The Novozymes Prize
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Section 1: Facts and History (PDF)
Section 1 Facts and History Fields of Study 11 Digital Learning 12 Research Laboratories, Centers, and Programs 13 Academic and Research Affiliations 14 Education Highlights 16 Research Highlights 21 Faculty and Staff 30 Faculty 30 Researchers 32 Postdoctoral Scholars 33 Awards and Honors of Current Faculty and Staff 34 MIT Briefing Book 9 MIT’s commitment to innovation has led to a host of Facts and History scientific breakthroughs and technological advances. The Massachusetts Institute of Technology is one of Achievements of the Institute’s faculty and graduates the world’s preeminent research universities, dedi- have included the first chemical synthesis of penicillin cated to advancing knowledge and educating students and vitamin A, the development of inertial guidance in science, technology, and other areas of scholarship systems, modern technologies for artificial limbs, and that will best serve the nation and the world. It is the magnetic core memory that enabled the develop- known for rigorous academic programs, cutting-edge ment of digital computers. Exciting areas of research research, a diverse campus community, and its long- and education today include neuroscience and the standing commitment to working with the public and study of the brain and mind, bioengineering, energy, private sectors to bring new knowledge to bear on the the environment and sustainable development, infor- world’s great challenges. mation sciences and technology, new media, financial technology, and entrepreneurship. William Barton Rogers, the Institute’s founding presi- dent, believed that education should be both broad University research is one of the mainsprings of and useful, enabling students to participate in “the growth in an economy that is increasingly defined by humane culture of the community” and to discover technology. -
Multistep Synthesis of Complex Carbogenic Molecules
THE LOGIC OF CHEMICAL SYNTHESIS: MULTISTEP SYNTHESIS OF COMPLEX CARBOGENIC MOLECULES Nobel Lecture, December 8, 1990 by E LIAS J AMES C OREY Department of Chemistry, Harvard University, Cambridge, Massachusetts, USA Carbogens, members of the family of carbon-containing compounds, can exist in an infinite variety of compositions, forms and sizes. The naturally occurring carbogens, or organic substances as they are known more tradi- tionally, constitute the matter of all life on earth, and their science at the molecular level defines a fundamental language of that life. The chemical synthesis of these naturally occurring carbogens and many millions of unnatural carbogenic substances has been one of the major enterprises of science in this century. That fact is affirmed by the award of the Nobel Prize in Chemistry for 1990 for the “development of the theory and methodology of organic synthesis”. Chemical synthesis is uniquely positioned at the heart of chemistry, the central science, and its impact on our lives and society is all pervasive. For instance, many of today’s medicines are synthetic and many of tomorrow’s will be conceived and produced by synthetic chemists. To the field of synthetic chemistry belongs an array of responsibilities which are crucial for the future of mankind, not only with regard to the health, material and economic needs of our society, but also for the attainment of an understanding of matter, chemical change and life at the highest level of which the human mind is capable. The post World War II period encompassed remarkable achievement in chemical synthesis. In the first two decades of this period chemical syntheses were developed which could not have been anticipated in the earlier part of this century. -
Mechanisms to the Human in Life Body
FROM DEFENSE BACTERIA MECHANISMS TO THE HUMAN IN LIFE BODY FOURTEENTH ANNUAL LSI SYMPOSIUM MAY 21, 2015 Images courtesy of Katherine D. Walton, research investigator, and Deborah Gumucio, professor, Department of Cell and Developmental Biology, U-M Medical School SCHEDULE FORUM HALL, PALMER COMMONS (OVERFLOW SEATING AVAILABLE IN GREAT LAKES NORTH) 8:30 A.M. 1:15 P.M. WELCOME | Alan Saltiel, Ph.D. ROLE OF THE MICROBIOTA IN INFECTION CONTROL Mary Sue Coleman Director of the Life Sciences Institute AND SEQUELAE | Yasmine Belkaid, Ph.D. Chief of Mucosal Immunology Section, Laboratory of 8:35 A.M. Parasitic Diseases, National Institutes of Health, National INTRODUCTION OF THE MARY SUE AND KENNETH Institute of Allergy and Infectious Diseases COLEMAN LIFE SCIENCES LECTURER | Mary Sue Coleman, Ph.D. 1:55 P.M. President Emerita IMMUNE REGULATION OF INTESTINAL HEALTH AND DISEASE | Gregory F. Sonnenberg, Ph.D. 8:50 A.M. Assistant Professor of Microbiology and Immunology in MARY SUE AND KENNETH COLEMAN LIFE SCIENCES Medicine, Weill Cornell Medical College LECTURE: HOMEOSTASIS, INFLAMMATION AND DISEASE | Ruslan Medzhitov, Ph.D. AFTERNOON BREAK David W. Wallace Professor of Immunobiology, Yale School of Medicine; Investigator, Howard Hughes 3:15 P.M. Medical Institute TISSUE CONTROL OF MACROPHAGE HOMEOSTASIS AND FUNCTION | Miriam Merad, M.D., Ph.D. MORNING BREAK Professor of Oncological Science and Medicine; Mount Sinai Chair in Cancer Immunology; Director of Human 10:30 A.M. Immune Monitoring Center, Tisch Cancer Institute, Icahn GENERATION OF A MEMORY OF INFECTION DURING School of Medicine at Mount Sinai CRISPR-CAS IMMUNITY | Luciano Marraffini, Ph.D. Assistant Professor, head of the Laboratory of 3:55 P.M. -
Patent-Lawyer-Article
The GLOBAL REACH, LOCAL KNOWLEDGE www.patentlawyermagazine.com Annual 2021 COPYRIGHT CTC LEGAL MEDIA The effect of design space on patent grant and recognition for designs Dr. Yongqiang Qi, Partner and Patent Attorney at Corner Stone, examines the latest judicial interpretation and what it means for design. Protect Patent validity against terms crises Page 56 Page 13 AI patenting Page 18 FFrontront ccover_TPL51_v2aover_TPL51_v2a Alternative.inddAlternative.indd 1 118/12/20208/12/2020 110:060:06 CRIPSR-Cas9 A Nobel Prize, a Global Pandemic, and a Patent Dispute walk into a bar… stop me if you’ve heard this one before Richard Gaugeler, Patent Attorney at Cedar White Bradley, explains how a Noble Prize, the Pandemic and a Patent Dispute are all inextricably linked to the CRISPR-Cas9 Technology. ust as the three individuals who walk into a The functioning of the CRISPR-Cas9 technology bar seemingly appear independent from is as follows: First, the faulty sequence in the Jone another, they nevertheless always turn DNA is identified by a scientist. In this case the out to be inextricably linked through some faulty sequence refers to a defective gene common thread. And our Nobel Prize, Pandemic, which codes for Sickle-Cell anaemia. Second, and Dispute are no different. The thread? Of course, CRISPR uses guideRNA to identify, and bind to I must be talking about CRISPR-Cas9 Technology. the sequence. The guideRNA binds to and The revolutionary gene editing tool that can be used unravels the faulty sequence in the DNA molecule. to make precise incisions in genetic material to Third, Cas9 cuts the faulty sequence to either edit or even delete unwanted genetic code. -
10 Learning Areas for SDG Communications
10 Learning Areas for SDG Communications Discussion Note for the OECD DevCom Peer Learning Hub Presented at Global Festival for Ideas on Sustainable Development Bonn, 1-3 March 2017 Introduction The Sustainable Development Goals (SDGs) change the game for communicators in development institutions. They provide communicators with a formal mandate and specific targets to raise awareness, build knowledge and inspire people for sustainable development. They transform the development story that communicators need to tell about how development happens, and about what their organisations are doing to help. They oblige communicators to understand and engage with new audiences, and to collaborate with new partners in order to reach those audiences. This Note explores the implications of the SDGs for development communicators. It then proposes a framework of ten “learning areas” for development institutions to bear in mind when developing their SDG communications strategies and campaigns. It highlights early examples of public engagement on the SDGs and identifies resources that can help communications teams get started Help bring the DevCom Peer Learning Hub to and become more strategic about their SDG work. life: tell us how you are mobilising citizens for the SDGs! Prepared by the OECD Development Contact: [email protected] Communication Network (DevCom), this Note Visit: www.oecd.org/dev/devcom represents a first step towards a new DevCom Join: www.facebook.com/oecd.devcom Peer Learning Hub for SDG Communicators. The aim is to help communicators adapt to the “SDG era” by: 1. Providing them with a framework and principles to help approach the SDGs and decide on strategic priorities for public engagement. -
Convocation for Conferring Degrees Virtual Ceremony Thursday, June 11, 2020 Academic Procession New Castle Brass Quintet Welcomi
Convocation for Conferring Degrees Virtual Ceremony Thursday, June 11, 2020 Academic Procession New Castle Brass Quintet Welcoming Remarks Richard P. Lifton, M.D., Ph.D. President and Carson Family Professor Introduction Sidney Strickland, Ph.D. Dean of Graduate and Postgraduate Studies Vice President for Educational Affairs Conferring of the Degree of Doctor of Philosophy Dr. Lifton Presentation of the David Rockefeller Award for Extraordinary Service Dr. Lifton Alzatta Fogg Torsten N. Wiesel, M.D., F.R.S. Conferring of the Degree of Doctor of Science, Honoris Causa Dr. Lifton Marnie S. Pillsbury Lucy Shapiro, Ph.D. Academic Recession New Castle Brass Quintet 2 2020 Graduates Sarah Ackerman B.S., State University of New York, College at Geneseo The Role of Adipocytes in the Tumor Microenvironment in Obesity-driven Breast Cancer Progression Paul Cohen Sarah Kathleen Baker B.A., University of San Diego Blood-derived Plasminogen Modulates the Neuroimmune Response in Both Alzheimer’s Disease and Systemic Infection Models Sidney Strickland Mariel Bartley B.Sc., Monash University Characterizing the RNA Editing Specificity of ADAR Isoforms and Deaminase Domains in vitro Charles M. Rice Kate Bredbenner B.S., B.A., University of Rochester Visualizing Protease Activation, retroCHMP3 Activity, and Vpr Recruitment During HIV-1 Assembly Sanford M. Simon Ian Andrew Eckardt Butler B.A., The University of Chicago Hybridization in Ants Daniel Kronauer Daniel Alberto Cabrera* B.A., Columbia University Time-restricted Feeding Extends Longevity in Drosophila melanogaster Michael W. Young * Participant in the Tri-Institutional M.D.-Ph.D. Program 3 James Chen B.A., University of Pennsylvania Cryo-EM Studies of Bacterial RNA Polymerase Seth A. -
Bacteriophage-Based Synthetic Biology for the Study of Infectious Diseases
Bacteriophage-based synthetic biology for the study of infectious diseases The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Citorik, Robert J, Mark Mimee, and Timothy K Lu. “Bacteriophage- Based Synthetic Biology for the Study of Infectious Diseases.” Current Opinion in Microbiology 19 (June 2014): 59–69. As Published http://dx.doi.org/10.1016/j.mib.2014.05.022 Publisher Elsevier Version Final published version Citable link http://hdl.handle.net/1721.1/90322 Terms of Use Article is available under a Creative Commons license; see publisher's site for details. Detailed Terms http://creativecommons.org/ Available online at www.sciencedirect.com ScienceDirect Bacteriophage-based synthetic biology for the study of infectious diseases 1,2,5 1,2,5 1,2,3,4 Robert J Citorik , Mark Mimee and Timothy K Lu Since their discovery, bacteriophages have contributed Western World [5,6]. Though phages have remained an enormously to our understanding of molecular biology as important tool in the study of molecular biology, genetics, model systems. Furthermore, bacteriophages have provided and bacteria [7], concerns over the ever-dwindling arsenal many tools that have advanced the fields of genetic of antibiotics for the treatment of multidrug-resistant engineering and synthetic biology. Here, we discuss bacterial pathogens have also resulted in a renaissance bacteriophage-based technologies and their application to the in phage studies and in phage-based therapies as a means study of infectious diseases. New strategies for engineering to develop alternative therapeutics [8–11]. Correspond- genomes have the potential to accelerate the design of novel ingly, advances in synthetic biology have refined the phages as therapies, diagnostics, and tools. -
Appendices Due to Concerns Over the Quality of the Data Collected
APPENDIX A WSU 2014-19 STRATEGIC PLAN Appendix A: WSU Strategic Plan 2014-15 Strategic Plan 2014-2019 President Elson S. Floyd, Ph.D. Strategic Plan 2014-2019 Introduction The 2014-19 strategic plan builds on the previous five-year plan, recognizing the core values and broad mission of Washington State University. Goals and strategies were developed to achieve significant progress toward WSU’s aspiration of becoming one of the nation’s leading land-grant universities, preeminent in research and discovery, teaching, and engagement. The plan emphasizes the institution’s unique role as an accessible, approachable research institution that provides opportunities to an especially broad array of students while serving Washington state’s broad portfolio of social and economic needs. While providing exceptional leadership in traditional land-grant disciplines, Washington State University adds value as an integrative partner for problem solving due to its innovative focus on applications and its breadth of program excellence. The plan explicitly recognizes the dramatic changes in public funding that have occurred over the duration of the previous strategic plan, along with the need for greater institutional nimbleness, openness, and entrepreneurial activity that diversifies the University’s funding portfolio. In addition, the plan reaffirms WSU’s land-grant mission by focusing greater attention system-wide on increasing access to educational opportunity, responding to the needs of Washington state through research, instruction, and outreach, and contributing to economic development and public policy. While the new plan retains the four key themes of the previous plan, its two central foci include offering a truly transformative educational experience to undergraduate and graduate students and accelerating the development of a preeminent research portfolio. -
Determination of Fatty Acid Synthesis Intermediates in Escherichia Coli and Bacillus Subtilis
DETERMINATION OF FATTY ACID SYNTHESIS INTERMEDIATES IN ESCHERICHIA COLI AND BACILLUS SUBTILIS BY SWAMINATH SRINIVAS DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Doctoral Committee: Professor John E. Cronan Jr., Chair Professor James A. Imlay Professor Satish K. Nair Professor Wilfred A. van der Donk ABSTRACT Lipids play crucial roles in maintaining cellular structure and energy storage. Structural lipids in the form of phospholipids constitute almost 10% of the dry cell weight in bacteria with their synthesis requiring 32 moles of ATP per mole of lipid. This significant investment ensures that the flux through the fatty acid biosynthesis (FAS) and related metabolic pathways is very precisely coordinated. A key feature of the FAS pathway is the acyl carrier protein (ACP), which is a small acidic protein that tethers acyl intermediates via a high-energy thioester bond and shuttles them between enzymes. In Escherichia coli, ACP is one of the most abundant soluble proteins with about 60000 copies per cell. Despite being the subject of extensive biochemical and structural studies for several decades, a reliable snapshot of ACP-bound species in any organism under different conditions is unavailable. Previously used methods are severely limited in their capacity to differentiate fatty acid intermediates, suffer from poor reproducibility, require elaborate instrumentation and cannot be used in an ideal setting for determining intracellular fluxes. This dissertation describes a sensitive and facile method to identify and quantify the physiological level of acyl-ACP species in E. -
LECTURE 3: Li-Ion (& Proton) Conductors
LECTURE 3: Li-ion (& proton) conductors Tuesdays: 10.15 - 12.00 Functional Inorganic Materials Thursdays: 10.15 - 12.00 Fall 2020 Remote Zoom lectures # Date Who Topic 1 Tue 27.10. Maarit Introduction + Superconductivity: High-Tc superconducting Cu oxides 2 Thu 29.10. Maarit Ionic conductivity (Oxygen): SOFC & Oxygen storage 3 Tue 03.11. Maarit Ionic conductivity (Lithium & Proton): Li-ion battery 4 Thu 05.11. Maarit Hybrid materials 5 Tue 10.11. Antti Thermal conductivity 6 Thu 12.11. Antti Thermoelectricity 7 Tue 17.11. Antti Ferro-, pyro-, and piezoelectricity 8 Thu 19.11. Antti Magnetic and multiferroic oxides 9 Tue 24.11. Mady Metal-based energy-saving applications 10 Thu 26.11. Mady Metal-based energy-efficient windows and solar absorbers 11 Tue 01.12. Mady Metal oxides for energy-saving applications: Past and new trends 12 Thu 03.12. Mady Materials design and new perspectives # DATE TOPIC & KEYWORDS 1 27.10. (High-Tc) Superconductivity New-material design, Multi-layered crystal structure, Mixed-valency, Oxygen nonstoichiometry 2 29.11. Ionic conductivity: Oxygen Oxygen vacancies, Redox-active cations, Mixed valency, Cation substitutions (isovalent/aliovalent), Crystal symmetry, Oxygen storage, SOFC 3 03.11. Ionic conductivity: Hydrogen & Lithium Water absorption & Oxide/hydroxide, Li-ion battery, Solid-state electrolytes 4 05.11. Hybridmaterials Inorganic-organic materials, MOF, ALD/MLD, Layer-engineering LECTURE EXERCISE 3 1. Which useful function could be anticipated for an oxygen-deficient oxide material that can absorb water? Explain ! 2. Explain why a layered crystal structure is useful for Li-ion battery electrode materials. 3. What happens to (a) structure, (b) electrical conductivity, and (c) ) Li-ion conductivity of Li3PO4 when nitrogen is introduced into it to form LiPON (LixPOyNz) ? Why these are important changes ? NOTE: There will be an additional question in the Exercise 4 which is partly related to the topics covered in Lecture 3. -
Japan Prize 2019
dic196 2019 ARK Mori Building, East Wing 35th Floor, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6035, JAPAN Tel: +81-3-5545-0551 Fax: +81-3-5545-0554 www.japanprize.jp CONTENTS Significance of the JAPAN PRIZE 1 JAPAN PRIZE - Peace and prosperity for mankind 2 The Japan Prize Foundation 3 Main Activities of the Foundation 4 THE JAPAN PRIZE 5 ■ Background of Establishment ■ Nomination and Selection Process ■ Fields Selection Committee and Selection Committee ■ Fields Eligible for the 2020 Japan Prize Profiles of Japan Prize Laureates 9 Directors, Auditors and Councilors of the Foundation 33 Significance of the JAPAN PRIZE Chairman Yoshio Yazaki The peace and prosperity of mankind are the common The strong desires and aspirations of the first president, aspirations for people of the world. When looking back Konosuke Matsushita (The founder of Panasonic), and over the history of humanity, science and technology have many of the predecessors involved in the creation of the played an immense role in this cause. prize still live on in Matsushita’s philosophy of “Lifelong The Japan Prize is an international award presented to Ambition”. individuals whose original and outstanding achievements Every year in April, the Presentation Ceremony and are not only scientifically impressive but have also served to Banquet are held in Tokyo in the presence of Their promote peace and prosperity for all mankind. Since its Majesties the Emperor and Empress of Japan, and are also inception in 1985, the Foundation has awarded 96 laureates attended by prominent figures such as the Speaker of the from 13 countries as of this year. -
Research News … from Albany Medical Center
FALL 2017 Scientists studying cancer, Research News … cardiovascular disease, immunology and neurosciences help fulfi ll Albany Med’s mission as a major from Albany Medical Center biomedical research center. Quickening the Pace of Medical Discovery Albany Med’s research enterprise drives innovation in both patient care and education while also fueling the local economy and our reputation as a leader in developing new bioscientifi c knowledge and technology. The promise of biomedical and clinical research, INSIDE THIS ISSUE and the combination of the two, has never been greater. Gene Editing Pioneers With this newsletter we bring you up-to-date on some of the many exciting research 2 Selected to Receive activities at Albany Medical Center. Albany Prize Albany Med, Rensselaer Researchers 4 Collaborate to Advance Personalized Anti-Cancer Drugs Awards Assist Faculty 5 Researchers’ Pursuits Meet Our Newest 6 Faculty Members Please join us for a special Panel Discussion with the Pioneers of CRISPR-Cas9 Gene Editing, the 2017 recipients of the Albany Medical Center Prize in Medicine and Biomedical Research Tuesday, Sept. 26, 2017 4 - 5:30 p.m. Albany Medical Center ME-700 Light refreshments will be provided FALL 2017 Gene Editing Pioneers Selected to Receive Albany Prize For their roles in the creation of a remarkable gene Engineering, Massachusetts Institute of Technology, editing system that has been called the “discovery of the Cambridge, Mass. century,” fi ve researchers have been announced as the recipients of the Albany Medical Center Prize in Medicine The $500,000 award has been given annually since 2001 and Biomedical Research for 2017.