Transcriptional and Linkage Analyses Identify Loci That Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Hassan, Musa A., Kirk D. Jensen, Vincent Butty, Kenneth Hu, Erwan Boedec, Pjotr Prins, and Jeroen P. J. Saeij. “Transcriptional and Linkage Analyses Identify Loci That Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection.” Edited by Barbara E. Stranger. PLOS Genetics 11, no. 10 (October 28, 2015): e1005619. As Published http://dx.doi.org/10.1371/journal.pgen.1005619 Publisher Public Library of Science Version Final published version Citable link http://hdl.handle.net/1721.1/100590 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ RESEARCH ARTICLE Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection Musa A. Hassan1,2*, Kirk D. Jensen2¤, Vincent Butty2, Kenneth Hu2, Erwan Boedec2,3, Pjotr Prins4, Jeroen P. J. Saeij2,5* 1 Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom, 2 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 3 School of Biotechnology, University of Strasbourg, Strasbourg, France, 4 Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands, 5 Department of Pathology, Microbiology & Immunology, University of California, Davis, Davis, California, United States of America ¤ Current Address: School of Natural Sciences, University of California, Merced, California, United States of America * [email protected] (MAH); [email protected] (JPJS) OPEN ACCESS Citation: Hassan MA, Jensen KD, Butty V, Hu K, Boedec E, Prins P, et al. (2015) Transcriptional and Linkage Analyses Identify Loci that Mediate the Abstract Differential Macrophage Response to Inflammatory Stimuli and Infection. PLoS Genet 11(10): e1005619. Macrophages display flexible activation states that range between pro-inflammatory (classi- doi:10.1371/journal.pgen.1005619 cal activation) and anti-inflammatory (alternative activation). These macrophage polariza- Editor: Barbara E. Stranger, University of Chicago, tion states contribute to a variety of organismal phenotypes such as tissue remodeling and UNITED STATES susceptibility to infectious and inflammatory diseases. Several macrophage- or immune- Received: March 17, 2015 related genes have been shown to modulate infectious and inflammatory disease patho- genesis. However, the potential role that differences in macrophage activation phenotypes Accepted: September 29, 2015 play in modulating differences in susceptibility to infectious and inflammatory disease is just Published: October 28, 2015 emerging. We integrated transcriptional profiling and linkage analyses to determine the Copyright: © 2015 Hassan et al. This is an open genetic basis for the differential murine macrophage response to inflammatory stimuli and access article distributed under the terms of the to infection with the obligate intracellular parasite Toxoplasma gondii. We show that specific Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any transcriptional programs, defined by distinct genomic loci, modulate macrophage activation medium, provided the original author and source are phenotypes. In addition, we show that the difference between AJ and C57BL/6J macro- credited. phages in controlling Toxoplasma growth after stimulation with interferon gamma and tumor Data Availability Statement: All the raw and necrosis factor alpha mapped to chromosome 3, proximal to the Guanylate binding protein processed RNA sequencing data described in this (Gbp) locus that is known to modulate the murine macrophage response to Toxoplasma. manuscript are freely available from the NCBI Gene Using an shRNA-knockdown strategy, we show that the transcript levels of an RNA heli- Expression Omnibus archive under accession number GSE47046 (http://www.ncbi.nlm.nih.gov/geo/ case, Ddx1, regulates strain differences in the amount of nitric oxide produced by macro- query/acc.cgi?acc=GSE47046). phage after stimulation with interferon gamma and tumor necrosis factor. Our results Funding: This work was funded partly by a provide a template for discovering candidate genes that modulate macrophage-mediated Wellcome Trust-Massachusetts Institute of complex traits. Technology (http://www.wellcome.ac.uk) Postdoctoral Fellowship and Recruitment Enhancement awarded to MAH, a Cancer Research Institute (http://www. cancerresearch.org) postdoctoral fellowship awarded PLOS Genetics | DOI:10.1371/journal.pgen.1005619 October 28, 2015 1/25 The Genetics of Macrophage Activation to KDJ and a New England Regional Center of Excellence for Biodefense and Emerging Infectious Author Summary Disease (http://nerce.med.harvard.edu/) grant (AIO57159) awarded to JPJS. JPJS was also funded Macrophages provide a first line of defense against invading pathogens and play an impor- by grants from the National Institutes of Health (www. tant role in the initiation and resolution of immune responses. When in contact with path- nih.gov) (RO1-AI080621) and PEW Charitable Trusts ogens or immune factors, such as cytokines, macrophages assume activation states that (http://www.pewtrusts.org).The funders had no role in range between pro-inflammatory (classical activation) and anti-inflammatory (alternative study design, data collection and analysis, decision to activation). Even though it is known that macrophages from different individuals are publish, or preparation of the manuscript. biased towards one of the various activation states, the genetic factors that define individ- Competing Interests: The authors have declared ual differences in macrophage activation are not fully understood. Additionally, although that no competing interests exist. macrophages are important in infectious disease pathogenesis, how individual differences in macrophage activation contribute to individual differences in susceptibility to infectious disease is just emerging. We used macrophages from genetically segregating mice to show that discrete transcriptional programs, which are modulated by specific genomic regions, modulate differences in macrophage activation. Murine macrophages differences in con- trolling Toxoplasma growth mapped to chromosome 3, proximal to the Guanylate binding protein (Gbp) locus that is known to modulate the murine macrophage response to Toxo- plasma. Using a shRNA-mediated knockdown approach, we show that the DEAD box polypeptide 1 (Ddx1) modulates nitric oxide production in macrophages stimulated with interferon gamma and tumor necrosis factor. These findings are a step towards the identification of genes that regulate macrophage phenotypes and disease outcome. Introduction At the cellular level, innate immune cells, such as macrophages, are central to the development and prevention of infectious diseases. On engagement of surface signaling receptors or pattern recognition receptors (PRRs) such as toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and the cytosolic NOD-like receptors (NLRs), by immune factors such as cytokines or con- served microbial products, macrophages can assume different activation states. The most extreme of these states are the classical (M1, M(IFNG)) and the alternative (M2, M(IL-4)) states, separated by several intermediate activation states [1–3] (We are following the recently described macrophage activation phenotype nomenclature [1]). Ultimately, macrophage acti- vation results in pathogen clearance by downstream antimicrobial effector mechanisms, such as inflammasome activation, or activation of adaptive immune responses [4–6]. Although the outcome of macrophage activation is dependent on the stimulus engaged by the PRRs, emerg- ing empirical data, from both human and mouse studies, indicate that the macrophage genetic background also plays a significant role. The initiation of immune responses by macrophages can occur in the presence of pro- inflammatory cytokines such as interferon gamma (IFNG), while anti-inflammatory cytokines such as interleukin (IL)-4, and IL-13, prime macrophages for the resolution of immune responses and tissue repair [7–9]. This macrophage ability to initiate and resolve immune responses, while important in regulating immunopathology, can be exploited by pathogens to evade macrophage-associated immunity [10]. Indeed, to disseminate in their hosts most patho- gens circumvent macrophage-mediated microbicidal mechanisms by modulating macrophage signaling pathways and activation phenotypes [11–16]. In addition to destroying pathogens, activated macrophages are important mediators in several inflammatory pathologies, including atherosclerosis, diabetes and cancer [17]. Studies in mice have linked several macrophage- or immune-related genes, such as Nramp1/Slc11a1, Icsbp1/Irf8, Csfgm, and Nos2, with the devel- opment of several infectious diseases, including salmonellosis, toxoplasmosis, and PLOS Genetics | DOI:10.1371/journal.pgen.1005619 October 28, 2015 2/25 The Genetics of Macrophage Activation leishmaniasis [18–20]. Although the compendium of macrophage- or immune-related genes that modulate infectious disease pathogenesis is broad, the role of individual differences in macrophage activation phenotypes in determining
Recommended publications
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene

    Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene

    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
  • Exploring Autophagy with Gene Ontology

    Exploring Autophagy with Gene Ontology

    Autophagy ISSN: 1554-8627 (Print) 1554-8635 (Online) Journal homepage: https://www.tandfonline.com/loi/kaup20 Exploring autophagy with Gene Ontology Paul Denny, Marc Feuermann, David P. Hill, Ruth C. Lovering, Helene Plun- Favreau & Paola Roncaglia To cite this article: Paul Denny, Marc Feuermann, David P. Hill, Ruth C. Lovering, Helene Plun- Favreau & Paola Roncaglia (2018) Exploring autophagy with Gene Ontology, Autophagy, 14:3, 419-436, DOI: 10.1080/15548627.2017.1415189 To link to this article: https://doi.org/10.1080/15548627.2017.1415189 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. View supplementary material Published online: 17 Feb 2018. Submit your article to this journal Article views: 1097 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=kaup20 AUTOPHAGY, 2018 VOL. 14, NO. 3, 419–436 https://doi.org/10.1080/15548627.2017.1415189 RESEARCH PAPER - BASIC SCIENCE Exploring autophagy with Gene Ontology Paul Denny a,†,§, Marc Feuermann b,§, David P. Hill c,f,§, Ruth C. Lovering a,§, Helene Plun-Favreau d and Paola Roncaglia e,f,§ aFunctional Gene Annotation, Institute of Cardiovascular Science, University College London, London, UK; bSIB Swiss Institute of Bioinformatics, Geneva, Switzerland; cThe Jackson Laboratory, Bar Harbor, ME, USA; dDepartment of Molecular Neuroscience, UCL Institute of Neurology, London, UK; eEuropean Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK; fThe Gene Ontology Consortium ABSTRACT ARTICLE HISTORY Autophagy is a fundamental cellular process that is well conserved among eukaryotes. It is one of the Received 18 May 2017 strategies that cells use to catabolize substances in a controlled way.
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts

    Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts

    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
  • The Human TTAGGG Repeat Factors 1 and 2 Bind to a Subset of Interstitial Telomeric Sequences and Satellite Repeats

    The Human TTAGGG Repeat Factors 1 and 2 Bind to a Subset of Interstitial Telomeric Sequences and Satellite Repeats

    npg Extratelomeric binding of TRF1 and TRF2 Cell Research (2011) 21:1028-1038. 1028 © 2011 IBCB, SIBS, CAS All rights reserved 1001-0602/11 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats Thomas Simonet1, Laure-Emmanuelle Zaragosi2, Claude Philippe3, Kevin Lebrigand2, Clémentine Schouteden1, Adeline Augereau1, 3, Serge Bauwens1, Jing Ye1, 3, Marco Santagostino4, Elena Giulotto4, Frederique Magdinier1, Béatrice Horard1, Pascal Barbry2, Rainer Waldmann2, Eric Gilson1, 3, 5 1Laboratoire de Biologie Moléculaire de la Cellule-UMR 5239 CNRS/ENS Lyon/ Université Lyon, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, Lyon 69364, France; 2CNRS and University of Nice Sophia Antipolis, Institut de Pharmacologie Molé- culaire et Cellulaire, 06560 Sophia Antipolis, France; 3Laboratory of Biology and Pathology of Genomes of University of Nice Sophia-Antipolis, CNRS UMR6267/INSERM U998, Faculty of Medicine, Nice, France; 4Dipartimento di Genetica e Microbiologia Adriano Buzzati-Traverso, Università di Pavia, Pavia, Italy; 5Department of Medical Genetics, CHU of Nice, Nice, France The study of the proteins that bind to telomeric DNA in mammals has provided a deep understanding of the mech- anisms involved in chromosome-end protection. However, very little is known on the binding of these proteins to nontelomeric DNA sequences. The TTAGGG DNA repeat proteins 1 and 2 (TRF1 and TRF2) bind to mammalian te- lomeres as part of the shelterin complex and are essential for maintaining chromosome end stability. In this study, we combined chromatin immunoprecipitation with high-throughput sequencing to map at high sensitivity and resolution the human chromosomal sites to which TRF1 and TRF2 bind.
  • RB1CC1 Activates the P16 Promoter Through the Interaction with Hsnf5

    RB1CC1 Activates the P16 Promoter Through the Interaction with Hsnf5

    ONCOLOGY REPORTS 26: 805-812, 2011 RB1CC1 activates the p16 promoter through the interaction with hSNF5 YaSUKO OCHI1,4, TOKUHIRO CHANO1, KAICHIRO IKEbuCHI1,4, HIROKAZU INOUE2, TakahiRO ISONO3, AKIHITO ARAI1,4, HITOSUKE TamENO1,4, TakETOSHI SHIMADA4, YaSUO HISA4 and HIDETOSHI OKABE1 Departments of 1Clinical Laboratory Medicine, 2Microbiology and 3Central Research Laboratory, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192; 4Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kajiicho 465, Kamigyo-ku, Kyoto 602-8566, Japan Received January 12, 2011; Accepted March 10, 2011 DOI: 10.3892/or.2011.1329 Abstract. RB1-inducible coiled-coil 1 (RB1CC1, also known ship between p16 and RB is frequently deregulated in many as FIP200) is involved in dephosphorylation and increase types of human cancer. However, the mutations and deletions of retinoblastoma tumor suppressor protein (RB1), but the in p16, RB and upstream regulators of this pathway are RB1CC1 molecular mechanism in the dephosphorylation of not frequent (10). There could presumably be other factors RB1 is not fully understood. We determined that RB1CC1 than the p16 and RB that regulate the pathway relating to activates the expression of p16 (also called INK4a/CDKN2a) progression or prevention of tumorigenesis. through the activation of its promoter, using chromatin immu- RB1-inducible coiled-coil 1 [RB1CC1: the symbol referred noprecipitation (ChIP) and p16 promoter-luciferase reporter to here and approved by the Human Genome Organization assays. In addition, RB1CC1 essentially requires binding with (HUGO) Gene Nomenclature Committee; also known as hSNF5 (also known as BAF47/INI1, a chromatin-remodeling FIP200] was identified as an RB1 regulator.
  • Transcriptome Profiling Reveals Inhibitory Effect of Down-Regulated ZBTB38 Gene On

    Transcriptome Profiling Reveals Inhibitory Effect of Down-Regulated ZBTB38 Gene On

    bioRxiv preprint doi: https://doi.org/10.1101/350223; this version posted June 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 of 25 1 Article 2 Transcriptome Profiling Reveals Inhibitory Effect of Down-regulated ZBTB38 gene on 3 the Transcriptional Regulation of Tumor Cells Proliferation 4 Jie Chen*, †, ‡, Chaofeng Xing*, †, 1, Haosen Wang§, Zengmeng Zhang*, Daolun Yu*, Jie Li*, 5 Honglin Li**, Jun Li*,2, Yafei Cai*, †, 2 6 * College of Life Sciences, Anhui Provincial Key Lab of the Conservation and Exploitation of Biological 7 Resources, Anhui Normal University, Wuhu 241000, China; [email protected] (J.C.); 8 [email protected] (C.X.); [email protected] (Z.Z.); [email protected] (D.Y.); 9 [email protected] (J.L.) 10 † College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China 11 ‡ The Secondary Hospital of Wuhu, Wuhu 241000, China 12 § Taizhou 4th Hospital, Taizhou 235300, China; [email protected] (H.W.) 13 ** Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta 14 University,Augusta, GA 30912, USA; [email protected] (H.L.) 15 1 Co-first author 16 2 Correspondence: College of Life Sciences, Anhui Normal University, No.1 BeiJing East Road, Wuhu, 17 Anhui province, P. R. China, 241000; [email protected] ( Y.C.); [email protected] (J.L.) Tel.: 18 +86-553-386-9297 19 Abstract: Transcription factor ZBTB38 belongs to the zinc finger protein family and 20 contains the typical BTB domains.
  • Human Proteins That Interact with RNA/DNA Hybrids

    Human Proteins That Interact with RNA/DNA Hybrids

    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Human proteins that interact with RNA/DNA hybrids Isabel X. Wang,1,2 Christopher Grunseich,3 Jennifer Fox,1,2 Joshua Burdick,1,2 Zhengwei Zhu,2,4 Niema Ravazian,1 Markus Hafner,5 and Vivian G. Cheung1,2,4 1Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA; 2Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA; 3Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA; 4Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA; 5Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA RNA/DNA hybrids form when RNA hybridizes with its template DNA generating a three-stranded structure known as the R-loop. Knowledge of how they form and resolve, as well as their functional roles, is limited. Here, by pull-down assays followed by mass spectrometry, we identified 803 proteins that bind to RNA/DNA hybrids. Because these proteins were identified using in vitro assays, we confirmed that they bind to R-loops in vivo. They include proteins that are involved in a variety of functions, including most steps of RNA processing. The proteins are enriched for K homology (KH) and helicase domains. Among them, more than 300 proteins preferred binding to hybrids than double-stranded DNA. These proteins serve as starting points for mechanistic studies to elucidate what RNA/DNA hybrids regulate and how they are regulated.
  • Role of Autophagy in Normal and Malignant Hematopoiesis

    Role of Autophagy in Normal and Malignant Hematopoiesis

    Role of autophagy in normal and malignant hematopoiesis A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirement for the degree of Doctor of Philosophy (Ph.D.) in the Department and Cancer and Cell Biology of the College of Medicine 2016 by Xiaoyi Chen M.D. Sichuan University Committee Members: Maria Czyzyk-Krzeska, MD, PhD Marie-Dominique Filippi, PhD Gang Huang, PhD Daniel Starczynowski, PhD Yi Zheng, PhD (Chair) 1 Abstract In this thesis work, we investigate the role of autophagy in normal and malignant hematopoiesis. In normal hematopoiesis, we study the mechanism of autophagy regulation by mTOR in hematopoietic stem and progenitor cells (HSPCs) using genetic mTOR knockout and knock-in mouse models. We find that HSPCs have varied basal autophagy activity in different subpopulations, higher in more primitive hematopoietic stem cells (HSC) and lower in more differentiated progenitor cells, suggesting varied dependence on autophagy in these cells. We also observe that the autophagy activity responds differently to mTOR deletion in HSPCs subpopulations. HSC and GMP subpopulations show mTOR independent autophagy regulation, while CMP has increased autophagy activity upon mTOR deletion. We speculate that a compensatory kinase pathway in HSC and GMP exists to negatively regulate autophagy activity upon mTOR loss in HSC population based on our kinase inhibitor data. We also find that the autophagy response in mTOR knock-in cells is similar to mTOR knockout, suggesting that mTOR regulates autophagy through its kinase function, not a protein scaffolding effect. The autophagy response in Raptor knockout cells mimics that of the mTOR knockout, indicating that mTORC1 regulates autophagy in HSPCs.
  • Variation in Protein Coding Genes Identifies Information Flow

    Variation in Protein Coding Genes Identifies Information Flow

    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
  • Entrez ID Gene Name Fold Change Q-Value Description

    Entrez ID Gene Name Fold Change Q-Value Description

    Entrez ID gene name fold change q-value description 4283 CXCL9 -7.25 5.28E-05 chemokine (C-X-C motif) ligand 9 3627 CXCL10 -6.88 6.58E-05 chemokine (C-X-C motif) ligand 10 6373 CXCL11 -5.65 3.69E-04 chemokine (C-X-C motif) ligand 11 405753 DUOXA2 -3.97 3.05E-06 dual oxidase maturation factor 2 4843 NOS2 -3.62 5.43E-03 nitric oxide synthase 2, inducible 50506 DUOX2 -3.24 5.01E-06 dual oxidase 2 6355 CCL8 -3.07 3.67E-03 chemokine (C-C motif) ligand 8 10964 IFI44L -3.06 4.43E-04 interferon-induced protein 44-like 115362 GBP5 -2.94 6.83E-04 guanylate binding protein 5 3620 IDO1 -2.91 5.65E-06 indoleamine 2,3-dioxygenase 1 8519 IFITM1 -2.67 5.65E-06 interferon induced transmembrane protein 1 3433 IFIT2 -2.61 2.28E-03 interferon-induced protein with tetratricopeptide repeats 2 54898 ELOVL2 -2.61 4.38E-07 ELOVL fatty acid elongase 2 2892 GRIA3 -2.60 3.06E-05 glutamate receptor, ionotropic, AMPA 3 6376 CX3CL1 -2.57 4.43E-04 chemokine (C-X3-C motif) ligand 1 7098 TLR3 -2.55 5.76E-06 toll-like receptor 3 79689 STEAP4 -2.50 8.35E-05 STEAP family member 4 3434 IFIT1 -2.48 2.64E-03 interferon-induced protein with tetratricopeptide repeats 1 4321 MMP12 -2.45 2.30E-04 matrix metallopeptidase 12 (macrophage elastase) 10826 FAXDC2 -2.42 5.01E-06 fatty acid hydroxylase domain containing 2 8626 TP63 -2.41 2.02E-05 tumor protein p63 64577 ALDH8A1 -2.41 6.05E-06 aldehyde dehydrogenase 8 family, member A1 8740 TNFSF14 -2.40 6.35E-05 tumor necrosis factor (ligand) superfamily, member 14 10417 SPON2 -2.39 2.46E-06 spondin 2, extracellular matrix protein 3437
  • Genetic Analysis of Amyotrophic Lateral Sclerosis Identifies Contributing Pathways and Cell Types

    Genetic Analysis of Amyotrophic Lateral Sclerosis Identifies Contributing Pathways and Cell Types

    University of Massachusetts Medical School eScholarship@UMMS Open Access Publications by UMMS Authors 2021-01-15 Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types Sara Saez-Atienzar National Institutes of Health Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Genetics and Genomics Commons, Molecular and Cellular Neuroscience Commons, Nervous System Diseases Commons, and the Neurology Commons Repository Citation Saez-Atienzar S, Landers JE. (2021). Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Open Access Publications by UMMS Authors. https://doi.org/ 10.1126/sciadv.abd9036. Retrieved from https://escholarship.umassmed.edu/oapubs/4570 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Publications by UMMS Authors by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. SCIENCE ADVANCES | RESEARCH ARTICLE GENETICS Copyright © 2021 The Authors, some rights reserved; Genetic analysis of amyotrophic lateral sclerosis exclusive licensee American Association identifies contributing pathways and cell types for the Advancement Sara Saez-Atienzar1*†, Sara Bandres-Ciga2,3†, Rebekah G. Langston4, Jonggeol J. Kim2, of Science. No claim to 5 6,7,8 original U.S. Government Shing Wan Choi , Regina H. Reynolds , the International ALS Genomics Consortium, Works. Distributed 1,9 1 10 ITALSGEN, Yevgeniya Abramzon , Ramita Dewan , Sarah Ahmed , under a Creative 11 1 7,8 4 2,12 John E.
  • Enrichment of Mutations in Chromatin Regulators in People with Rett Syndrome Lacking Mutations in MECP2

    Enrichment of Mutations in Chromatin Regulators in People with Rett Syndrome Lacking Mutations in MECP2

    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Genet Med Manuscript Author . Author manuscript; Manuscript Author available in PMC 2016 November 14. Enrichment of mutations in chromatin regulators in people with Rett Syndrome lacking mutations in MECP2 Samin A. Sajan, PhD1,2,#, Shalini N. Jhangiani, MS3, Donna M. Muzny, MS3, Richard A. Gibbs, PhD3,4, James R. Lupski, MD, PhD3,4,5, Daniel G. Glaze, MD1, Walter E. Kaufmann, MD6, Steven A. Skinner, MD7, Fran Anese7, Michael J. Friez, PhD7, Lane Jane, RN8, Alan K. Percy, MD8, and Jeffrey L. Neul, MD, PhD1,2,4,# 1Section of Child Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA 2Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA 3Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA 4Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA 5Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA 6Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA 7Greenwood Genetic Center, Greenwood, South Carolina, USA 8Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA Abstract Purpose—Rett Syndrome (RTT) is a neurodevelopmental disorder caused primarily by de novo mutations (DNMs) in MECP2 and sometimes in CDKL5 and FOXG1. However, some RTT cases lack mutations in these genes. Methods—Twenty-two RTT cases without apparent MECP2, CDKL5, and FOXG1 mutations were subjected to both whole exome sequencing and single nucleotide polymorphism array-based copy number variant (CNV) analyses. Results—Three cases had MECP2 mutations initially missed by clinical testing.