International Journal of Molecular Sciences Review Mitochondria Turnover and Lysosomal Function in Hematopoietic Stem Cell Metabolism Makiko Mochizuki-Kashio 1, Hiroko Shiozaki 2, Toshio Suda 3,4 and Ayako Nakamura-Ishizu 1,* 1 Microanatomy and Developmental Biology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
[email protected] 2 Department of Hematology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
[email protected] 3 Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, Singapore 117599, Singapore;
[email protected] 4 International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan * Correspondence:
[email protected] Abstract: Hematopoietic stem cells (HSCs) reside in a hypoxic microenvironment that enables glycolysis-fueled metabolism and reduces oxidative stress. Nonetheless, metabolic regulation in organelles such as the mitochondria and lysosomes as well as autophagic processes have been implicated as essential for the determination of HSC cell fate. This review encompasses the current understanding of anaerobic metabolism in HSCs as well as the emerging roles of mitochondrial metabolism and lysosomal regulation for hematopoietic homeostasis. Keywords: hematopoietic stem cells; ROS; mitochondria; lysosome; autophagy; folliculin Citation: Mochizuki-Kashio, M.; Shiozaki, H.; Suda, T.; Nakamura-Ishizu, A. Mitochondria 1. Introduction Turnover and Lysosomal Function in Hematopoietic cells consist of a heterogenous group of cells originating from hematopoi- Hematopoietic Stem Cell Metabolism. etic stem cells (HSCs) [1]. HSCs differentiate into multi-potent progenitor cells (MPPs) Int. J. Mol. Sci. 2021, 22, 4627.