Modulation of Mitochondrial DNA Copy Number in a Model of Glioblastoma

Total Page:16

File Type:pdf, Size:1020Kb

Modulation of Mitochondrial DNA Copy Number in a Model of Glioblastoma Sun and St John Epigenetics & Chromatin (2018) 11:53 https://doi.org/10.1186/s13072-018-0223-z Epigenetics & Chromatin RESEARCH Open Access Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA methylation and gene expression of the nuclear genome in tumours Xin Sun1,2 and Justin C. St John1,2* Abstract Background: There are multiple copies of mitochondrial DNA (mtDNA) present in each cell type, and they are strictly regulated in a cell-specifc manner by a group of nuclear-encoded mtDNA-specifc replication factors. This strict regu- lation of mtDNA copy number is mediated by cell-specifc DNA methylation of these replication factors. Glioblastoma multiforme, HSR-GBM1, cells are hyper-methylated and maintain low mtDNA copy number to support their tumori- genic status. We have previously shown that when HSR-GBM1 cells with 50% of their original mtDNA content were inoculated into mice, tumours grew more aggressively than non-depleted cells. However, when the cells possessed only 3% and 0.2% of their original mtDNA content, tumour formation was less frequent and the initiation of tumori- genesis was signifcantly delayed. Importantly, the process of tumorigenesis was dependent on mtDNA copy number being restored to pre-depletion levels. Results: By performing whole genome MeDIP-Seq and RNA-Seq on tumours generated from cells possessing 100%, 50%, 0.3% and 0.2% of their original mtDNA content, we determined that restoration of mtDNA copy number caused signifcant changes to both the nuclear methylome and its transcriptome for each tumour type. The afected genes were specifcally associated with gene networks and pathways involving behaviour, nervous system development, cell diferentiation and regulation of transcription and cellular processes. The mtDNA-specifc replication factors were also modulated. Conclusions: Our results highlight the bidirectional control of the nuclear and mitochondrial genomes through modulation of DNA methylation to control mtDNA copy number, which, in turn, modulates nuclear gene expression during tumorigenesis. Keywords: Mitochondrial DNA, DNA methylation, Gene expression, Tumorigenesis, POLG Background of the electron transfer chain that conducts oxidative Mammalian cells have multiple copies of the mitochon- phosphorylation (OXPHOS) and is the cell’s major gen- drial genome (mtDNA) within each mitochondrion. erator of ATP. It also encodes 22 transfer RNAs and 2 Te human mitochondrial genome is a circular, double- ribosomal RNAs [1]. stranded genome that is 16.6 kb in size. It is essential for mtDNA replication is driven by nuclear-encoded the production of cellular ATP, as it encodes 13 subunits mtDNA-specifc replication factors that translocate to the mitochondrion. Te primary factor is the mtDNA- specifc polymerase, polymerase gamma [2, 3], which is *Correspondence: [email protected] a heterotrimer enzyme composed of a catalytic subunit, 1 Mitochondrial Genetics Group, Hudson Institute of Medical Research, 27‑31 Wright Street, Clayton, VIC 3168, Australia subunit A (POLG), and two supporting subunits, subu- Full list of author information is available at the end of the article nits B (POLG2) [4]. Te process of mtDNA replication © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Sun and St John Epigenetics & Chromatin (2018) 11:53 Page 2 of 18 is also supported by the mitochondrial helicase twin- to establish a new DNA methylation profle directed by kle (TWNK), the single-stranded DNA binding pro- the DNA methyltransferase family (DNMTs), which tein (SSBP1) and the mitochondrial topoisomerase primes naïve cells for cellular diferentiation [27, 28]. (TOP1MT) [5–7]. Tere are several other key factors To this extent, cell-specifc gene expression profles are including mitochondrial transcription factors A (TFAM), established during diferentiation in synchrony with B1 (TFB1M) and B2 (TFB2M), which generate the pre- changes to DNA methylation patterns. Likewise, the cursor transcript used to initiate mtDNA replication DNA methylation status at exon 2 of POLG is a determi- [8, 9]. Furthermore, some upstream regulators of these nant of when this gene is expressed and, in turn, regu- mtDNA replication factors are highly involved in mito- lates mtDNA copy number in a cell-specifc manner [15, chondrial biogenesis and function. Tese include nuclear 16]. Tis is supported by experiments using DNA dem- respiratory factors 1 and 2 (NRF1/2), peroxisome prolif- ethylation agents, such as 5-azacytidine [29] and vitamin erator-activated receptor γ (PPARG) and its co-activator C [30], where modulation of DNA methylation at exon 2 PGC1α (PPARGC1A), the Sirtuin family of genes (SIRT1- of POLG increased mtDNA copy number in HSR-GBM1 3), and the oestrogen-related receptors (ESRRA/B/G) cells derived from a glioblastoma multiforme (GBM) [10–14]. tumour [16, 18, 31]. mtDNA replication is strictly regulated during devel- Te HSR-GBM1 cell line is a high-grade malignant opment and diferentiation, which enables mature cells GBM cell line that is characterized as being similar to to acquire the requisite numbers of mtDNA copy to stem-like neural precursors and is extensively DNA support their specifc functions [15–18]. Initially, this is methylated, which contributes to its tumorigenic gene achieved by pluripotent (naïve) cells having established profle [32, 33]. However, its hyper-methylated profle the mtDNA set point (reviewed in [19]). Tese naïve is not established by the overexpression of the isocitrate cells each possess around 200 copies of mtDNA, which dehydrogenases (IDH1/2) that harbour onco-muta- promotes glycolysis as the favoured form of energy pro- tions, as the alleles for these genes are wild type [34, duction, and cellular proliferation [20]. Tese copies of 35]. Under normal circumstances, IDH enzymes act on mtDNA serve as the initial template for mtDNA replica- the citric acid cycle to generate α-ketoglutarate, which tion, allowing cells to acquire the appropriate numbers of is a co-factor of the TET enzymes that modulate DNA mtDNA copy as they diferentiate into mature cell types demethylation patterns [36–40]. However, overexpres- [16–18, 20, 21]. sion of and mutations to the IDH genes in GBM result Te inability to regulate mtDNA copy number afects in a metabolic switch that produces 2-hydroxyglutarate cellular function and impedes developmental potential. and restricts DNA demethylation induced by the TET For example, oocytes at the metaphase II stage that pos- enzymes [36–40]. Consequently, HSR-GBM1 cells enable sess too few copies of mtDNA frequently fail to fertilize the analysis of modifcations to DNA methylation profles [22–25]. Likewise, certain types of cancer cells exhibit to be undertaken whereby the DNA methylation status low mtDNA copy number and are unable to successfully of the cells is not infuenced by mutations to key regu- complete diferentiation [16, 18]. Indeed, cancer cells lators of DNA demethylation and thus allows the efects mainly rely on aerobic glycolysis for energy production, of mtDNA copy number to be studied independently of which allows for higher rates of cellular proliferation and these infuences. prevents diferentiation from taking place [16]. However, Interestingly, mtDNA depletion of HSR-GBM1 cells when they are induced to diferentiate, they appear to be to varying amounts of mtDNA copy number afected trapped in a ‘pseudo-diferentiated’ state as they had not tumour progression and frequency when these cells were previously maintained the mtDNA set point and, as a inoculated into mice [18]. Progression and frequency result, the nuclear and mitochondrial genomes do not act were greatest in cells depleted to 50% of their original in synchrony [19, 26]. Interestingly, when cancer cells are content, but tumour formation was less frequent and partially depleted of their mtDNA content, they undergo took signifcantly longer when cells possessed only 3% dediferentiation and are then able to replicate mtDNA and 0.2% of their original mtDNA content [18]. Notably, as they undergo diferentiation, suggesting that they mtDNA copy was restored to similar levels during in vivo have re-established the mtDNA set point and synchrony tumorigenesis accompanied by DNA demethylation at between the nuclear and mitochondrial genomes [18]. exon 2 of POLG [17]. During the early stages of development, the nuclear In order to determine whether global DNA methyla- genome undergoes DNA demethylation mediated by tion profles were modulated following the restoration the ten-eleven translocation methylcytosine dioxyge- and maintenance of mtDNA copy number in end point nases (TET enzymes) to erase parental DNA methyla- tumours, we investigated the DNA methylation profles tion profles. De novo DNA methylation then takes place of GBM tumours derived from HSR-GBM1 cells that Sun and St John Epigenetics & Chromatin (2018) 11:53 Page 3 of 18 possessed varying amounts of mtDNA copy number 1.5 100 and exhibited diferent frequencies
Recommended publications
  • The Pathogenetic Role of Β-Cell Mitochondria in Type 2 Diabetes
    236 3 Journal of M Fex et al. Mitochondria in β-cells 236:3 R145–R159 Endocrinology REVIEW The pathogenetic role of β-cell mitochondria in type 2 diabetes Malin Fex1, Lisa M Nicholas1, Neelanjan Vishnu1, Anya Medina1, Vladimir V Sharoyko1, David G Nicholls1, Peter Spégel1,2 and Hindrik Mulder1 1Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden 2Department of Chemistry, Center for Analysis and Synthesis, Lund University, Sweden Correspondence should be addressed to H Mulder: [email protected] Abstract Mitochondrial metabolism is a major determinant of insulin secretion from pancreatic Key Words β-cells. Type 2 diabetes evolves when β-cells fail to release appropriate amounts f TCA cycle of insulin in response to glucose. This results in hyperglycemia and metabolic f coupling signal dysregulation. Evidence has recently been mounting that mitochondrial dysfunction f oxidative phosphorylation plays an important role in these processes. Monogenic dysfunction of mitochondria is a f mitochondrial transcription rare condition but causes a type 2 diabetes-like syndrome owing to β-cell failure. Here, f genetic variation we describe novel advances in research on mitochondrial dysfunction in the β-cell in type 2 diabetes, with a focus on human studies. Relevant studies in animal and cell models of the disease are described. Transcriptional and translational regulation in mitochondria are particularly emphasized. The role of metabolic enzymes and pathways and their impact on β-cell function in type 2 diabetes pathophysiology are discussed. The role of genetic variation in mitochondrial function leading to type 2 diabetes is highlighted.
    [Show full text]
  • Overexpression of the Mitochondrial Methyltransferase TFB1M in The
    HMG Advance Access published October 12, 2015 1 Overexpression of the mitochondrial methyltransferase TFB1M in the mouse does not impact mitoribosomal methylation status or hearing Seungmin Lee1, Simon Rose2, Metodi D. Metodiev3, Lore Becker4,5, Alexandra Vernaleken4,5,6, Thomas Klopstock5,6, Valerie Gailus-Durner4, Helmut Fuchs4, Downloaded from Martin Hrabě de Angelis4,6,7,8, Stephen Douthwaite2, Nils-Göran Larsson1,9,* 1Department of Laboratory Medicine, Karolinska Institutet, Retzius väg 8, 171 77 http://hmg.oxfordjournals.org/ Stockholm, Sweden 2Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark 3INSERM U1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, at GSF Forschungszentrum on October 16, 2015 75015 Paris, France 4German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Munich/Neuherberg, Germany 5Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany 6German Center for Vertigo and Balance Disorders, Munich, Germany 7Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany 8German Center for Diabetes Research (DZD), Ingostaedter Landstr. 1, 85764 Neuherberg, Germany 9Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany © The Author 2015. Published by Oxford
    [Show full text]
  • Dynamic Changes of Muscle Insulin Sensitivity After Metabolic Surgery
    ARTICLE https://doi.org/10.1038/s41467-019-12081-0 OPEN Dynamic changes of muscle insulin sensitivity after metabolic surgery Sofiya Gancheva1,2,3,11, Meriem Ouni 3,4,11, Tomas Jelenik2,3, Chrysi Koliaki1,2,3,5, Julia Szendroedi1,2,3, Frederico G.S. Toledo6, Daniel F. Markgraf 2,3, Dominik H. Pesta 2,3, Lucia Mastrototaro2,3, Elisabetta De Filippo2,3, Christian Herder 1,2,3, Markus Jähnert 3,4, Jürgen Weiss3,7, Klaus Strassburger 3,8, Matthias Schlensak9, Annette Schürmann 3,4,10,12 & Michael Roden 1,2,3,12 1234567890():,; The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocel- lular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accom- panies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity. 1 Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany. 2 Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany. 3 German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
    [Show full text]
  • Morphology, Behavior, and the Sonic Hedgehog Pathway in Mouse Models of Down Syndrome
    MORPHOLOGY, BEHAVIOR, AND THE SONIC HEDGEHOG PATHWAY IN MOUSE MODELS OF DOWN SYNDROME by Tara Dutka A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2014 © 2014 Tara Dutka All Rights Reserved Abstract Down Syndrome (DS) is caused by a triplication of human chromosome 21 (Hsa21). Ts65Dn, a mouse model of DS, contains a freely segregating extra chromosome consisting of the distal portion of mouse chromosome 16 (Mmu16), a region orthologous to part of Hsa21, and a non-Hsa21 orthologous region of mouse chromosome 17. All individuals with DS display some level of craniofacial dysmorphology, brain structural and functional changes, and cognitive impairment. Ts65Dn recapitulates these features of DS and aspects of each of these traits have been linked in Ts65Dn to a reduced response to Sonic Hedgehog (SHH) in trisomic cells. Dp(16)1Yey is a new mouse model of DS which has a direct duplication of the entire Hsa21 orthologous region of Mmu16. Dp(16)1Yey’s creators found similar behavioral deficits to those seen in Ts65Dn. We performed a quantitative investigation of the skull and brain of Dp(16)1Yey as compared to Ts65Dn and found that DS-like changes to brain and craniofacial morphology were similar in both models. Our results validate examination of the genetic basis for these phenotypes in Dp(16)1Yey mice and the genetic links for these phenotypes previously found in Ts65Dn , i.e., reduced response to SHH. Further, we hypothesized that if all trisomic cells show a reduced response to SHH, then up-regulation of the SHH pathway might ameliorate multiple phenotypes.
    [Show full text]
  • PPARGC1A Rs8192678 and NRF1 Rs6949152 Polymorphisms Are Associated with Muscle Fiber Composition in Women
    G C A T T A C G G C A T genes Article PPARGC1A rs8192678 and NRF1 rs6949152 Polymorphisms Are Associated with Muscle Fiber Composition in Women Thomas Yvert 1,2 , Eri Miyamoto-Mikami 1, Takuro Tobina 3 , Keisuke Shiose 4 , Ryo Kakigi 5, Takamasa Tsuzuki 6, Mizuki Takaragawa 1, Noriko Ichinoseki-Sekine 1,7 , Margarita Pérez 2, 8 9, 1 1, Hiroyuki Kobayashi , Hiroaki Tanaka y, Hisashi Naito and Noriyuki Fuku * 1 Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; [email protected] (T.Y.); [email protected] (E.M.-M.); [email protected] (M.T.); [email protected] (N.I.-S.); [email protected] (H.N.) 2 Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; [email protected] 3 Faculty of Nursing and Nutrition, University of Nagasaki, Nagasaki 851-2195, Japan; [email protected] 4 Faculty of Education, University of Miyazaki, Miyazaki 889-2192, Japan; [email protected] 5 Faculty of Management & Information Science, Josai International University, Chiba 283-8555, Japan; [email protected] 6 Faculty of Pharmacy, Meijo University, Aichi 468-8503, Japan; [email protected] 7 Faculty of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan 8 Department of General Medicine, Mito Medical Center, Tsukuba University Hospital, Ibaraki 310-0015, Japan; [email protected] 9 Faculty of Sports and Health Science, Fukuoka University, Fukuoka 814-0180, Japan * Correspondence: [email protected]; Tel.: +81-476-98-1001 (ext. 9203) Deceased 23 April 2018.
    [Show full text]
  • Chromatin Conformation Links Distal Target Genes to CKD Loci
    BASIC RESEARCH www.jasn.org Chromatin Conformation Links Distal Target Genes to CKD Loci Maarten M. Brandt,1 Claartje A. Meddens,2,3 Laura Louzao-Martinez,4 Noortje A.M. van den Dungen,5,6 Nico R. Lansu,2,3,6 Edward E.S. Nieuwenhuis,2 Dirk J. Duncker,1 Marianne C. Verhaar,4 Jaap A. Joles,4 Michal Mokry,2,3,6 and Caroline Cheng1,4 1Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, Rotterdam, The Netherlands; and 2Department of Pediatrics, Wilhelmina Children’s Hospital, 3Regenerative Medicine Center Utrecht, Department of Pediatrics, 4Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, 5Department of Cardiology, Division Heart and Lungs, and 6Epigenomics Facility, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ABSTRACT Genome-wide association studies (GWASs) have identified many genetic risk factors for CKD. However, linking common variants to genes that are causal for CKD etiology remains challenging. By adapting self-transcribing active regulatory region sequencing, we evaluated the effect of genetic variation on DNA regulatory elements (DREs). Variants in linkage with the CKD-associated single-nucleotide polymorphism rs11959928 were shown to affect DRE function, illustrating that genes regulated by DREs colocalizing with CKD-associated variation can be dysregulated and therefore, considered as CKD candidate genes. To identify target genes of these DREs, we used circular chro- mosome conformation capture (4C) sequencing on glomerular endothelial cells and renal tubular epithelial cells. Our 4C analyses revealed interactions of CKD-associated susceptibility regions with the transcriptional start sites of 304 target genes. Overlap with multiple databases confirmed that many of these target genes are involved in kidney homeostasis.
    [Show full text]
  • Overexpression of the Mitochondrial Methyltransferase TFB1M in The
    Human Molecular Genetics, 2015, Vol. 24, No. 25 7286–7294 doi: 10.1093/hmg/ddv427 Advance Access Publication Date: 12 October 2015 Original Article ORIGINAL ARTICLE Overexpression of the mitochondrial methyltransferase TFB1M in the mouse does not impact mitoribosomal methylation status or hearing Seungmin Lee1, Simon Rose2, Metodi D. Metodiev3, Lore Becker4,5, Alexandra Vernaleken4,5,6, Thomas Klopstock5,6, Valerie Gailus-Durner4, Helmut Fuchs4, Martin HraběDe Angelis4,6,7,8, Stephen Douthwaite2 and Nils-Göran Larsson1,9,* 1Department of Laboratory Medicine, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden, 2Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark, 3INSERM U1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France, 4German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Munich/Neuherberg, Germany, 5Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany, 6German Center for Vertigo and Balance Disorders, Munich, Germany, 7Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany, 8German Center for Diabetes Research (DZD), Ingostaedter Landstr. 1, 85764 Neuherberg, Germany and 9Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany *To whom correspondence should be addressed at: Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany. Tel: +49 22137970702; Fax: +49 22137970804; Email: [email protected] Abstract Mitochondrial dysfunction is a well-established cause of sensorineural deafness, but the pathophysiological events are poorly understood.
    [Show full text]
  • The App-Runx1 Region Is Critical for Birth Defects and Electrocardiographic Dysfunctions Observed in a Down Syndrome Mouse Model
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central The App-Runx1 Region Is Critical for Birth Defects and Electrocardiographic Dysfunctions Observed in a Down Syndrome Mouse Model Matthieu Raveau1, Jacques M. Lignon2, Vale´rie Nalesso1, Arnaud Duchon1, Yoram Groner3, Andrew J. Sharp4, Doulaye Dembele1,Ve´ronique Brault1, Yann He´rault1,5,6* 1 Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire, Department of Translational Medicine and Neurogenetics, CNRS, INSERM, Universite´ de Strasbourg, UMR7104, UMR964, Illkirch, France, 2 Immunologie et Embryologie Mole´culaire, CNRS Universite´ d’Orle´ans, UMR6218, Orle´ans, France, 3 Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel, 4 Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America, 5 Transge´ne`se et Archivage d’Animaux Mode`les, CNRS, UPS44, Orle´ans, France, 6 Institut Clinique de la Souris, Illkirch, France Abstract Down syndrome (DS) leads to complex phenotypes and is the main genetic cause of birth defects and heart diseases. The Ts65Dn DS mouse model is trisomic for the distal part of mouse chromosome 16 and displays similar features with post- natal lethality and cardiovascular defects. In order to better understand these defects, we defined electrocardiogram (ECG) with a precordial set-up, and we found conduction defects and modifications in wave shape, amplitudes, and durations in Ts65Dn mice. By using a genetic approach consisting of crossing Ts65Dn mice with Ms5Yah mice monosomic for the App- Runx1 genetic interval, we showed that the Ts65Dn viability and ECG were improved by this reduction of gene copy number.
    [Show full text]
  • Hypoxia-Mediated Regulation of Mitochondrial Transcription Factors: Implications for Hypertensive Renal Physiology
    bioRxiv preprint doi: https://doi.org/10.1101/816470; this version posted January 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Hypoxia-mediated regulation of mitochondrial transcription factors: Implications for hypertensive renal physiology Bhargavi Natarajan1, Vikas Arige1, Abrar A. Khan1, S. Santosh Reddy2,3, Rashmi Santhoshkumar4, B. K. Chandrasekhar Sagar4, Manoj K. Barthwal2 and Nitish R. Mahapatra1* 1 - Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India. 2 - Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. 3 - Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India. 4 - Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India. *Correspondence to Dr. Nitish R. Mahapatra: Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India. [email protected]; Tel: 91-44-2257-4128 Running title: Regulation of mitochondrial transcription factors under acute hypoxic conditions Abbreviations mtTFs, mitochondrial transcription factors; OXPHOS, oxidative phosphorylation; ATP, adenosine triphosphate; ETC, electron transport chain, TiH, tubulointerstitial hypoxia; PGC- 1alpha – peroxisome proliferator activated receptor gamma coactivator-1-alpha; SHR, spontaneously hypertensive rat; WKY, Wistar Kyoto rat; HIF-1α, hypoxia inducible factor- 1α; HREs, hypoxia response elements; mtDNA, mitochondrial DNA; ChIP, chromatin immunoprecipitation. 1 bioRxiv preprint doi: https://doi.org/10.1101/816470; this version posted January 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Epigenetic Regulation of Mitochondrial Quality Control Genes in Multiple Myeloma: a Sequenom Massarray Pilot Investigation on Hmcls
    Journal of Clinical Medicine Communication Epigenetic Regulation of Mitochondrial Quality Control Genes in Multiple Myeloma: A Sequenom MassARRAY Pilot Investigation on HMCLs Patrizia D’Aquila 1,†, Domenica Ronchetti 2,3,† , Maria Eugenia Gallo Cantafio 4, Katia Todoerti 2,3, Elisa Taiana 2,3 , Fernanda Fabiani 5, Alberto Montesanto 1, Antonino Neri 2,3, Giuseppe Passarino 1 , Giuseppe Viglietto 4, Dina Bellizzi 1,‡ and Nicola Amodio 4,*,‡ 1 Department of Cell Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; [email protected] (P.D.); [email protected] (A.M.); [email protected] (G.P.); [email protected] (D.B.) 2 Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; [email protected] (D.R.); [email protected] (K.T.); [email protected] (E.T.); [email protected] (A.N.) 3 Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy 4 Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; [email protected] (M.E.G.C.); [email protected] (G.V.) 5 Medical Genetics, University “Magna Graecia”, 88100 Catanzaro, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0961-3694159 † P.D. and D.R. equally contributed to this work. ‡ D.B. and N.A. equally contributed to this work. Citation: D’Aquila, P.; Ronchetti, D.; Gallo Cantafio, M.E.; Todoerti, K.; Abstract: The mitochondrial quality control network includes several epigenetically-regulated genes Taiana, E.; Fabiani, F.; Montesanto, A.; involved in mitochondrial dynamics, mitophagy, and mitochondrial biogenesis under physiologic Neri, A.; Passarino, G.; Viglietto, G.; conditions.
    [Show full text]
  • TFB1M (NM 016020) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC204643L3V TFB1M (NM_016020) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: TFB1M (NM_016020) Human Tagged ORF Clone Lentiviral Particle Symbol: TFB1M Synonyms: CGI-75; CGI75; mtTFB; mtTFB1 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) ACCN: NM_016020 ORF Size: 1038 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC204643). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_016020.1 RefSeq Size: 2818 bp RefSeq ORF: 1041 bp Locus ID: 51106 UniProt ID: Q8WVM0, E5KTM5 Domains: rADc Protein Families: Transcription Factors MW: 39.5 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 TFB1M (NM_016020) Human Tagged ORF Clone Lentiviral Particle – RC204643L3V Gene Summary: The protein encoded by this gene is a dimethyltransferase that methylates the conserved stem loop of mitochondrial 12S rRNA.
    [Show full text]
  • S41467-018-06347-2.Pdf
    ARTICLE DOI: 10.1038/s41467-018-06347-2 OPEN Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor Yuxuan Guo 1, Blake D. Jardin 1,2, Pingzhu Zhou1, Isha Sethi3, Brynn N. Akerberg1, Christopher N Toepfer 4,5, Yulan Ai1, Yifei Li 1,6, Qing Ma1, Silvia Guatimosim7, Yongwu Hu1,12, Grigor Varuzhanyan 8, Nathan J. VanDusen1, Donghui Zhang1,13, David C. Chan8, Guo-Cheng Yuan 3, Christine E. Seidman 4,9,10, Jonathan G. Seidman4 & William T. Pu 1,11 1234567890():,; After birth, cardiomyocytes (CM) acquire numerous adaptations in order to efficiently pump blood throughout an animal’s lifespan. How this maturation process is regulated and coor- dinated is poorly understood. Here, we perform a CRISPR/Cas9 screen in mice and identify serum response factor (SRF) as a key regulator of CM maturation. Mosaic SRF depletion in neonatal CMs disrupts many aspects of their maturation, including sarcomere expansion, mitochondrial biogenesis, transverse-tubule formation, and cellular hypertrophy. Main- tenance of maturity in adult CMs is less dependent on SRF. This stage-specific activity is associated with developmentally regulated SRF chromatin occupancy and transcriptional regulation. SRF directly activates genes that regulate sarcomere assembly and mitochondrial dynamics. Perturbation of sarcomere assembly but not mitochondrial dynamics recapitulates SRF knockout phenotypes. SRF overexpression also perturbs CM maturation. Together, these data indicate that carefully balanced SRF activity is essential to promote CM maturation through a hierarchy of cellular processes orchestrated by sarcomere assembly. 1 Department of Cardiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA. 2 Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
    [Show full text]