediated by each isoform with other proteins containing SUMO- linear peptide was used to inhibit SUMO/SIM interactions, estab- interacting motifs (SIMs). However, the roles of such isoform- lishing their importance in coordinating DNA repair by nonho- specific interactions are largely uncharacterized due in part to the mologous end joining (9).
    [Show full text]
  • Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification of Potential Proteases for Abdominal Aortic Aneurysm by Weighted Gene Coexpression Network Analysis
    Genome Identification of potential proteases for abdominal aortic aneurysm by weighted gene coexpression network analysis Journal: Genome Manuscript ID gen-2020-0041.R1 Manuscript Type: Article Date Submitted by the 28-Jun-2020 Author: Complete List of Authors: Zhang, Hui; Peking Union Medical College Hospital, Department of Vascular Surgery Yang, Dan; Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Computational Biology and Bioinformatics,Draft Institute of Medicinal Plant Development Chen, Siliang; Peking Union Medical College Hospital, Department of Vascular Surgery Li, Fangda; Peking Union Medical College Hospital, Department of Vascular Surgery Cui, Liqiang; Peking Union Medical College Hospital, Department of Vascular Surgery Liu, Zhili; Peking Union Medical College Hospital, Department of Vascular Surgery Shao, Jiang; Peking Union Medical College Hospital, Department of Vascular Surgery Chen, Yuexin; Peking Union Medical College Hospital, Department of Vascular Surgery Liu, Bao; Peking Union Medical College Hospital, Department of Vascular Surgery Zheng, Yuehong; Peking Union Medical College Hospital, Department of Vascular Surgery Abdominal aortic aneurysm, next-generation sequencing, WGCNA, Keyword: proteases, matrix metalloproteinase Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 35 Genome 1 Identification of potential proteases for abdominal aortic aneurysm by weighted gene 2 coexpression network analysis 3 Short title: WGCNA identifies crucial proteases in AAA 4 5 Hui Zhang1, Dan Yang2, Siliang Chen1, Fangda Li1, Liqiang Cui1, Zhili Liu1, Jiang Shao1, Yuexin 6 Chen1, Bao Liu1, Yuehong Zheng1. 7 1Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, PR 8 China; 2Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant 9 Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10 100730, PR China.
    [Show full text]
  • (MINA) (NM 032778) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC212554L4 MINA53 (MINA) (NM_032778) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: MINA53 (MINA) (NM_032778) Human Tagged ORF Clone Tag: mGFP Symbol: RIOX2 Synonyms: JMJD10; MDIG; MINA; MINA53; NO52; ROX Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC212554). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_032778 ORF Size: 1392 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 MINA53 (MINA) (NM_032778) Human Tagged ORF Clone – RC212554L4 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_032778.3, NP_116167.3 RefSeq Size: 2221 bp RefSeq ORF: 1395 bp Locus ID: 84864 UniProt ID: Q8IUF8 Protein Families: Druggable Genome MW: 52.5 kDa Gene Summary: MINA is a c-Myc (MYC; MIM 190080) target gene that may play a role in cell proliferation or regulation of cell growth.
    [Show full text]
  • Quantitative Proteomics Reveal the Alterations in the Spinal Cord After Myocardial Ischemia‑Reperfusion Injury in Rats
    INTERNATIONAL JOURNAL OF MOleCular meDICine 44: 1877-1887, 2019 Quantitative proteomics reveal the alterations in the spinal cord after myocardial ischemia‑reperfusion injury in rats SHUN‑YUAN LI1, ZHI‑XIAO LI2, ZHI‑GANG HE3, QIAN WANG2, YU‑JUAN LI2, QING YANG4, DUO‑ZHI WU5, HAO‑LONG ZENG6 and HONG‑BING XIANG2 1Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000; Departments of 2Anesthesiology and Pain Medicine, and 3Emergency Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030; 4College of Life Science, Wuhan University, Wuhan, Hubei 430076; 5Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan 570311; 6Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China Received April 19, 2019; Accepted August 6, 2019 DOI: 10.3892/ijmm.2019.4341 Abstract. There is now substantial evidence that myocardial interactions help explain the apparent randomness of cardiac ischemia-reperfusion (IR) injury affects the spinal cord and events and provide new insights into future novel therapies to brain, and that interactions may exist between these two prevent myocardial I/R injury. systems. In the present study, the spinal cord proteomes were systematically analyzed after myocardial IR injury, in Introduction an attempt to identify the proteins involved in the processes. The myocardial IR injury rat model was first established by There is increasing evidence that nociceptive signals trigger the cross clamping the left anterior descending coronary artery neuronal excitation of the spinal cord. For instance, mechanical for 30-min ischemia, followed by reperfusion for 2 h, which and cooling stimuli induced by spinal nerve ligation results resulted in a significant histopathological and functional in the alteration of spinal 5‑hydroxytryptophan (HT) recep- myocardial injury.
    [Show full text]
  • ZMYND10 Functions in a Chaperone Relay During Axonemal Dynein
    RESEARCH ARTICLE ZMYND10 functions in a chaperone relay during axonemal dynein assembly Girish R Mali1†‡, Patricia L Yeyati1†, Seiya Mizuno2, Daniel O Dodd1, Peter A Tennant1, Margaret A Keighren1, Petra zur Lage3, Amelia Shoemark4, Amaya Garcia-Munoz5, Atsuko Shimada6, Hiroyuki Takeda6, Frank Edlich7,8, Satoru Takahashi2,9, Alex von Kreigsheim5,10, Andrew P Jarman3, Pleasantine Mill1* 1MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom; 2Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan; 3Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; 4Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom; 5Systems Biology Ireland, University College Dublin, Dublin, Ireland; 6Department of Biological Sciences, University of Tokyo, Tokyo, Japan; 7Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany; 8BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany; 9Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; 10Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom *For correspondence: [email protected] †These authors contributed Abstract Molecular chaperones promote the folding and macromolecular assembly of a diverse equally to this work set of ‘client’ proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative Present address: ‡MRC Laboratory of Molecular Biology, proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the Cambridge, United Kingdom FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility.
    [Show full text]
  • Progress in the Discovery of Small Molecule Modulators of Desumoylation
    Curr. Issues Mol. Biol. (2020) 35: 17-34. Progress in the Discovery of Small Molecule Modulators of DeSUMOylation Shiyao Chen, Duoling Dong, Weixiang Xin and Huchen Zhou* School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.035.017 Abstract protein–protein interactions, gene transcription, SUMOylation and DeSUMOylation are reversible genome integrity, and DNA replication and repair protein post-translational modifcation (PTM) (Wilkinson and Henley, 2010; Vierstra, 2012; processes involving small ubiquitin-like modifer Bailey et al., 2016). In 1995, Meluh and Koshland (SUMO) proteins. Tese processes have indis- (1995) identifed Smt3 in Saccharomyces cerevi- pensable roles in various cellular processes, such siae, which is the earliest report within this fled. as subcellular localization, gene transcription, and Two years later, based on the sequence similarity DNA replication and repair. Over the past decade, between ubiquitin and a new 11.5-kDa protein, increasing atention has been given to SUMO- ubiquitin/SMT3, the name SUMO was formally related pathways as potential therapeutic targets. proposed for the frst time (Mahajan et al., 1997). Te Sentrin/SUMO-specifc protease (SENP), Although SUMO modifcation is closely which is responsible for deSUMOylation, has related to the progression of various diseases, such been proposed as a potential therapeutic target as cancers and cardiac disorders, it has aroused in the treatment of cancers and cardiac disorders. increasing atention as a potential therapeutic target Unfortunately, no SENP inhibitor has yet reached in recent years, especially concerning the Sentrin/ clinical trials. In this review, we focus on advances SUMO-specifc protease (SENP), which is the key in the development of SENP inhibitors in the past regulator of deSUMOylation.
    [Show full text]
  • Test Catalogue August 2019
    Test Catalogue August 2019 www.centogene.com/catalogue Table of Contents CENTOGENE CLINICAL DIAGNOSTIC PRODUCTS AND SERVICES › Whole Exome Testing 4 › Whole Genome Testing 5 › Genome wide CNV Analysis 5 › Somatic Mutation Analyses 5 › Biomarker Testing, Biochemical Testing 6 › Prenatal Testing 7 › Additional Services 7 › Metabolic Diseases 9 - 21 › Neurological Diseases 23 - 47 › Ophthalmological Diseases 49 - 55 › Ear, Nose and Throat Diseases 57 - 61 › Bone, Skin and Immune Diseases 63 - 73 › Cardiological Diseases 75 - 79 › Vascular Diseases 81 - 82 › Liver, Kidney and Endocrinological Diseases 83 - 89 › Reproductive Genetics 91 › Haematological Diseases 93 - 96 › Malformation and/or Retardation Syndromes 97 - 107 › Oncogenetics 109 - 113 ® › CentoXome - Sequencing targeting exonic regions of ~20.000 genes Test Test name Description code CentoXome® Solo Medical interpretation/report of WES findings for index 50029 CentoXome® Solo - Variants Raw data; fastQ, BAM, Vcf files along with variant annotated file in xls format for index 50028 CentoXome® Solo - with CNV Medical interpretation/report of WES including CNV findings for index 50103 Medical interpretation/report of WES in index, package including genome wide analyses of structural/ CentoXome® Solo - with sWGS 50104 large CNVs through sWGS Medical interpretation/report of WES in index, package including genome wide analyses of structural/ CentoXome® Solo - with aCGH 750k 50122 large CNVs through 750k microarray Medical interpretation/report of WES in index, package including genome
    [Show full text]
  • Electronic Supplementary Material (ESI) for Metallomics
    Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018 Uniprot Entry name Gene names Protein names Predicted Pattern Number of Iron role EC number Subcellular Membrane Involvement in disease Gene ontology (biological process) Id iron ions location associated 1 P46952 3HAO_HUMAN HAAO 3-hydroxyanthranilate 3,4- H47-E53-H91 1 Fe cation Catalytic 1.13.11.6 Cytoplasm No NAD biosynthetic process [GO:0009435]; neuron cellular homeostasis dioxygenase (EC 1.13.11.6) (3- [GO:0070050]; quinolinate biosynthetic process [GO:0019805]; response to hydroxyanthranilate oxygenase) cadmium ion [GO:0046686]; response to zinc ion [GO:0010043]; tryptophan (3-HAO) (3-hydroxyanthranilic catabolic process [GO:0006569] acid dioxygenase) (HAD) 2 O00767 ACOD_HUMAN SCD Acyl-CoA desaturase (EC H120-H125-H157-H161; 2 Fe cations Catalytic 1.14.19.1 Endoplasmic Yes long-chain fatty-acyl-CoA biosynthetic process [GO:0035338]; unsaturated fatty 1.14.19.1) (Delta(9)-desaturase) H160-H269-H298-H302 reticulum acid biosynthetic process [GO:0006636] (Delta-9 desaturase) (Fatty acid desaturase) (Stearoyl-CoA desaturase) (hSCD1) 3 Q6ZNF0 ACP7_HUMAN ACP7 PAPL PAPL1 Acid phosphatase type 7 (EC D141-D170-Y173-H335 1 Fe cation Catalytic 3.1.3.2 Extracellular No 3.1.3.2) (Purple acid space phosphatase long form) 4 Q96SZ5 AEDO_HUMAN ADO C10orf22 2-aminoethanethiol dioxygenase H112-H114-H193 1 Fe cation Catalytic 1.13.11.19 Unknown No oxidation-reduction process [GO:0055114]; sulfur amino acid catabolic process (EC 1.13.11.19) (Cysteamine
    [Show full text]
  • Characterization of the COPD Alveolar Niche Using Single-Cell RNA Sequencing
    Cell-Specic Transcriptome of the COPD Alveolar Niche Maor Sauler ( [email protected] ) Yale University https://orcid.org/0000-0001-5240-7978 John McDonough Yale School of Medicine Taylor Adams Yale University Neeharika Kotahpalli Yale School of Medicine Jonas Schupp Yale University https://orcid.org/0000-0002-7714-8076 Thomas Barnthaler Yale School of Medicine Matthew Robertson Baylor College of Medicine Cristian Coarfa Coarfa Baylor College of Medicine https://orcid.org/0000-0002-4183-4939 Tao Yang Yale School of Medicine Mauricio Chioccioli Yale School of Medicine Norihito Omote Yale School of Medicine Carlos Cosme Yale University School of Medicine Sergio Poli Mount Sinai Medical Center https://orcid.org/0000-0001-5442-3189 Ehab Ayaub Brigham and Women's Hospital Sarah Chu Brigham and Women's Hospital Klaus Jensen Intomics Pascal Timshel Intomics Jose Gomez Yale University https://orcid.org/0000-0002-6521-6318 Clemente Britto Yale University Micha Sam Raredon Yale University https://orcid.org/0000-0003-1441-6122 Laura Niklason Yale University Jessica Nouws Yale School of Medicine Naftali Kaminski Yale University https://orcid.org/0000-0001-5917-4601 Ivan Rosas Baylor College of Medicine Article Keywords: Chronic Obstructive Pulmonary Disease (COPD), translational research, pathobiology Posted Date: March 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-276195/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Characterization of the COPD Alveolar Niche Using Single-Cell RNA Sequencing. 2 3 Authors: Maor Sauler1*, John E. McDonough1*, Taylor S. Adams1, Neeharika Kothapalli1, Jonas 4 C. Schupp1, Jessica Nouws1, Thomas Barnthaler1,2, Matthew J.
    [Show full text]
  • Mouse Cfap298 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Cfap298 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Cfap298 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cfap298 gene (NCBI Reference Sequence: NM_026502.2 ; Ensembl: ENSMUSG00000022972 ) is located on Mouse chromosome 16. 7 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 7 (Transcript: ENSMUST00000023694). Exon 2~3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Cfap298 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-100B13 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 16.09% of the coding region. The knockout of Exon 2~3 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 3420 bp, and the size of intron 3 for 3'-loxP site insertion: 2407 bp. The size of effective cKO region: ~1746 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 7 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Cfap298 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]