25 Continuous-Time Markov Chains
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Numerical Solution of Jump-Diffusion LIBOR Market Models
Finance Stochast. 7, 1–27 (2003) c Springer-Verlag 2003 Numerical solution of jump-diffusion LIBOR market models Paul Glasserman1, Nicolas Merener2 1 403 Uris Hall, Graduate School of Business, Columbia University, New York, NY 10027, USA (e-mail: [email protected]) 2 Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA (e-mail: [email protected]) Abstract. This paper develops, analyzes, and tests computational procedures for the numerical solution of LIBOR market models with jumps. We consider, in par- ticular, a class of models in which jumps are driven by marked point processes with intensities that depend on the LIBOR rates themselves. While this formulation of- fers some attractive modeling features, it presents a challenge for computational work. As a first step, we therefore show how to reformulate a term structure model driven by marked point processes with suitably bounded state-dependent intensities into one driven by a Poisson random measure. This facilitates the development of discretization schemes because the Poisson random measure can be simulated with- out discretization error. Jumps in LIBOR rates are then thinned from the Poisson random measure using state-dependent thinning probabilities. Because of discon- tinuities inherent to the thinning process, this procedure falls outside the scope of existing convergence results; we provide some theoretical support for our method through a result establishing first and second order convergence of schemes that accommodates thinning but imposes stronger conditions on other problem data. The bias and computational efficiency of various schemes are compared through numerical experiments. Key words: Interest rate models, Monte Carlo simulation, market models, marked point processes JEL Classification: G13, E43 Mathematics Subject Classification (1991): 60G55, 60J75, 65C05, 90A09 The authors thank Professor Steve Kou for helpful comments and discussions. -
Superprocesses and Mckean-Vlasov Equations with Creation of Mass
Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es. -
A Switching Self-Exciting Jump Diffusion Process for Stock Prices Donatien Hainaut, Franck Moraux
A switching self-exciting jump diffusion process for stock prices Donatien Hainaut, Franck Moraux To cite this version: Donatien Hainaut, Franck Moraux. A switching self-exciting jump diffusion process for stock prices. Annals of Finance, Springer Verlag, 2019, 15 (2), pp.267-306. 10.1007/s10436-018-0340-5. halshs- 01909772 HAL Id: halshs-01909772 https://halshs.archives-ouvertes.fr/halshs-01909772 Submitted on 31 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A switching self-exciting jump diusion process for stock prices Donatien Hainaut∗ ISBA, Université Catholique de Louvain, Belgium Franck Morauxy Univ. Rennes 1 and CREM May 25, 2018 Abstract This study proposes a new Markov switching process with clustering eects. In this approach, a hidden Markov chain with a nite number of states modulates the parameters of a self-excited jump process combined to a geometric Brownian motion. Each regime corresponds to a particular economic cycle determining the expected return, the diusion coecient and the long-run frequency of clustered jumps. We study rst the theoretical properties of this process and we propose a sequential Monte-Carlo method to lter the hidden state variables. -
Poisson Processes Stochastic Processes
Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written as −λt f (t) = λe 1(0;+1)(t) We summarize the above by T ∼ exp(λ): The cumulative distribution function of a exponential random variable is −λt F (t) = P(T ≤ t) = 1 − e 1(0;+1)(t) And the tail, expectation and variance are P(T > t) = e−λt ; E[T ] = λ−1; and Var(T ) = E[T ] = λ−2 The exponential random variable has the lack of memory property P(T > t + sjT > t) = P(T > s) Exponencial races In what follows, T1;:::; Tn are independent r.v., with Ti ∼ exp(λi ). P1: min(T1;:::; Tn) ∼ exp(λ1 + ··· + λn) . P2 λ1 P(T1 < T2) = λ1 + λ2 P3: λi P(Ti = min(T1;:::; Tn)) = λ1 + ··· + λn P4: If λi = λ and Sn = T1 + ··· + Tn ∼ Γ(n; λ). That is, Sn has probability density function (λs)n−1 f (s) = λe−λs 1 (s) Sn (n − 1)! (0;+1) The Poisson Process as a renewal process Let T1; T2;::: be a sequence of i.i.d. nonnegative r.v. (interarrival times). Define the arrival times Sn = T1 + ··· + Tn if n ≥ 1 and S0 = 0: The process N(t) = maxfn : Sn ≤ tg; is called Renewal Process. If the common distribution of the times is the exponential distribution with rate λ then process is called Poisson Process of with rate λ. Lemma. N(t) ∼ Poisson(λt) and N(t + s) − N(s); t ≥ 0; is a Poisson process independent of N(s); t ≥ 0 The Poisson Process as a L´evy Process A stochastic process fX (t); t ≥ 0g is a L´evyProcess if it verifies the following properties: 1. -
A Stochastic Processes and Martingales
A Stochastic Processes and Martingales A.1 Stochastic Processes Let I be either IINorIR+.Astochastic process on I with state space E is a family of E-valued random variables X = {Xt : t ∈ I}. We only consider examples where E is a Polish space. Suppose for the moment that I =IR+. A stochastic process is called cadlag if its paths t → Xt are right-continuous (a.s.) and its left limits exist at all points. In this book we assume that every stochastic process is cadlag. We say a process is continuous if its paths are continuous. The above conditions are meant to hold with probability 1 and not to hold pathwise. A.2 Filtration and Stopping Times The information available at time t is expressed by a σ-subalgebra Ft ⊂F.An {F ∈ } increasing family of σ-algebras t : t I is called a filtration.IfI =IR+, F F F we call a filtration right-continuous if t+ := s>t s = t. If not stated otherwise, we assume that all filtrations in this book are right-continuous. In many books it is also assumed that the filtration is complete, i.e., F0 contains all IIP-null sets. We do not assume this here because we want to be able to change the measure in Chapter 4. Because the changed measure and IIP will be singular, it would not be possible to extend the new measure to the whole σ-algebra F. A stochastic process X is called Ft-adapted if Xt is Ft-measurable for all t. If it is clear which filtration is used, we just call the process adapted.The {F X } natural filtration t is the smallest right-continuous filtration such that X is adapted. -
A Class of Measure-Valued Markov Chains and Bayesian Nonparametrics
Bernoulli 18(3), 2012, 1002–1030 DOI: 10.3150/11-BEJ356 A class of measure-valued Markov chains and Bayesian nonparametrics STEFANO FAVARO1, ALESSANDRA GUGLIELMI2 and STEPHEN G. WALKER3 1Universit`adi Torino and Collegio Carlo Alberto, Dipartimento di Statistica e Matematica Ap- plicata, Corso Unione Sovietica 218/bis, 10134 Torino, Italy. E-mail: [email protected] 2Politecnico di Milano, Dipartimento di Matematica, P.zza Leonardo da Vinci 32, 20133 Milano, Italy. E-mail: [email protected] 3University of Kent, Institute of Mathematics, Statistics and Actuarial Science, Canterbury CT27NZ, UK. E-mail: [email protected] Measure-valued Markov chains have raised interest in Bayesian nonparametrics since the seminal paper by (Math. Proc. Cambridge Philos. Soc. 105 (1989) 579–585) where a Markov chain having the law of the Dirichlet process as unique invariant measure has been introduced. In the present paper, we propose and investigate a new class of measure-valued Markov chains defined via exchangeable sequences of random variables. Asymptotic properties for this new class are derived and applications related to Bayesian nonparametric mixture modeling, and to a generalization of the Markov chain proposed by (Math. Proc. Cambridge Philos. Soc. 105 (1989) 579–585), are discussed. These results and their applications highlight once again the interplay between Bayesian nonparametrics and the theory of measure-valued Markov chains. Keywords: Bayesian nonparametrics; Dirichlet process; exchangeable sequences; linear functionals -
Particle Filtering-Based Maximum Likelihood Estimation for Financial Parameter Estimation
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Spiral - Imperial College Digital Repository Particle Filtering-based Maximum Likelihood Estimation for Financial Parameter Estimation Jinzhe Yang Binghuan Lin Wayne Luk Terence Nahar Imperial College & SWIP Techila Technologies Ltd Imperial College SWIP London & Edinburgh, UK Tampere University of Technology London, UK London, UK [email protected] Tampere, Finland [email protected] [email protected] [email protected] Abstract—This paper presents a novel method for estimating result, which cannot meet runtime requirement in practice. In parameters of financial models with jump diffusions. It is a addition, high performance computing (HPC) technologies are Particle Filter based Maximum Likelihood Estimation process, still new to the finance industry. We provide a PF based MLE which uses particle streams to enable efficient evaluation of con- straints and weights. We also provide a CPU-FPGA collaborative solution to estimate parameters of jump diffusion models, and design for parameter estimation of Stochastic Volatility with we utilise HPC technology to speedup the estimation scheme Correlated and Contemporaneous Jumps model as a case study. so that it would be acceptable for practical use. The result is evaluated by comparing with a CPU and a cloud This paper presents the algorithm development, as well computing platform. We show 14 times speed up for the FPGA as the pipeline design solution in FPGA technology, of PF design compared with the CPU, and similar speedup but better convergence compared with an alternative parallelisation scheme based MLE for parameter estimation of Stochastic Volatility using Techila Middleware on a multi-CPU environment. -
Introduction to Stochastic Processes - Lecture Notes (With 33 Illustrations)
Introduction to Stochastic Processes - Lecture Notes (with 33 illustrations) Gordan Žitković Department of Mathematics The University of Texas at Austin Contents 1 Probability review 4 1.1 Random variables . 4 1.2 Countable sets . 5 1.3 Discrete random variables . 5 1.4 Expectation . 7 1.5 Events and probability . 8 1.6 Dependence and independence . 9 1.7 Conditional probability . 10 1.8 Examples . 12 2 Mathematica in 15 min 15 2.1 Basic Syntax . 15 2.2 Numerical Approximation . 16 2.3 Expression Manipulation . 16 2.4 Lists and Functions . 17 2.5 Linear Algebra . 19 2.6 Predefined Constants . 20 2.7 Calculus . 20 2.8 Solving Equations . 22 2.9 Graphics . 22 2.10 Probability Distributions and Simulation . 23 2.11 Help Commands . 24 2.12 Common Mistakes . 25 3 Stochastic Processes 26 3.1 The canonical probability space . 27 3.2 Constructing the Random Walk . 28 3.3 Simulation . 29 3.3.1 Random number generation . 29 3.3.2 Simulation of Random Variables . 30 3.4 Monte Carlo Integration . 33 4 The Simple Random Walk 35 4.1 Construction . 35 4.2 The maximum . 36 1 CONTENTS 5 Generating functions 40 5.1 Definition and first properties . 40 5.2 Convolution and moments . 42 5.3 Random sums and Wald’s identity . 44 6 Random walks - advanced methods 48 6.1 Stopping times . 48 6.2 Wald’s identity II . 50 6.3 The distribution of the first hitting time T1 .......................... 52 6.3.1 A recursive formula . 52 6.3.2 Generating-function approach . -
Markov Process Duality
Markov Process Duality Jan M. Swart Luminy, October 23 and 24, 2013 Jan M. Swart Markov Process Duality Markov Chains S finite set. RS space of functions f : S R. ! S For probability kernel P = (P(x; y))x;y2S and f R define left and right multiplication as 2 X X Pf (x) := P(x; y)f (y) and fP(x) := f (y)P(y; x): y y (I do not distinguish row and column vectors.) Def Chain X = (Xk )k≥0 of S-valued r.v.'s is Markov chain with transition kernel P and state space S if S E f (Xk+1) (X0;:::; Xk ) = Pf (Xk ) a:s: (f R ) 2 P (X0;:::; Xk ) = (x0;:::; xk ) , = P[X0 = x0]P(x0; x1) P(xk−1; xk ): ··· µ µ µ Write P ; E for process with initial law µ = P [X0 ]. x δx x 2 · P := P with δx (y) := 1fx=yg. E similar. Jan M. Swart Markov Process Duality Markov Chains Set k µ k x µk := µP (x) = P [Xk = x] and fk := P f (x) = E [f (Xk )]: Then the forward and backward equations read µk+1 = µk P and fk+1 = Pfk : In particular π invariant law iff πP = π. Function h harmonic iff Ph = h h(Xk ) martingale. , Jan M. Swart Markov Process Duality Random mapping representation (Zk )k≥1 i.i.d. with common law ν, take values in (E; ). φ : S E S measurable E × ! P(x; y) = P[φ(x; Z1) = y]: Random mapping representation (E; ; ν; φ) always exists, highly non-unique. -
Detection of Time Reversibility in Time Series by Ordinal Patterns Analysis J
Detection of time reversibility in time series by ordinal patterns analysis J. H. Mart´ınez,1, a) J. L. Herrera-Diestra,2 and M. Chavez3 1)INSERM-UM1127, Sorbonne Universit´e,Institut du Cerveau et de la Moelle Epini`ere. France 2)ICTP South American Institute for Fundamental Research, IFT-UNESP. Brazil 3)CNRS UMR7225, H^opitalPiti´eSalp^etri`ere. France (Dated: 13 September 2018) Time irreversibility is a common signature of nonlinear processes, and a fundamental property of non- equilibrium systems driven by non-conservative forces. A time series is said to be reversible if its statistical properties are invariant regardless of the direction of time. Here we propose the Time Reversibility from Ordinal Patterns method (TiROP) to assess time-reversibility from an observed finite time series. TiROP captures the information of scalar observations in time forward, as well as its time-reversed counterpart by means of ordinal patterns. The method compares both underlying information contents by quantifying its (dis)-similarity via Jensen-Shannon divergence. The statistic is contrasted with a population of divergences coming from a set of surrogates to unveil the temporal nature and its involved time scales. We tested TiROP in different synthetic and real, linear and non linear time series, juxtaposed with results from the classical Ramsey's time reversibility test. Our results depict a novel, fast-computation, and fully data-driven method- ology to assess time-reversibility at different time scales with no further assumptions over data. This approach adds new insights about the current non-linear analysis techniques, and also could shed light on determining new physiological biomarkers of high reliability and computational efficiency. -
1 Introduction Branching Mechanism in a Superprocess from a Branching
数理解析研究所講究録 1157 巻 2000 年 1-16 1 An example of random snakes by Le Gall and its applications 渡辺信三 Shinzo Watanabe, Kyoto University 1 Introduction The notion of random snakes has been introduced by Le Gall ([Le 1], [Le 2]) to construct a class of measure-valued branching processes, called superprocesses or continuous state branching processes ([Da], [Dy]). A main idea is to produce the branching mechanism in a superprocess from a branching tree embedded in excur- sions at each different level of a Brownian sample path. There is no clear notion of particles in a superprocess; it is something like a cloud or mist. Nevertheless, a random snake could provide us with a clear picture of historical or genealogical developments of”particles” in a superprocess. ” : In this note, we give a sample pathwise construction of a random snake in the case when the underlying Markov process is a Markov chain on a tree. A simplest case has been discussed in [War 1] and [Wat 2]. The construction can be reduced to this case locally and we need to consider a recurrence family of stochastic differential equations for reflecting Brownian motions with sticky boundaries. A special case has been already discussed by J. Warren [War 2] with an application to a coalescing stochastic flow of piece-wise linear transformations in connection with a non-white or non-Gaussian predictable noise in the sense of B. Tsirelson. 2 Brownian snakes Throughout this section, let $\xi=\{\xi(t), P_{x}\}$ be a Hunt Markov process on a locally compact separable metric space $S$ endowed with a metric $d_{S}(\cdot, *)$ . -
Probability Cheatsheet V2.0 Thinking Conditionally Law of Total Probability (LOTP)
Probability Cheatsheet v2.0 Thinking Conditionally Law of Total Probability (LOTP) Let B1;B2;B3; :::Bn be a partition of the sample space (i.e., they are Compiled by William Chen (http://wzchen.com) and Joe Blitzstein, Independence disjoint and their union is the entire sample space). with contributions from Sebastian Chiu, Yuan Jiang, Yuqi Hou, and Independent Events A and B are independent if knowing whether P (A) = P (AjB )P (B ) + P (AjB )P (B ) + ··· + P (AjB )P (B ) Jessy Hwang. Material based on Joe Blitzstein's (@stat110) lectures 1 1 2 2 n n A occurred gives no information about whether B occurred. More (http://stat110.net) and Blitzstein/Hwang's Introduction to P (A) = P (A \ B1) + P (A \ B2) + ··· + P (A \ Bn) formally, A and B (which have nonzero probability) are independent if Probability textbook (http://bit.ly/introprobability). Licensed and only if one of the following equivalent statements holds: For LOTP with extra conditioning, just add in another event C! under CC BY-NC-SA 4.0. Please share comments, suggestions, and errors at http://github.com/wzchen/probability_cheatsheet. P (A \ B) = P (A)P (B) P (AjC) = P (AjB1;C)P (B1jC) + ··· + P (AjBn;C)P (BnjC) P (AjB) = P (A) P (AjC) = P (A \ B1jC) + P (A \ B2jC) + ··· + P (A \ BnjC) P (BjA) = P (B) Last Updated September 4, 2015 Special case of LOTP with B and Bc as partition: Conditional Independence A and B are conditionally independent P (A) = P (AjB)P (B) + P (AjBc)P (Bc) given C if P (A \ BjC) = P (AjC)P (BjC).