Pathogenesis of Streptococcus Pneumoniae

Total Page:16

File Type:pdf, Size:1020Kb

Pathogenesis of Streptococcus Pneumoniae PPaatthhooggeenneessiiss ooff SSttrreeppttooccooccccuuss ppnneeuummoonniiaaee Lauren Joy McAllister, BSc (Mol. Biol.), BSc (Hons) A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy from the University of Adelaide May, 2010 Research Centre for Infectious Diseases, School of Molecular & Biomedical Sciences, University of Adelaide, Adelaide, S.A., Australia This thesis is dedicated to my mother, and sisters Janine and Suzanne. Page | i Table of Contents Abstract ·············································································· x Declaration ········································································ xiii Acknowledgements ···························································· xiv List of Abbreviations ·························································· xvii Chapter 1: General Introduction 1.1 Historical Background ··························································································· 1 1.2 Pneumococcal Disease ························································································· 3 1.3 Pneumococcal Virulence ······················································································· 6 1.3.1 The pneumococcal capsule ····················································································· 8 1.3.2 Serotype, sequence type and genome ······································································· 9 1.3.3 Virulence proteins ·································································································· 16 1.3.3.1 Pneumococcal surface protein A (PspA) ····························································· 16 1.3.3.2 Pneumococcal surface protein C (PspC) ···························································· 16 1.3.3.3 Neuraminidase A (NanA) ················································································· 17 1.3.3.4 Pneumolysin (Ply) ·························································································· 18 1.3.3.4 Autolysin (LytA) ····························································································· 18 1.3.4 Phase variation ····································································································· 19 Table of Contents Page | ii 1.3.5 Physiological states ······························································································· 21 1.4 Otitis Media ········································································································· 24 1.4.1 OM pathogenesis ·································································································· 25 1.4.3 OM in Australian Aboriginal children ·········································································· 26 1.4.4 Control of OM: current and future strategies ······························································· 28 1.4.5 OM and the pneumococcus ····················································································· 31 1.4.5.1 Serotype and genotype ··················································································· 31 1.4.5.2 OM-associated proteins ·················································································· 32 1.4.5.3 Phase variation in OM ····················································································· 33 1.4.5.4 Biofilms in OM ······························································································· 34 1.5 Aims of the Project ······························································································· 35 Chapter 2: Materials and Methods 2.1 General Chemicals and Reagents ······················································································· 37 2.1.1 Antibiotics ······················································································································· 37 2.2 Bacterial Strains and Growth ······························································································ 38 2.2.1 S.pneumoniae Strains ······································································································· 38 2.2.2 Pneumococcal Growth and Storage ····················································································· 41 2.2.3 Optochin sensitvity ··········································································································· 41 2.2.4 Quellung Reaction ············································································································ 42 2.2.5 Determination of colony opacity phenotype············································································ 42 2.2.6 Uronic acid assay ············································································································· 42 2.2.7 Determination of growth curves ··························································································· 43 2.2.8 Purple broth assay ··········································································································· 44 Table of Contents Page | iii 2.2.9 Biofilm assay ··················································································································· 44 2.2.10 Passaging of pneumococcal strains ··················································································· 45 2.2.11 E.coli strains, growth and storage ······················································································ 45 2.3 Oligonucleotide Primers ···································································································· 46 2.3.2 Oligonucleotide Adaptors ··································································································· 53 2.4 Protein Analysis ··············································································································· 54 2.4.1 Preparation of whole cell lysates ························································································· 54 2.4.2 SDS-PAGE ····················································································································· 54 2.4.3 Western Blot Analysis ······································································································· 54 2.4.4 Haemolysis Assay ············································································································ 55 2.5 DNA Isolation and Manipulation ·························································································· 56 2.5.1 Agarose Gel Electrophoresis ······························································································ 56 2.5.2 Pneumococcal chromosomal DNA isolation ··········································································· 57 2.5.3 Pneumococcal chromosomal DNA isolation using phenol ························································· 57 2.5.4 Restriction endonuclease digestion of DNA ··········································································· 58 2.5.5 Polymerase chain reaction (PCR) ························································································ 58 2.5.6 Purification of PCR products and Restriction Digests ······························································· 59 2.5.7 Cloning of PCR product ····································································································· 59 2.5.8 Plasmid Miniprep ············································································································· 60 2.5.9 DNA sequencing ·············································································································· 60 2.5.10 Next generation sequencing ····························································································· 61 2.5.11 Bioinformatics ················································································································ 61 2.6 Multi Locus Sequence Typing ···························································································· 62 2.7 DNA Microarray ················································································································ 62 2.8 PCR-Based Subtraction Hybridisation ················································································· 63 Table of Contents Page | iv 2.9 Southern Hybridisation ······································································································ 64 2.9.1 Prepartion of membrane ···································································································· 64 2.9.2 Hybridisation ··················································································································· 64 2.9.3 Generation of probes ········································································································ 65 2.9.4 Development of the Membrane ··························································································· 65 2.10 RNA Isolation and Manipulation ························································································ 65 2.10.1 Hot-Phenol RNA Extraction ······························································································ 65 2.10.2 Reverse Transcription-PCR (RT-PCR) ················································································ 67 2.10.3 Real-time RT-PCR ··········································································································
Recommended publications
  • Drug-Resistant Streptococcus Pneumoniae and Methicillin
    NEWS & NOTES Conference Summary pneumoniae can vary among popula- conference sessions was that statically tions and is influenced by local pre- sound methods of data collection that Drug-resistant scribing practices and the prevalence capture valid, meaningful, and useful of resistant clones. Conference pre- data and meet the financial restric- Streptococcus senters discussed the role of surveil- tions of state budgets are indicated. pneumoniae and lance in raising awareness of the Active, population-based surveil- Methicillin- resistance problem and in monitoring lance for collecting relevant isolates is the effectiveness of prevention and considered the standard criterion. resistant control programs. National- and state- Unfortunately, this type of surveil- Staphylococcus level epidemiologists discussed the lance is labor-intensive and costly, aureus benefits of including state-level sur- making it an impractical choice for 1 veillance data with appropriate antibi- many states. The challenges of isolate Surveillance otic use programs designed to address collection, packaging and transport, The Centers for Disease Control the antibiotic prescribing practices of data collection, and analysis may and Prevention (CDC) convened a clinicians. The potential for local sur- place an unacceptable workload on conference on March 12–13, 2003, in veillance to provide information on laboratory and epidemiology person- Atlanta, Georgia, to discuss improv- the impact of a new pneumococcal nel. ing state-based surveillance of drug- vaccine for children was also exam- Epidemiologists from several state resistant Streptococcus pneumoniae ined; the vaccine has been shown to health departments that have elected (DRSP) and methicillin-resistant reduce infections caused by resistance to implement enhanced antimicrobial Staphylococcus aureus (MRSA).
    [Show full text]
  • Characterisation of Streptococcus Pneumoniae Opacity Phase Variation
    Characterisation of Streptococcus pneumoniae Opacity Phase Variation Melissa Hui Chieh Chai, BBiomedSc (Hon), MSc A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy from the University of Adelaide February 2016 Research Centre for Infectious Diseases Department of Molecular and Cellular Biology The University of Adelaide Adelaide, S.A., Australia Table of Contents Chapter 1: INTRODUCTION ........................................................................... 1 1.1 The Pneumococcus ....................................................................................................... 1 1.1.1 Burden of Disease .................................................................................................. 1 1.1.2 Antimicrobial resistance ........................................................................................ 3 1.2 Pneumococcal Vaccines ............................................................................................... 4 1.3 Pathogenesis of Pneumococcal Disease ....................................................................... 7 1.3.1 Pneumococcal colonisation.................................................................................... 7 1.3.2 Progression to disease .......................................................................................... 10 1.4 S. pneumoniae Virulence Factors ............................................................................... 11 1.4.1 Pneumococcal capsule ........................................................................................
    [Show full text]
  • DNA: the Timeline and Evidence of Discovery
    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
    [Show full text]
  • Association Between Carriage of Streptococcus Pneumoniae and Staphylococcus Aureus in Children
    BRIEF REPORT Association Between Carriage of Streptococcus pneumoniae and Staphylococcus aureus in Children Gili Regev-Yochay, MD Context Widespread pneumococcal conjugate vaccination may bring about epidemio- Ron Dagan, MD logic changes in upper respiratory tract flora of children. Of particular significance may Meir Raz, MD be an interaction between Streptococcus pneumoniae and Staphylococcus aureus, in view of the recent emergence of community-acquired methicillin-resistant S aureus. Yehuda Carmeli, MD, MPH Objective To examine the prevalence and risk factors of carriage of S pneumoniae Bracha Shainberg, PhD and S aureus in the prevaccination era in young children. Estela Derazne, MSc Design, Setting, and Patients Cross-sectional surveillance study of nasopharyn- geal carriage of S pneumoniae and nasal carriage of S aureus by 790 children aged 40 Galia Rahav, MD months or younger seen at primary care clinics in central Israel during February 2002. Ethan Rubinstein, MD Main Outcome Measures Carriage rates of S pneumoniae (by serotype) and S aureus; risk factors associated with carriage of each pathogen. TREPTOCOCCUS PNEUMONIAE AND Results Among 790 children screened, 43% carried S pneumoniae and 10% car- Staphylococcus aureus are com- ried S aureus. Staphylococcus aureus carriage among S pneumoniae carriers was 6.5% mon inhabitants of the upper vs 12.9% in S pneumoniae noncarriers. Streptococcus pneumoniae carriage among respiratory tract in children and S aureus carriers was 27.5% vs 44.8% in S aureus noncarriers. Only 2.8% carried both Sare responsible for common infec- pathogens concomitantly vs 4.3% expected dual carriage (P=.03). Risk factors for tions. Carriage of S aureus and S pneu- S pneumoniae carriage (attending day care, having young siblings, and age older than moniae can result in bacterial spread and 3 months) were negatively associated with S aureus carriage.
    [Show full text]
  • Universidade Do Algarve Investigation of Listeria Monocytogenes And
    Universidade do Algarve Investigation of Listeria monocytogenes and Streptococcus pneumoniae mutants in in vivo models of infection Ana Raquel Chaves Mendes de Alves Porfírio Dissertação para a obtenção do Grau de Mestrado em Engenharia Biológica Tese orientada pelo Prof. Dr. Peter W. Andrew e coorientada pela Prof. Dr. Maria Leonor Faleiro 2015 I Investigation of Streptococcus pneumoniae and Listeria monocytogenes mutants in in vivo models of infection Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam na listagem de referências incluída. Copyright © 2015, por Ana Raquel Chaves Mendes de Alves Porfírio A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua copia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. II “I was taight that the way of progress was neither swift nor easy” – Marie Curie III Acknowledgements First of all I would like to thank the University of Algarve and the University of Leicester for providing me with the amazing opportunity of doing my dissertation project abroad. I wish to particularly express my deepest gratitude to my supervisors Prof. Peter Andrew and Prof. Maria Leonor Faleiro for their continuous guidance and support throughout this project. Their useful insight and feedback was thoroughly appreciated.
    [Show full text]
  • Mechanism of Nucleotide Flipping by Human Alkyladenine DNA Glycosylase
    Mechanism of Nucleotide Flipping by Human Alkyladenine DNA Glycosylase by Jenna M. Hendershot A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Associate Professor Patrick J. O’Brien, Chair Professor Hashim M. Al-Hashimi, Duke University Professor Carol A. Fierke Associate Professor Bruce A. Palfey Associate Professor Raymond C. Trievel © Jenna M. Hendershot 2014 Table of Contents List of Figures.………………….…………………………………………………………………………………………… iii List of Tables.……………………………………………………………………………………………………………….. vi List of Appendices.…….....…………………………………………………………………………………………….. vii List of Abbreviations..………………………………………………………………………………………………….. viii Abstract...…………………………………………………………………………………………………………………….. xi Chapter (1) Introduction…………………………………………………………………………………………………. 1 (2) Substitution of Active Site Tyrosines with Tryptophan Alters the Free Energy for Nucleotide Flipping by Human Alkyladenine DNA Glycosylase.………..……. 18 (3) Critical Role of DNA Intercalation in Enzyme-Catalyzed Nucleotide Flipping… 58 (4) Evidence for Early Intercalation during the Search for DNA Damage by Human Alkyladenine DNA Glycosylase………………………………..………………………. 94 (5) Structure/Function Analysis of Intercalation and Nucleotide Flipping in Human Alkyladenine DNA Glycosylase….…………………………………………………….. 124 (6) Conclusions and Future Directions……….………………………………………………………. 155 ii List of Figures Figure 1.1: Nucleotide flipping………………………………………………………………………………………
    [Show full text]
  • Frederick Griffith and Transformation
    Balderdash Example Griffith’s Transformation Experiment Ever since Edward Jenner invented the first vaccine in 1796 scientists have been working to vaccinate the world against all known diseases. Frederick Griffith wanted to save the world from pneumonia, a disease that was killing off much of Europe during the 1920’s. He didn’t build the pneumonia vaccine, but he did accidentally discover one of the most important concepts in bacterial survivability: Griffith discovered the principle of bacterial transformation. (In other words, why bacteria can fight off antibiotics) Griffith’s Transformation Experiment In 1928, Frederick Griffith was working with mice and two strains of Streptococcus pneumoniae One strain was “rough” in appearance and non-virulent, meaning that it wasn’t strong enough to hurt it’s host One strain was “smooth” in appearance and virulent. It was deadly to anyone who contracted the strain. The smooth strain looked smooth because it lacked a special protein coat that was rough in appearance and acted as a beacon summoning the mice’s immune systems. When injected with the rough (non-virulent) strain, mice lived When injected with the smooth (virulent) strain, mice died. Both as expected. Griffith’s Transformation Experiment Next, Griffith boiled the deadly, smooth strand of bacteria to kill it. He then injected mice with the deadly but boiled strand. Once again, as expected, the mice still lived. Finally, he injected the mice with BOILED smooth strands and LIVING rough strands The smooth strands are normally deadly, but Griffith had boiled them so they were not dangerous anymore. The rough strands were never deadly even when they were alive.
    [Show full text]
  • Characterization of the Relationship Between Measles Virus Fusion
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2006-05-17 Characterization of the Relationship Between Measles Virus Fusion, Receptor Binding, and the Virus-Specific Interaction Between the Hemagglutinin and Fusion Glycoproteins: a Dissertation Elizabeth Ann Corey University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Cells Commons, Chemical Actions and Uses Commons, Lipids Commons, and the Virus Diseases Commons Repository Citation Corey EA. (2006). Characterization of the Relationship Between Measles Virus Fusion, Receptor Binding, and the Virus-Specific Interaction Between the Hemagglutinin and Fusion Glycoproteins: a Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/hg2y-0r35. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/221 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. CHARACTERIZATION OF THE RELATIONSHIP BETWEEN MEASLES VIRUS FUSION , RECEPTOR BINDING , AND THE VIRUS-SPECIFIC INTERACTION BETWEEN THE HEMAGGLUTININ AND FUSION GL YCOPROTEINS A Dissertation Presented Elizabeth Anne Corey Submitted to the Faculty of the University of Massachusetts Graduate
    [Show full text]
  • Streptococcus Pneumoniae Technical Sheet
    technical sheet Streptococcus pneumoniae Classification On necropsy, a serosanguineous to purulent exudate Alpha-hemolytic, Gram-positive, encapsulated, aerobic is often found in the nasal cavities and the tympanic diplococcus bullae. The lungs can have areas of firm, dark red consolidation. Fibrinopurulent pleuritis, pericarditis, Family and peritonitis are other changes seen on necropsy of animals affected by S. pneumoniae. Histologic Streptococcaceae lesions are consistent with necropsy findings, Affected species and bronchopneumonia of varying severity and fibrinopurulent serositis are often seen. Primarily described as a pathogen of rats and guinea pigs. Mice are susceptible to infection. Agent of human Diagnosis disease and human carriers are a likely source of An S. pneumoniae infection should be suspected if animal infections. Zoonotic infection is possible. encapsulated Gram-positive diplococci are seen on a smear from a lesion. Confirmation of the diagnosis is Frequency via culture of lesions or affected tissues. S. pneumoniae Rare in modern laboratory animal colonies. Prevalence grows best on 5% blood agar and is alpha-hemolytic. in pet and wild populations unknown. The organism is then presumptively identified with an optochin test. PCR assays are also available for Transmission diagnosis. PCR-based screening for S. pneumoniae Transmission is primarily via aerosol or contact with may be conducted on respiratory samples or feces. nasal or lacrimal secretions of an infected animal. S. PCR may also be useful for confirmation of presumptive pneumoniae may be cultured from the nasopharynx and microbiologic identification or confirming the identity of tympanic bullae. bacteria observed in histologic lesions. Clinical Signs and Lesions Interference with Research Inapparent infections and carrier states are common, Animals carrying S.
    [Show full text]
  • Lesson Overview to Answer That Question, the First Thing You Need to 12.1 Identifying the Know Is What Genes Are Made Of
    THINK ABOUT IT How do genes work? Lesson Overview To answer that question, the first thing you need to 12.1 Identifying the know is what genes are made of. Substance of Genes How would you go about figuring out what molecule or molecules go into making a gene? Griffith’s Experiments Bacterial Transformation Griffith isolated two different strains of the same bacterial The discovery of the chemical nature of the gene began in 1928 species. with British scientist Frederick Griffith, who was trying to figure Both strains grew very well in culture plates in Griffith’s lab, but out how certain types of bacteria produce pneumonia. only one of the strains caused pneumonia. The disease-causing bacteria (S strain) grew into smooth colonies on culture plates, whereas the harmless bacteria (R strain) produced colonies with rough edges. Griffith’s Experiments Griffith’s Experiments When Griffith injected mice with disease-causing bacteria, First, Griffith took a culture of the S strain, heated the cells the mice developed pneumonia and died. to kill them, and then injected the heat-killed bacteria into When he injected mice with harmless bacteria, the mice laboratory mice. stayed healthy. The mice survived, suggesting that the cause of pneumonia Perhaps the S-strain bacteria produced a toxin that made was not a toxin from these disease-causing bacteria. the mice sick? To find out, Griffith ran a series of experiments. Griffith’s Experiments Griffith’s Experiments In Griffith’s next experiment, he mixed the heat-killed, The lungs of these mice were filled with the disease-causing S-strain bacteria with live, harmless bacteria from the R bacteria.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Characterization of Sialidase Enzymes of Gardnerella Spp
    Characterization of sialidase enzymes of Gardnerella spp. A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Master of Science In the Department of Veterinary Microbiology University of Saskatchewan Saskatoon By SHAKYA PRASHASTHI KURUKULASURIYA © Copyright Shakya P. Kurukulasuriya, April 2020. All rights reserved. PERMISSION TO USE In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis/dissertation work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis/dissertation. Requests for permission to copy or to make other uses of materials in this thesis/dissertation in whole or part should be addressed to: Head of the Department of Veterinary Microbiology University of Saskatchewan Saskatoon, Saskatchewan S7N 5B4 Canada Or Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan S7N 5C9 i Abstract Bacterial Vaginosis (BV) is a condition that occurs when the healthy, Lactobacillus spp.
    [Show full text]