Investigation of the Sialidases of Periodontal Pathogens

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of the Sialidases of Periodontal Pathogens Investigation of the Sialidases of Periodontal Pathogens By: Andrew Frey A thesis submitted for the degree of Doctor of Philosophy The University of Sheffield School of Clinical Dentistry Unit of Oral and Maxillofacial Pathology 31/08/2016 1 I. Contents II. List of Figures ................................................................................................................... 6 III. List of Tables .............................................................................................................. 10 IV. Acknowledgements .................................................................................................... 11 V. Abbreviations ................................................................................................................. 12 VI. Abstract ...................................................................................................................... 14 1 Chapter 1: Introduction ................................................................................................. 16 1.1 Teeth and major oral diseases ............................................................................... 16 1.1.1 Periodontitis ................................................................................................... 16 1.1.2 Periodontitis-A Considerable Burden ............................................................ 18 1.2 Periodontitis-Aetiology .......................................................................................... 19 1.2.1 Bacterial Colonisation of the Periodontium and its Role in Periodontitis ..... 19 1.2.2 The Importance of Inflammation in Periodontitis ......................................... 23 1.2.3 Other Factors in Periodontitis Onset and Progression .................................. 37 1.3 Periodontitis-Systemic influences .......................................................................... 38 1.3.1 Head and Neck Cancer ................................................................................... 38 1.3.2 Heart Disease and Atherosclerosis ................................................................ 39 1.3.3 Rheumatoid Arthritis...................................................................................... 39 1.4 Treatment of Periodontitis .................................................................................... 40 1.5 Virulence Factors of the Periodontal Pathogens ................................................... 41 1.5.1 Porphyromonas gingivalis .............................................................................. 41 1.5.2 Tannerella forsythia ....................................................................................... 43 1.5.3 Fusobacterium nucleatum.............................................................................. 46 1.5.4 Biofilm Formation .......................................................................................... 48 1.6 The Anti-Virulence Approach ................................................................................. 51 1.7 Sialic Acid, Sialidases, and Virulence ...................................................................... 52 1.7.1 Sialic Acid ....................................................................................................... 52 1.7.2 Sialidases ........................................................................................................ 53 1.7.3 Sialic Acid in the Oral Cavity ........................................................................... 56 1.7.4 Sialic Acid and the Immune System ............................................................... 56 1.7.5 Sialidases of Periodontal Pathogens .............................................................. 58 2 1.8 Sialidase Inhibition ................................................................................................. 63 1.8.1 Viral Sialidase-The Driving Force Behind Inhibitor Development .................. 63 1.8.2 Sialidase Inhibitors ......................................................................................... 63 1.8.3 Sialidase Inhibition-Potential Impact on Virulence ........................................ 64 1.8.4 Sialidase Inhibition-Impact on the Host Immune Response .......................... 65 1.8.5 Aims and Hypothesis-The Prospect of Sialidase Inhibitors as a Treatment for Periodontitis ................................................................................................................... 65 2 Chapter 2: Biochemical Characterisation of Periodontal Pathogen Sialidases .............. 68 2.1 Introduction-The Sialidases of P. gingivalis and T. forsythia ................................. 68 2.2 Materials and Methods- Biochemical Characterisation of Periodontal Pathogen Sialidases ............................................................................................................................ 69 2.2.1 Bacterial Strains, Growth Conditions, and Plasmids ...................................... 69 2.2.2 Sialidase Activity of Whole Bacteria............................................................... 71 2.2.3 DNA Extraction ............................................................................................... 72 2.2.4 Polymerase Chain Reaction (PCR) .................................................................. 72 2.2.5 Restriction Endonuclease Digestion of Plasmid DNA or PCR products .......... 73 2.2.6 DNA Ligation .................................................................................................. 73 2.2.7 Bacterial Transformation ............................................................................... 74 2.2.8 Protein Production and Purification by Affinity Chromatography................. 75 2.2.9 BCA Assays ..................................................................................................... 77 2.2.10 Sodium Dodecyl Sulphate-Poly Acrylamide Gel Electrophoresis (SDS-PAGE) 78 2.2.11 Biochemical Studies of Sialidases and Sialidase Subunits .............................. 79 2.2.12 Structural Characterisation of NanH -Crystal Trials ....................................... 82 2.3 Results .................................................................................................................... 83 2.3.1 Bioinformatic Analysis of NanH and SiaPG .................................................... 83 2.3.2 Production of SiaPG-CBM, SiaPG-CT, and NanH-CT ..................................... 102 2.3.3 Production of Periodontal Pathogen Sialidases: NanH and SiaPG ............... 116 2.3.4 Expression and Purification of Other Enzymes ............................................ 127 2.3.5 Sialidase Protein Production-a Summary..................................................... 129 2.3.6 Biochemical Characterisation of Purified Periodontal Pathogen Sialidases 131 2.3.7 Inhibition of Periodontal Pathogen Sialidases by Zanamivir ....................... 148 2.4 Discussion ............................................................................................................. 156 2.4.1 pH, Pathogen Sialidases, and Periodontitis ................................................. 156 2.4.2 The Importance of Sialic Acid Linkage preference for T. forsythia .............. 159 3 2.4.3 The Importance of Sialyl Lewis Ligands for T. forsythia ............................... 162 2.4.4 T. forsythia NanH- the RIP Motif of the Catalytic Domain is Essential for Catalysis, and the N-terminal CBM is involved in Ligand Binding ................................ 162 2.4.5 Zanamivir Inhibits Periodontal Pathogen Sialidases .................................... 163 2.5 Summary .............................................................................................................. 164 3 Chapter 3: Investigating the Targeting of Host Sialoglycans by Periodontal Pathogens- the Effects on Growth and Biofilm Formation, and the Impact of Zanamivir ..................... 168 3.1 Introduction ......................................................................................................... 168 3.2 Materials and Methods- Investigating the Targeting of Host Sialoglycans by Periodontal Pathogens- the effects on Growth and Biofilm Formation, and the Impact of Zanamivir ......................................................................................................................... 171 3.2.1 Enzyme synergy in Sialic Acid Release from Salivary Mucin ........................ 171 3.2.2 Bacterial Strains and Growth Conditions ..................................................... 171 3.2.3 Collection and preparation of Human Saliva ............................................... 172 3.2.4 Culture of Periodontal Pathogens on Defined Media Supplemented with Host Sialic Acid Sources ............................................................................................... 173 3.2.5 Biofilm Assays............................................................................................... 173 3.3 Results .................................................................................................................. 174 3.3.1 Release of Sialic Acid from Mucin glycoproteins by Periodontal Pathogen Sialidases is enhanced by T. forsythia Sialate-O-Acetylesterase ................................. 174 3.3.2 P. gingivalis is Capable of Growth Utilising Host Glycoproteins as Sole Carbon and Nitrogen Sources, and this is Enhanced by NanS .................................................. 178 3.3.3 Biofilm Formation of Periodontal Pathogens on Host Glycoproteins, and
Recommended publications
  • Downloaded from 3
    Philips et al. BMC Genomics (2020) 21:402 https://doi.org/10.1186/s12864-020-06810-9 RESEARCH ARTICLE Open Access Analysis of oral microbiome from fossil human remains revealed the significant differences in virulence factors of modern and ancient Tannerella forsythia Anna Philips1, Ireneusz Stolarek1, Luiza Handschuh1, Katarzyna Nowis1, Anna Juras2, Dawid Trzciński2, Wioletta Nowaczewska3, Anna Wrzesińska4, Jan Potempa5,6 and Marek Figlerowicz1,7* Abstract Background: Recent advances in the next-generation sequencing (NGS) allowed the metagenomic analyses of DNA from many different environments and sources, including thousands of years old skeletal remains. It has been shown that most of the DNA extracted from ancient samples is microbial. There are several reports demonstrating that the considerable fraction of extracted DNA belonged to the bacteria accompanying the studied individuals before their death. Results: In this study we scanned 344 microbiomes from 1000- and 2000- year-old human teeth. The datasets originated from our previous studies on human ancient DNA (aDNA) and on microbial DNA accompanying human remains. We previously noticed that in many samples infection-related species have been identified, among them Tannerella forsythia, one of the most prevalent oral human pathogens. Samples containing sufficient amount of T. forsythia aDNA for a complete genome assembly were selected for thorough analyses. We confirmed that the T. forsythia-containing samples have higher amounts of the periodontitis-associated species than the control samples. Despites, other pathogens-derived aDNA was found in the tested samples it was too fragmented and damaged to allow any reasonable reconstruction of these bacteria genomes. The anthropological examination of ancient skulls from which the T.
    [Show full text]
  • Oral Microbiota Features in Subjects with Down Syndrome and Periodontal Diseases: a Systematic Review
    International Journal of Molecular Sciences Review Oral Microbiota Features in Subjects with Down Syndrome and Periodontal Diseases: A Systematic Review Maria Contaldo 1,* , Alberta Lucchese 1, Antonio Romano 1 , Fedora Della Vella 2 , Dario Di Stasio 1 , Rosario Serpico 1 and Massimo Petruzzi 2 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; [email protected] (A.L.); [email protected] (A.R.); [email protected] (D.D.S.); [email protected] (R.S.) 2 Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; [email protected] (F.D.V.); [email protected] (M.P.) * Correspondence: [email protected] or [email protected]; Tel.: +39-3204876058 Abstract: Down syndrome (DS) is a genetic disorder associated with early-onset periodontitis and other periodontal diseases (PDs). The present work aimed to systematically review the scientific literature reporting studies in vivo on oral microbiota features in subjects with DS and related periodontal health and to highlight any correlation and difference with subjects not affected by DS, with and without PDs. PubMed, Web of Science, Scopus and Cochrane were searched for relevant studies in May 2021. The participants were subjects affected by Down syndrome (DS) with and without periodontal diseases; the study compared subjects with periodontal diseases but not affected by DS, and DS without periodontal diseases; the outcomes were the differences in oral microbiota/periodontopathogen bacterial composition among subjects considered; the study Citation: Contaldo, M.; Lucchese, A.; design was a systematic review.
    [Show full text]
  • Prevotella Intermedia
    The principles of identification of oral anaerobic pathogens Dr. Edit Urbán © by author Department of Clinical Microbiology, Faculty of Medicine ESCMID Online University of Lecture Szeged, Hungary Library Oral Microbiological Ecology Portrait of Antonie van Leeuwenhoek (1632–1723) by Jan Verkolje Leeuwenhook in 1683-realized, that the film accumulated on the surface of the teeth contained diverse structural elements: bacteria Several hundred of different© bacteria,by author fungi and protozoans can live in the oral cavity When these organisms adhere to some surface they form an organizedESCMID mass called Online dental plaque Lecture or biofilm Library © by author ESCMID Online Lecture Library Gram-negative anaerobes Non-motile rods: Motile rods: Bacteriodaceae Selenomonas Prevotella Wolinella/Campylobacter Porphyromonas Treponema Bacteroides Mitsuokella Cocci: Veillonella Fusobacterium Leptotrichia © byCapnophyles: author Haemophilus A. actinomycetemcomitans ESCMID Online C. hominis, Lecture Eikenella Library Capnocytophaga Gram-positive anaerobes Rods: Cocci: Actinomyces Stomatococcus Propionibacterium Gemella Lactobacillus Peptostreptococcus Bifidobacterium Eubacterium Clostridium © by author Facultative: Streptococcus Rothia dentocariosa Micrococcus ESCMIDCorynebacterium Online LectureStaphylococcus Library © by author ESCMID Online Lecture Library Microbiology of periodontal disease The periodontium consist of gingiva, periodontial ligament, root cementerum and alveolar bone Bacteria cause virtually all forms of inflammatory
    [Show full text]
  • Identification and Antimicrobial Susceptibility Testing of Anaerobic
    antibiotics Review Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Márió Gajdács 1,*, Gabriella Spengler 1 and Edit Urbán 2 1 Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; [email protected] 2 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-62-342-843 Academic Editor: Leonard Amaral Received: 28 September 2017; Accepted: 3 November 2017; Published: 7 November 2017 Abstract: Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance
    [Show full text]
  • The Role of Tannerella Forsythia and Porphyromonas Gingivalis in Pathogenesis of Esophageal Cancer Bartosz Malinowski1, Anna Węsierska1, Klaudia Zalewska1, Maya M
    Malinowski et al. Infectious Agents and Cancer (2019) 14:3 https://doi.org/10.1186/s13027-019-0220-2 REVIEW Open Access The role of Tannerella forsythia and Porphyromonas gingivalis in pathogenesis of esophageal cancer Bartosz Malinowski1, Anna Węsierska1, Klaudia Zalewska1, Maya M. Sokołowska1, Wiktor Bursiewicz1*, Maciej Socha3, Mateusz Ozorowski1, Katarzyna Pawlak-Osińska2 and Michał Wiciński1 Abstract Tannerella forsythia and Porphyromonas gingivalis are anaerobic, Gram-negative bacterial species which have been implicated in periodontal diseases as a part of red complex of periodontal pathogens. Esophageal cancer is the eight most common cause of cancer deaths worldwide. Higher rates of esophageal cancer cases may be attributed to lifestyle factors such as: diet, obesity, alcohol and tobacco use. Moreover, the presence of oral P. gingivalis and T. forsythia has been found to be associated with an increased risk of esophageal cancer. Our review describes theroleofP. gingivalis and T. forsythia in signaling pathways responsible for cancer development. It has been shown that T. forsythia may induce pro-inflammatory cytokines such as IL-1β and IL-6 by CD4 + T helper cells and TNF-α. Moreover, gingipain K produced by P. gingivalis, affects hosts immune system by degradation of immunoglobulins and complement system (C3 and C5 components). Discussed bacteria are responsible for overexpression of MMP-2, MMP-2 and GLUT transporters. Keywords: Esophageal cancer, Tannerella forsythia, Porphyromonas gingivalis Background of cases) and adenocarcinoma (10%). Currently, there is a Cancer is a significant problem in the modern world. It downward trend in the incidence of squamous cell carcin- concerns the entire population. In developed countries, oma and an increase in adenocarcinoma [1].
    [Show full text]
  • Characterization of Sialidase Enzymes of Gardnerella Spp
    Characterization of sialidase enzymes of Gardnerella spp. A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Master of Science In the Department of Veterinary Microbiology University of Saskatchewan Saskatoon By SHAKYA PRASHASTHI KURUKULASURIYA © Copyright Shakya P. Kurukulasuriya, April 2020. All rights reserved. PERMISSION TO USE In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis/dissertation work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis/dissertation. Requests for permission to copy or to make other uses of materials in this thesis/dissertation in whole or part should be addressed to: Head of the Department of Veterinary Microbiology University of Saskatchewan Saskatoon, Saskatchewan S7N 5B4 Canada Or Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan S7N 5C9 i Abstract Bacterial Vaginosis (BV) is a condition that occurs when the healthy, Lactobacillus spp.
    [Show full text]
  • Comparative Genomic Analysis of the Emerging Pathogen
    bioRxiv preprint doi: https://doi.org/10.1101/468462; this version posted November 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Comparative genomic analysis of the emerging pathogen Streptococcus 2 pseudopneumoniae: novel insights into virulence determinants and 3 identification of a novel species-specific molecular marker 4 5 Geneviève Garriss1†, Priyanka Nannapaneni1†, Alexandra S. Simões2, Sarah Browall1, Raquel Sá- 6 Leão2, 3, Herman Goossens4, Herminia de Lencastre2, 5, Birgitta Henriques-Normark 1, 6, 7 7 8 9 10 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 11 Stockholm, Sweden 12 2Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica Antonio Xavier, 13 Universidade Nova de Lisboa, Oeiras, Portugal 14 3Department of Plant Biology, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal. 15 4Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), 16 University of Antwerp, Antwerp Belgium 17 5Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, 18 USA 19 6Public Health Agency Sweden, SE-171 82 Solna, Sweden 20 7Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University 21 Hospital, Solna, Sweden. 22 23 †These authors contributed equally. 24 25 Corresponding author: Birgitta Henriques-Normark, Professor, MD, Karolinska University hospital 26 and Karolinska Institutet, MTC, Nobels väg 16, SE-171 77 Stockholm, Sweden, 27 Email: [email protected] 28 29 30 bioRxiv preprint doi: https://doi.org/10.1101/468462; this version posted November 12, 2018.
    [Show full text]
  • Trichomonas Vaginalis Vast Bspa-Like Gene Family: Evidence for Functional
    Noël et al. BMC Genomics 2010, 11:99 http://www.biomedcentral.com/1471-2164/11/99 RESEARCH ARTICLE Open Access Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity from structural organisation and transcriptomics Christophe J Noël1, Nicia Diaz2, Thomas Sicheritz-Ponten3, Lucie Safarikova4, Jan Tachezy4, Petrus Tang5, Pier-Luigi Fiori2, Robert P Hirt1* Abstract Background: Trichomonas vaginalis is the most common non-viral human sexually transmitted pathogen and importantly, contributes to facilitating the spread of HIV. Yet very little is known about its surface and secreted proteins mediating interactions with, and permitting the invasion and colonisation of, the host mucosa. Initial annotations of T. vaginalis genome identified a plethora of candidate extracellular proteins. Results: Data mining of the T. vaginalis genome identified 911 BspA-like entries (TvBspA) sharing TpLRR-like leucine-rich repeats, which represent the largest gene family encoding potential extracellular proteins for the pathogen. A broad range of microorganisms encoding BspA-like proteins was identified and these are mainly known to live on mucosal surfaces, among these T. vaginalis is endowed with the largest gene family. Over 190 TvBspA proteins with inferred transmembrane domains were characterised by a considerable structural diversity between their TpLRR and other types of repetitive sequences and two subfamilies possessed distinct classic sorting signal motifs for endocytosis. One TvBspA subfamily also shared a glycine-rich protein domain with proteins from Clostridium difficile pathogenic strains and C. difficile phages. Consistent with the hypothesis that TvBspA protein structural diversity implies diverse roles, we demonstrated for several TvBspA genes differential expression at the transcript level in different growth conditions.
    [Show full text]
  • The Impact of Smoking Different Tobacco Types on The
    www.nature.com/scientificreports OPEN The impact of smoking diferent tobacco types on the subgingival microbiome and periodontal health: a pilot study Sausan Al Kawas1,2, Farah Al‑Marzooq3*, Betul Rahman2,4, Jenni A. Shearston5,6,7, Hiba Saad1, Dalenda Benzina1 & Michael Weitzman5,6,8,9 Smoking is a risk factor for periodontal disease, and a cause of oral microbiome dysbiosis. While this has been evaluated for traditional cigarette smoking, there is limited research on the efect of other tobacco types on the oral microbiome. This study investigates subgingival microbiome composition in smokers of diferent tobacco types and their efect on periodontal health. Subgingival plaques were collected from 40 individuals, including smokers of either cigarettes, medwakh, or shisha, and non‑smokers seeking dental treatment at the University Dental Hospital in Sharjah, United Arab Emirates. The entire (~ 1500 bp) 16S rRNA bacterial gene was fully amplifed and sequenced using Oxford Nanopore technology. Subjects were compared for the relative abundance and diversity of subgingival microbiota, considering smoking and periodontal condition. The relative abundances of several pathogens were signifcantly higher among smokers, such as Prevotella denticola and Treponema sp. OMZ 838 in medwakh smokers, Streptococcus mutans and Veillonella dispar in cigarette smokers, Streptococcus sanguinis and Tannerella forsythia in shisha smokers. Subgingival microbiome of smokers was altered even in subjects with no or mild periodontitis, probably making them more prone to severe periodontal diseases. Microbiome profling can be a useful tool for periodontal risk assessment. Further studies are recommended to investigate the impact of tobacco cessation on periodontal disease progression and oral microbiome. Periodontal disease is considered the most common chronic infammatory disease of the oral cavity and a major cause of tooth loss in adult population worldwide 1,2.
    [Show full text]
  • Microbial Signatures of Oral Dysbiosis, Periodontitis and Edentulism 2 Revealed by Gene Meter Methodology 3 4 M
    bioRxiv preprint doi: https://doi.org/10.1101/070367; this version posted August 19, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Microbial Signatures of Oral Dysbiosis, Periodontitis and Edentulism 2 Revealed by Gene Meter Methodology 3 4 M. Colby Hunter1, Alex E. Pozhitkov2, and Peter A. Noble#3 5 6 *Corresponding author, Peter A Noble, Email: [email protected] 7 8 Authors’ affiliations: 9 10 1. Program in Microbiology, Alabama State University, Montgomery, AL 36101 11 2. Department of Oral Health, University of Washington, Box 3574444, Seattle, Washington 12 98195-7444 Ph: 206-409-6664 13 3. Department of Periodontics, University of Washington, Box 3574444, Seattle, Washington 14 98195-7444 Ph: 206-409-6664 15 16 Authors’ emails: 17 18 Hunter: [email protected] 19 Pozhitkov: [email protected] 20 Noble: [email protected] 21 22 bioRxiv preprint doi: https://doi.org/10.1101/070367; this version posted August 19, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 ABSTRACT (N=305 WORDS) 24 25 Conceptual models suggest certain microorganisms (e.g., the red complex) are indicative of a specific 26 disease state (e.g., periodontitis); however, recent studies have questioned the validity of these models. 27 Here, the abundances of 500+ microbial species were determined in 16 patients with clinical signs of 28 one of the following oral conditions: periodontitis, established caries, edentulism, and oral health.
    [Show full text]
  • The Role of Oral Microbiota in Intra-Oral Halitosis
    Journal of Clinical Medicine Review The Role of Oral Microbiota in Intra-Oral Halitosis Katarzyna Hampelska 1,2, Marcelina Maria Jaworska 1 , Zuzanna Łucja Babalska 3 and Tomasz M. Karpi ´nski 3,* 1 Department of Genetics and Pharmaceutical Microbiology, Pozna´nUniversity of Medical Sciences, Swi˛ecickiego4,´ 60-781 Pozna´n,Poland; [email protected] (K.H.); rufi[email protected] (M.M.J.) 2 Central Microbiology Laboratory, H. Swi˛ecickiClinical´ Hospital, Pozna´nUniversity of Medical Sciences, Przybyszewskiego 49, 60-355 Pozna´n,Poland 3 Chair and Department of Medical Microbiology, Pozna´nUniversity of Medical Sciences, Wieniawskiego 3, 61-712 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-61-854-6138 Received: 27 June 2020; Accepted: 31 July 2020; Published: 2 August 2020 Abstract: Halitosis is a common ailment concerning 15% to 60% of the human population. Halitosis can be divided into extra-oral halitosis (EOH) and intra-oral halitosis (IOH). The IOH is formed by volatile compounds, which are produced mainly by anaerobic bacteria. To these odorous substances belong volatile sulfur compounds (VSCs), aromatic compounds, amines, short-chain fatty or organic acids, alcohols, aliphatic compounds, aldehydes, and ketones. The most important VSCs are hydrogen sulfide, dimethyl sulfide, dimethyl disulfide, and methyl mercaptan. VSCs can be toxic for human cells even at low concentrations. The oral bacteria most related to halitosis are Actinomyces spp., Bacteroides spp., Dialister spp., Eubacterium spp., Fusobacterium spp., Leptotrichia spp., Peptostreptococcus spp., Porphyromonas spp., Prevotella spp., Selenomonas spp., Solobacterium spp., Tannerella forsythia, and Veillonella spp. Most bacteria that cause halitosis are responsible for periodontitis, but they can also affect the development of oral and digestive tract cancers.
    [Show full text]
  • Quantification of Bacteria in Mouth-Rinsing Solution For
    Journal of Clinical Medicine Article Quantification of Bacteria in Mouth-Rinsing Solution for the Diagnosis of Periodontal Disease Jeong-Hwa Kim 1,†, Jae-Woon Oh 1,†, Young Lee 2, Jeong-Ho Yun 3 , Seong-Ho Choi 4 and Dong-Woon Lee 1,* 1 Department of Periodontology, Dental Hospital, Veterans Health Service Medical Center, Seoul 05368, Korea; [email protected] (J.-H.K.); [email protected] (J.-W.O.) 2 Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Korea; [email protected] 3 Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju 54896, Korea; [email protected] 4 Department of Periodontology, College of Dentistry and Research Institute for Periodontal Regeneration, Yonsei University, Seoul 03722, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-2225-1928; Fax: +82-2-2225-1659 † These authors contributed equally to this work. Abstract: This study aimed to evaluate the feasibility of diagnosing periodontitis via the identification of 18 bacterial species in mouth-rinse samples. Patients (n = 110) who underwent dental examinations in the Department of Periodontology at the Veterans Health Service Medical Center between 2018 and 2019 were included. They were divided into healthy and periodontitis groups. The overall number of bacteria, and those of 18 specific bacteria, were determined via real-time polymerase chain reaction in 92 mouth-rinse samples. Differences between groups were evaluated through logistic regression after adjusting for sex, age, and smoking history. There was a significant difference in the prevalence (healthy vs. periodontitis group) of Aggregatibacter actinomycetemcomitans (2.9% vs.
    [Show full text]