Histone Deacetylases and Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Histone Deacetylases and Cancer Oncogene (2007) 26, 5420–5432 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Histone deacetylases and cancer MA Glozak and E Seto H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA Histone deacetylases (HDACs) regulate the expression functions of the enzymes they inhibit. In this review, and activity of numerous proteins involved in both cancer we will address the molecular mechanisms by which initiation and cancer progression. By removal of acetyl HDACs act and how these actions relate to cancer. groups from histones, HDACs create a non-permissive chromatin conformation that prevents the transcription of genes that encode proteins involved in tumorigenesis. In addition to histones, HDACs bind to and deacetylate a Chromatin modifications and cancer variety of other protein targets including transcription factors and other abundant cellular proteins implicated in Histones comprise the protein backbone of chromatin. control of cell growth, differentiation and apoptosis. This Histone acetyltransferases (HATs) acetylate the e-amino review provides a comprehensive examination of the tran- group of lysine (K) residues on histones, thereby scriptional and post-translational mechanisms by which neutralizing their positive charge, which diminishes their HDACs alter the expression and function of cancer- ability to bind to negatively charged DNA. In addition, associated proteins and examines the general impact of acetylation of histone H4-K16 specifically disrupts HDAC activity in cancer. the formation of higher-order chromatin structures et al Oncogene (2007) 26, 5420–5432; doi:10.1038/sj.onc.1210610 (Shogren-Knaak ., 2006). An open chromatin configuration provides accessibility for specific tran- Keywords: acetylation; deacetylation; cancer; HDAC; scription factors and the general transcription machin- HDAC inhibitors ery. HDACs remove the acetyl groups, allowing compacted chromatin to reform (Figure 2). Among their many properties, HDACs are required for cell- cycle progression. Indeed, HDAC inhibitors, including NaB, trichostatin A (TSA) and trapoxin, cause mam- malian cells to undergo cell-cycle arrest. Using a Introduction trapoxin affinity column, HDAC1 was purified bio- chemically, subsequently cloned and shown to have During the normal lifecycle, a cell encounters numerous HDAC activity (Taunton et al., 1996). In an unrelated opportunities where it must decide whether to prolifer- series of experiments, HDAC2 was cloned on the basis ate, differentiate or die. A defect in any of these of its interaction with the transcriptional activator/ processes may result in cancer, or the uncontrolled repressor YY1 and was shown to have transcriptional growth of the cell. It has been appreciated for decades repressor activity (Yang et al., 1996). As such, the first that histone deacetylases (HDACs) play an important mammalian HDACs were cloned independently, using role in cancer development since the first observation distinct methods. The same roles that HDACs play in that sodium butyrate (NaB), later identified as an influencing cell-cycle progression and repressing tran- HDAC inhibitor, can cause the morphological reversion scription also have important implications in their of the transformed cell phenotype (Ginsburg et al., 1973; connection to cancer. Altenburg et al., 1976; Boffa et al., 1978). Currently, Since the initial cloning of HDAC1 and HDAC2, at HDAC inhibitors are in clinical trials to treat a variety least 16 additional human HDACs have been identified of malignancies. HDAC inhibitors can block cell and are grouped into four classes: class I comprises proliferation, promote differentiation and induce apop- HDAC1–3 and 8, which show similarity to yeast RPD3; tosis, any of which is desirable to thwart the growth of class II comprises HDAC4–7, 9 and 10, which show rogue cells (Figure 1). Despite decades of research, the similarity to yeast HDA1; class III the NAD þ -depen- precise mechanism(s) by which these inhibitors work dent HDACs, comprises SIRT1–7, which show similar- remains far from clear. In many cases, they may ity to yeast SIR2; class IV comprises HDAC11, which influence multiple targets. To understand how HDAC has some features of both class I and II HDACs inhibitors function, we must first understand the (Gregoretti et al., 2004). Class III HDACs are not affected by the cytostatic HDAC inhibitors, but are Correspondence: Dr E Seto, H. Lee Moffitt Cancer Center & Research inhibited by nicotinamide. Institute, SRB 23011, 12902 Magnolia Drive, Tampa, FL 33612, USA. Histone acetylation and deacetylation does not occur E-mail: ed.seto@moffitt.org in a vacuum. Specific patterns of histone acetylation and HDACs and cancer MA Glozak and E Seto 5421 promoters of genes de-repressed by HDAC inhibitors proliferation differentiation often contain hypermethylated DNA, indicating cross- talk between histone acetylation/methylation and DNA methylation. Each of these events can have profound implications for gene expression in normal and cancer- ous cells. Epigenetic changes, including global DNA hypo- CDKI differentiation factors methylation and promoter CpG island hypermethyla- tion, have long been recognized as characteristics that distinguish cancer cells from their normal counterparts. HDAC HDAC Recently, very specific changes in post-translational modification of histones that characterize cancer cells pro-apoptotic factors have been identified as well. For example, the coupled X loss of acetylation of histone H4-K16 and trimethyla- tion of histone H4-K20 can be considered a common feature of cancer cells as compared to their normal RIP counterparts (Fraga et al., 2005). These changes occur early and accumulate as the cancer progresses. Hypoa- apoptosis cetylation of histone H4-K16 is caused at least in part by diminished recruitment of the MYST (MOZ, Ybf2/Sas3, Sas2 and Tip60) family of HATs (Fraga et al., 2005); proliferation differentiation however, an increase in HDAC recruitment and/or activity cannot be ruled out. Indeed, the class III HDAC SIRT2 shows preference for deacetylation of histone H4-K16. Although this specific deacetylation occurs at the G2/M transition of the cell cycle, it appears to influence the timing of S-phase entry (Vaquero et al., CDKI differentiation factors 2006). In addition to defining cancer cells, specific histone modifications can be used to predict cancer recurrence. Histone H3-K18 acetylation coupled with HDACi HDAC HDAC HDACi histone H3-K4 dimethylation confers lowered risk for prostate cancer recurrence (Seligson et al., 2005). While pro-apoptotic factors these findings presently apply only to prostate cancer, it is likely that similar modifications will be found in other cancer types. In addition, the observation that low RIP acetylation levels correlate with negative outcomes may provide a basis for the clinical use of HDAC inhibitors. apoptosis Figure 1 (a) HDAC-mediated repression of genes can cause uncontrolled cell growth. HDACs repress the transcription of (1) cyclin-dependent kinase inhibitors (CDKI), allowing continued Histone deacetylation: the classic examples proliferation; (2) differentiation factors, allowing proliferation instead of differentiation; (3) proapoptotic factors, permitting Upon the identification and cloning of HDACs, it was survival. (b) HDAC inhibitors (HDACi) can restore appropriate quickly ascertained that HDACs were recruited to gene expression, preventing the uncontrolled growth of the cell. promoters to repress transcription, thereby counter- HDAC, histone deacetylases. acting the activating effects of HATs. In the simplest view, recruitment of HDACs causes decreased histone acetylation that compacts chromatin and precludes deacetylation are typically influenced by other histone access by the transcription machinery, resulting in modifications. Together, these post-translational mod- transcriptional repression (Figure 2). HDACs act on ifications potentially generate a ‘histone code’ (Jenuwein multiprotein complexes and several distinct complexes and Allis, 2001). For example, histone H3-K9 acetyla- were rapidly identified that clarified the mechanism of tion and H3-K4 methylation are associated with active active repression of transcription. For example, the transcription. In contrast, loss of histone H3-K9 transcription factor Max is the heterodimeric binding acetylation and gain of H3-K9 and H3-K27 methylation partner of both the transcriptional activator Myc and is indicative of heterochromatin (Maison et al., 2002). In the transcriptional repressor Mad. Both Myc–Max and many cases, modifications of a single residue are Mad–Max heterodimers bind the same E box-contain- mutually exclusive. Furthermore, the presence of one ing DNA sequence, but Mad–Max complexes associate modification may set the stage for additional modifica- with the mSin3 scaffold protein that recruits HDAC1 tions at nearby amino acids, thus expanding the coding and HDAC2. Transcriptional repression of Mad–Max information. Adding another layer of complexity, target genes requires HDAC activity (Hassig et al., 1997; Oncogene HDACs and cancer MA Glozak and E Seto 5422 transcription Ac Ac Ac Ac HAT K K K K KKKK TF Pol transcription II HDAC Ac Ac Ac Ac HAT KKKK K K K K TF Pol HDAC II transcription HDACi Figure 2 The balance between histone acetylation and deacetylation determines the level at which a gene is transcribed. Histone acetylation relaxes the chromatin, allowing transcription factor (TF) binding and RNA polymerase II (pol II) recruitment.
Recommended publications
  • Bioavailability of Sulforaphane from Two Broccoli Sprout Beverages: Results of a Short-Term, Cross-Over Clinical Trial in Qidong, China
    Cancer Prevention Research Article Research Bioavailability of Sulforaphane from Two Broccoli Sprout Beverages: Results of a Short-term, Cross-over Clinical Trial in Qidong, China Patricia A. Egner1, Jian Guo Chen2, Jin Bing Wang2, Yan Wu2, Yan Sun2, Jian Hua Lu2, Jian Zhu2, Yong Hui Zhang2, Yong Sheng Chen2, Marlin D. Friesen1, Lisa P. Jacobson3, Alvaro Muñoz3, Derek Ng3, Geng Sun Qian2, Yuan Rong Zhu2, Tao Yang Chen2, Nigel P. Botting4, Qingzhi Zhang4, Jed W. Fahey5, Paul Talalay5, John D Groopman1, and Thomas W. Kensler1,5,6 Abstract One of several challenges in design of clinical chemoprevention trials is the selection of the dose, formulation, and dose schedule of the intervention agent. Therefore, a cross-over clinical trial was undertaken to compare the bioavailability and tolerability of sulforaphane from two of broccoli sprout–derived beverages: one glucoraphanin-rich (GRR) and the other sulforaphane-rich (SFR). Sulfor- aphane was generated from glucoraphanin contained in GRR by gut microflora or formed by treatment of GRR with myrosinase from daikon (Raphanus sativus) sprouts to provide SFR. Fifty healthy, eligible participants were requested to refrain from crucifer consumption and randomized into two treatment arms. The study design was as follows: 5-day run-in period, 7-day administration of beverages, 5-day washout period, and 7-day administration of the opposite intervention. Isotope dilution mass spectrometry was used to measure levels of glucoraphanin, sulforaphane, and sulforaphane thiol conjugates in urine samples collected daily throughout the study. Bioavailability, as measured by urinary excretion of sulforaphane and its metabolites (in approximately 12-hour collections after dosing), was substantially greater with the SFR (mean ¼ 70%) than with GRR (mean ¼ 5%) beverages.
    [Show full text]
  • Insights Into Hp1a-Chromatin Interactions
    cells Review Insights into HP1a-Chromatin Interactions Silvia Meyer-Nava , Victor E. Nieto-Caballero, Mario Zurita and Viviana Valadez-Graham * Instituto de Biotecnología, Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, Mexico; [email protected] (S.M.-N.); [email protected] (V.E.N.-C.); [email protected] (M.Z.) * Correspondence: [email protected]; Tel.: +527773291631 Received: 26 June 2020; Accepted: 21 July 2020; Published: 9 August 2020 Abstract: Understanding the packaging of DNA into chromatin has become a crucial aspect in the study of gene regulatory mechanisms. Heterochromatin establishment and maintenance dynamics have emerged as some of the main features involved in genome stability, cellular development, and diseases. The most extensively studied heterochromatin protein is HP1a. This protein has two main domains, namely the chromoshadow and the chromodomain, separated by a hinge region. Over the years, several works have taken on the task of identifying HP1a partners using different strategies. In this review, we focus on describing these interactions and the possible complexes and subcomplexes associated with this critical protein. Characterization of these complexes will help us to clearly understand the implications of the interactions of HP1a in heterochromatin maintenance, heterochromatin dynamics, and heterochromatin’s direct relationship to gene regulation and chromatin organization. Keywords: heterochromatin; HP1a; genome stability 1. Introduction Chromatin is a complex of DNA and associated proteins in which the genetic material is packed in the interior of the nucleus of eukaryotic cells [1]. To organize this highly compact structure, two categories of proteins are needed: histones [2] and accessory proteins, such as chromatin regulators and histone-modifying proteins.
    [Show full text]
  • Synergistic Combinations of Curcumin, Sulforaphane, and Dihydrocaffeic
    International Journal of Molecular Sciences Article Synergistic Combinations of Curcumin, Sulforaphane, and Dihydrocaffeic Acid against Human Colon Cancer Cells Jesús Santana-Gálvez 1 , Javier Villela-Castrejón 1 , Sergio O. Serna-Saldívar 1, Luis Cisneros-Zevallos 2 and Daniel A. Jacobo-Velázquez 1,* 1 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL C.P. 64849, Mexico; [email protected] (J.S.-G.); [email protected] (J.V.-C.); [email protected] (S.O.S.-S.) 2 Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; [email protected] * Correspondence: [email protected]; Tel.: +52-33-3669-3000 Received: 12 April 2020; Accepted: 26 April 2020; Published: 28 April 2020 Abstract: Nutraceutical combinations that act synergistically could be a powerful solution against colon cancer, which is the second deadliest malignancy worldwide. In this study, curcumin (C), sulforaphane (S), and dihydrocaffeic acid (D, a chlorogenic acid metabolite) were evaluated, individually and in different combinations, over the viability of HT-29 and Caco-2 colon cancer cells, and compared against healthy fetal human colon (FHC) cells. The cytotoxic concentrations to kill 50%, 75%, and 90% of the cells (CC50, CC75, and CC90) were obtained, using the MTS assay. Synergistic, additive, and antagonistic effects were determined by using the combination index (CI) method. The 1:1 combination of S and D exerted synergistic effects against HT-29 at 90% cytotoxicity level (doses 90:90 µM), whereas CD(1:4) was synergistic at all cytotoxicity levels (9:36–34:136 µM) and CD(9:2) at 90% (108:24 µM) against Caco-2 cells.
    [Show full text]
  • CD40 Signaling Synergizes with TLR-2 in the BCR Independent Activation of Resting B Cells
    CD40 Signaling Synergizes with TLR-2 in the BCR Independent Activation of Resting B Cells Shweta Jain, Sathi Babu Chodisetti, Javed N. Agrewala* Immunology Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India Abstract Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40 - molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response. Citation: Jain S, Chodisetti SB, Agrewala JN (2011) CD40 Signaling Synergizes with TLR-2 in the BCR Independent Activation of Resting B Cells. PLoS ONE 6(6): e20651. doi:10.1371/journal.pone.0020651 Editor: Leonardo A. Sechi, Universita di Sassari, Italy Received April 14, 2011; Accepted May 6, 2011; Published June 2, 2011 Copyright: ß 2011 Jain et al.
    [Show full text]
  • An Overview of the Role of Hdacs in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; [email protected] (D.B.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration.
    [Show full text]
  • D,L-Sulforaphane Causes Transcriptional Repression of Androgen Receptor in Human Prostate Cancer Cells
    Published OnlineFirst July 7, 2009; DOI: 10.1158/1535-7163.MCT-09-0104 Published Online First on July 7, 2009 as 10.1158/1535-7163.MCT-09-0104 1946 D,L-Sulforaphane causes transcriptional repression of androgen receptor in human prostate cancer cells Su-Hyeong Kim and Shivendra V. Singh al repression of AR and inhibition of its nuclear localiza- tion in human prostate cancer cells. [Mol Cancer Ther Department of Pharmacology and Chemical Biology, and 2009;8(7):1946–54] University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania Introduction Observational studies suggest that dietary intake of crucifer- Abstract ous vegetables may be inversely associated with the risk D,L-Sulforaphane (SFN), a synthetic analogue of crucifer- of different malignancies, including cancer of the prostate – ous vegetable derived L-isomer, inhibits the growth of (1–4). For example, Kolonel et al. (2) observed an inverse as- human prostate cancer cells in culture and in vivo and sociation between intake of yellow-orange and cruciferous retards cancer development in a transgenic mouse model vegetables and the risk of prostate cancer in a multicenter of prostate cancer. We now show that SFN treatment case-control study. The anticarcinogenic effect of cruciferous causes transcriptional repression of androgen receptor vegetables is ascribed to organic isothiocyanates (5, 6). Broc- (AR) in LNCaP and C4-2 human prostate cancer cells at coli is a rather rich source of the isothiocyanate compound pharmacologic concentrations. Exposure of LNCaP and (−)-1-isothiocyanato-(4R)-(methylsulfinyl)-butane (L-SFN). C4-2 cells to SFN resulted in a concentration-dependent L-SFN and its synthetic analogue D,L-sulforaphane (SFN) and time-dependent decrease in protein levels of total 210/213 have sparked a great deal of research interest because of their AR as well as Ser -phosphorylated AR.
    [Show full text]
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • The Metabolic Regulator Histone Deacetylase 9 Contributes to Glucose Homeostasis
    Page 1 of 53 Diabetes The metabolic regulator histone deacetylase 9 contributes to glucose homeostasis abnormality induced by hepatitis C virus infection Jizheng CHEN2, Ning WANG1, Mei DONG1, Min GUO2, Yang ZHAO3, Zhiyong ZHUO3, Chao ZHANG3, Xiumei CHI4, Yu PAN4, Jing JIANG4, Hong TANG2, Junqi NIU4, Dongliang YANG5, Zhong LI1, Xiao HAN1, Qian WANG1* and Xinwen Chen2 1 Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China 2 State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China 3 Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China 4 Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, China 5 Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China 1 Diabetes Publish Ahead of Print, published online September 29, 2015 Diabetes Page 2 of 53 *Correspondence: Qian WANG, Ph.D. Jiangsu Province Key Lab of Human Functional Genomics Department of Biochemistry and Molecular Biology Nanjing Medical University Nanjing 210029, China E-mail: [email protected] Fax: +86-25-8362 1065 Tel: +86-25-8686 2729 2 Page 3 of 53 Diabetes ABSTRACT Class IIa histone deacetylases (HDACs), such as HDAC4, HDAC5, and HDAC7 provide critical mechanisms for regulating glucose homeostasis. Here we report HDAC9, another class IIa HDAC, regulates hepatic gluconeogenesis via deacetylation of a Forkhead box O (FoxO) family transcription factor, FoxO1, together with HDAC3. Specifically, HDAC9 expression can be strongly induced upon hepatitis C virus (HCV) infection.
    [Show full text]
  • Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy
    cancers Review Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy Mohammed I. Y. Elmallah 1,2,* and Olivier Micheau 1,* 1 INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France 2 Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt * Correspondence: [email protected] (M.I.Y.E.); [email protected] (O.M.) Received: 23 May 2019; Accepted: 18 June 2019; Published: 19 June 2019 Abstract: One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression.
    [Show full text]
  • Cigarette Smoking-Induced Endothelial Dysfunction: Molecular Mechanisms and Therapeutic Approaches
    Cigarette Smoking-Induced Endothelial Dysfunction: Molecular Mechanisms and Therapeutic Approaches DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Tamer M. Abdelghany Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2013 Dissertation Committee: Dr. Jay L. Zweier, MD, Advisor Dr. Arthur Strauch III, PhD Dr. Amal Amer, MD PhD Copyright by Tamer M. Abdelghany 2013 Abstract Cigarette smoking (CS) remains the single largest preventable cause of death. Worldwide, smoking causes more than five million deaths annually and, according to the current trends, smoking may cause up to 10 million annual deaths by 2030. In the U.S. alone, approximately half a million adults die from smoking-related illnesses each year which represents ~ 19% of all deaths in the U.S., and among them 50,000 are killed due to exposure to secondhand smoke (SHS). Smoking is a major risk factor for cardiovascular disease (CVD). The crucial event of The CVD is the endothelial dysfunction (ED). Despite of the vast number of studies conducted to address this significant health problem, the exact mechanism by which CS induces ED is not fully understood. The ultimate goal of this thesis; therefore, is to study the mechanisms by which CS induces ED, aiming at the development of new therapeutic strategies that can be used in protection and/or reversal of CS-induced ED. In the first part of this study, we developed a well-characterized animal model for chronic secondhand smoke exposure (SHSE) to study the onset and severity of the disease.
    [Show full text]
  • Theranostics Sulforaphane-Induced Cell Cycle Arrest and Senescence
    Theranostics 2017, Vol. 7, Issue 14 3461 Ivyspring International Publisher Theranostics 2017; 7(14): 3461-3477. doi: 10.7150/thno.20657 Research Paper Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells Anna Lewinska1, Jagoda Adamczyk-Grochala1, Anna Deregowska2, 3, Maciej Wnuk2 1. Laboratory of Cell Biology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; 2. Department of Genetics, University of Rzeszow, Kolbuszowa, Poland; 3. Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland. Corresponding author: Anna Lewinska, Laboratory of Cell Biology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland. Tel.: +48 17 872 37 11. Fax: +48 17 872 37 11. E-mail: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2017.04.19; Accepted: 2017.05.29; Published: 2017.08.15 Abstract Cancer cells are characterized by genetic and epigenetic alterations and phytochemicals, epigenetic modulators, are considered as promising candidates for epigenetic therapy of cancer. In the present study, we have investigated cancer cell fates upon stimulation of breast cancer cells (MCF-7, MDA-MB-231, SK-BR-3) with low doses of sulforaphane (SFN), an isothiocyanate. SFN (5-10 µM) promoted cell cycle arrest, elevation in the levels of p21 and p27 and cellular senescence, whereas at the concentration of 20 µM, apoptosis was induced.
    [Show full text]