UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations Title Illuminating the Twilight Zone: Diet and Foraging Strategies of a Deep-Sea Predator, the Northern Elephant Seal Permalink https://escholarship.org/uc/item/8tv893m7 Author Goetsch, Chandra Publication Date 2018 Supplemental Material https://escholarship.org/uc/item/8tv893m7#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SANTA CRUZ ILLUMINATING THE TWILIGHT ZONE: DIET AND FORAGING STRATEGIES OF A DEEP-SEA PREDATOR, THE NORTHERN ELEPHANT SEAL A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ECOLOGY AND EVOLUTIONARY BIOLOGY by Chandra Goetsch December 2018 The Dissertation of Chandra Goetsch is approved: _________________________________ Professor Daniel P. Costa, Chair _________________________________ Professor Pete Raimondi _________________________________ Dr. Elliott L. Hazen _________________________________ Professor Raphael M. Kudela _________________________________ Lori Kletzer Vice Provost and Dean of Graduate Studies Copyright © by Chandra Goetsch 2018 TABLE OF CONTENTS LIST OF TABLES ...................................................................................... vii LIST OF FIGURES...................................................................................... ix ABSTRACT .............................................................................................. xiv ACKNOWLEDGEMENTS ......................................................................... xvii DEDICATION ......................................................................................... xxvi INTRODUCTION ..........................................................................................1 Broad Context ......................................................................................................... 1 Dissertation Summary ............................................................................................ 5 References ................................................................................................................ 8 CHAPTER 1: Energy-Rich Mesopelagic Fishes Revealed as a Critical Prey Resource for a Deep-Diving Predator using Quantitative Fatty Acid Signature Analysis.........................................................................13 1.1 Abstract............................................................................................................ 13 1.2 Introduction ..................................................................................................... 14 1.3 Materials and Methods ................................................................................... 18 1.3.1 Ethics Statement......................................................................................... 19 1.3.2 Field Methods ............................................................................................ 19 Elephant seal sampling................................................................................. 19 Collecting the prey library ........................................................................... 20 1.3.3 Prey Classification ..................................................................................... 21 1.3.4 Lipid Analysis ............................................................................................ 23 Lipid extraction ............................................................................................ 23 Gas chromatography and FA profiles .......................................................... 24 Fatty acid subset ........................................................................................... 25 1.3.5 QFASA Diagnostics................................................................................... 25 Calculation of calibration coefficients ......................................................... 26 iii Predator FA values outside the range of the prey ........................................ 27 Prey library reduction .................................................................................. 27 Non-metric dimensional scaling ................................................................... 28 LOPO analysis.............................................................................................. 29 Drop core prey (DCP) analysis .................................................................... 29 1.3.6 Quantitative Fatty Acid Signature Analysis .............................................. 31 Final diet estimation ..................................................................................... 31 Quantifying QFASA model error: Diet simulations ..................................... 31 1.4 Results .............................................................................................................. 32 1.4.1 QFASA Diagnostics................................................................................... 32 Reliability of the calibration coefficients ..................................................... 32 Degree of prey confounding ......................................................................... 33 Simulations and prey-specific error ............................................................. 34 1.4.2 Diet Characterization ................................................................................. 35 1.5 Discussion ........................................................................................................ 37 1.5.1 Diet of Female Northern Elephant Seals ................................................... 37 1.5.2 Evaluating QFASA .................................................................................... 43 1.5.3 Conclusions ................................................................................................ 45 1.6 References ........................................................................................................ 47 CHAPTER 2: Spatial, Seasonal, and Interannual Diet Differences Revealed for a Deep-Diving Ocean Predator ......................................68 2.1 Abstract............................................................................................................ 68 2.2 Introduction ..................................................................................................... 69 2.3 Materials and Methods ................................................................................... 73 2.3.1 Sample Collection ...................................................................................... 73 2.3.2 Lipid Analysis and QFASA ....................................................................... 75 2.3.3 Prey Functional Groups ............................................................................. 76 2.3.4 Spatial Strategy Classification ................................................................... 77 2.3.5 Statistical Analyses .................................................................................... 77 2.4 Results .............................................................................................................. 79 iv 2.4.1 Spatial Variability in Diet .......................................................................... 79 Between-province variability: Winter-Spring .............................................. 80 Between-province variability: Summer-Fall ................................................ 81 2.4.2 Temporal Variability in Diet ...................................................................... 82 Interannual variability: Winter-Spring ........................................................ 83 Interannual variability: Summer-Fall .......................................................... 84 2.5 Discussion ........................................................................................................ 85 2.5.1 Influence of Intrinsic Physiological Constraints ........................................ 86 2.5.2 Influence of the Oxygen Minimum Zone (OMZ) ...................................... 88 2.5.3 Influence of Ocean Climate Variability ..................................................... 91 2.5.4 Conclusions ................................................................................................ 94 2.6 References ........................................................................................................ 96 CHAPTER 3: Vertical Foraging Strategies Reflect Spatiotemporal Differences in Diet for a Mesopelagic Predator ................................114 3.1 Abstract.......................................................................................................... 114 3.2 Introduction ................................................................................................... 115 3.3 Materials and Methods ................................................................................. 119 3.3.1 Elephant Seal Sampling ........................................................................... 119 3.3.2 Diet Determination................................................................................... 120 3.3.3 Diving and Movement Data Processing .................................................. 121 3.3.4 Classification of Vertical Foraging Strategies ......................................... 122 3.3.5 Individual Diet Specialization and Site Fidelity ...................................... 122 3.3.6 Statistical Analyses .................................................................................
Recommended publications
  • Feeding Habits and Feeding Grounds of the Northern Elephant Seal Richard
    FEEDING HABITS AND FEEDING GROUNDS OF THE NORTHERN ELEPHANT SEAL RICHARDCONDIT AND BUHNEYJ, LE BOEUF Department of Biology, University of California, Santa Cruz, CA 95064 ABSTRAC’r-Prey species consumed by northern elephant seals were identified from the stom- ach and throat contents of dead seals and from observations of prey captured. Their diet is catholic, consisting of a variety of pelagic, deep water squid, Pacific hake, sharks, rays, and ratfish. Feeding grounds of elephant seals were inferred from sightings of tagged elephant seals at non-rookery locations. Feeding areas extended from northern Baja California to northern Vancouver Island. Juveniles of both sexes and adult males moved north from their haul out sites in search of food, travelling furthest north during the summer. A few sightings suggested that adult females remain in the vicinity of the rookeries where they breed. Northern elephant seals, Mirounga angustirostris, breed and molt in large aggregations on land in Baja California and California, but spend the majority of the year feeding at sea. The large breeding aggregations are easy to observe and a great deal is known about the elephant seal’s reproductive behavior (Le Boeuf, 1974; Reiter et al., 1981). In contrast, the animals are rarely observed at sea and little is known about their feeding biology. Existing information on the food habits of the northern elephant seal comes from the exam- ination of stomach contents of only nine specimens (Huey, 1930; Freiberg and Dumas, 1954; Cowan and Guiguet, 1956; Morejohn and Baltz, 1970; Antonelis and Fiscus, 1980; Jones, 1981). The remains of sharks, ratfish, squids, and bony fish were identified.
    [Show full text]
  • Fish Bulletin 152. Food Habits of Albacore, Bluefin Tuna, and Bonito in California Waters
    UC San Diego Fish Bulletin Title Fish Bulletin 152. Food Habits of Albacore, Bluefin Tuna, and Bonito In California Waters Permalink https://escholarship.org/uc/item/7t5868rd Authors Pinkas, Leo Oliphant, Malcolm S Iverson, Ingrid L.K. Publication Date 1970-06-01 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 152 Food Habits of Albacore, Bluefin Tuna, and Bonito In California Waters By Leo Pinkas , Malcolm S. Oliphant, and Ingrid L. K. Iverson 1971 1 2 ABSTRACT The authors investigated food habits of albacore, Thunnus alalunga, bluefin tuna, Thunnus thynnus, and bonito, Sarda chiliensis, in the eastern North Pacific Ocean during 1968 and 1969. While most stomach samples came from fish caught commercially off southern California and Baja California, some came from fish taken in central Califor- nia, Oregon, and Washington waters. Standard procedures included enumeration of food items, volumetric analysis, and measure of frequency of occur- rence. The authors identified the majority of forage organisms to the specific level through usual taxonomic methods for whole animals. Identification of partially digested animals was accomplished through the use of otoliths for fish, beaks for cephalopods, and the exoskeleton for invertebrates. A pictorial guide to beaks of certain eastern Pacific cephalopods was prepared and proved helpful in identifying stomach contents. This guide is presented in this publication. The study indicates the prominent forage for bluefin tuna, bonito, and albacore in California waters is the northern anchovy, Engraulis mordax. 3 ACKNOWLEDGMENTS The Food Habits Study of Organisms of the California Current System, (Project 6–7-R), was an investigation estab- lished under contract between the U.S.
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]
  • Giant Protistan Parasites on the Gills of Cephalopods (Mollusca)
    DISEASES OF AQUATIC ORGANISMS Vol. 3: 119-125. 1987 Published December 14 Dis. aquat. Org. Giant protistan parasites on the gills of cephalopods (Mollusca) Norman ~c~ean',F. G. ~ochberg~,George L. shinn3 ' Biology Department, San Diego State University, San Diego, California 92182-0057, USA Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta Del Sol Road, Santa Barbara, California 93105. USA Division of Science, Northeast Missouri State University, Kirksville. Missouri 63501, USA ABSTRACT: Large Protista of unknown taxonomic affinities are described from 3 species of coleoid squids, and are reported from many other species of cephalopods. The white to yellow-orange, ovoid cyst-like parasites are partially embedded within small pockets on the surface of the gills, often in large numbers. Except for a holdfast region on one side of the large end, the surface of the parasite is elaborated into low triangular plates separated by grooves. The parasites are uninucleate; their cytoplasm bears lipid droplets and presumed paraglycogen granules. Trichocysts, present in a layer beneath the cytoplasmic surface, were found by transmission electron microscopy to be of the dino- flagellate type. Further studies are needed to clarify the taxonomic position of these protists. INTRODUCTION epoxy resin (see below). One specimen each of the coleoid squids Abralia trigonura and Histioteuthis dof- Cephalopods harbor a diversity of metazoan and leini were trawled near Oahu, Hawaii, in March, 1980. protozoan parasites (Hochberg 1983). In this study we Gill parasites from the former were fixed in formalin; used light and electron microscopy to characterize a those from the latter were fixed in osmium tetroxide.
    [Show full text]
  • A Review of Direct and Indirect Impacts of Marine Dredging Activities on Marine Mammals
    A review of direct and indirect impacts of marine dredging activities on marine mammals Family Scientific name Common name Range of best Frequency of Minimum Methodology Diet Region Habitat Documented Effects of Potential Effects of Dredging (excluding (including hearing (10 dB minimum hearing Dredging subspecies) subspecies) from max; kHz) hearing threshold (dB threshold (kHz) re 1 µPa) Otariidae Arctocephalus Cape & Unknown; — — — Fish (e.g. Emmelichthys nitidus, F, J (Kirkman et Continental shelf waters (IUCN, — Habitat destruction, increase in pusillus Australian fur fundamental Pseudophycis bachus, Trachurus al., 2007; IUCN, 2012) turbidity, changes to prey seal frequency of declivis, Neoplatycephalus 2013; Perrin, availability, masking, incidental male in air barks Richardsoni) (Australian fur seal) 2013) capture or injury, avoidance & is 0.14 & female (Page et al., 2005) an increase in shipping traffic in air barks is 0.15 (Tripovich et al., 2008) Arctophoca Antarctic fur seal Unknown; peak — — — Fish (e.g. Gymnoscopelus A, F, J (IUCN, Forage in deep waters (>500 m) — Habitat destruction, increase in gazella frequency of in piabilis, Electrona subaspera, 2013; Perrin, with a strong chlorophyll turbidity, changes to prey air barks is 0.3– Champsocephalus gunnari) 2013; Reeves et concentration & steep availability, masking, incidental 5.9 (Page et al., (Guinet et al., 2001) al., 2002) bathymetric gradients, otherwise capture or injury, avoidance & 2002) remains close to the colony in an increase in shipping traffic areas with Polar
    [Show full text]
  • Identification and Estimation of Size from the Beaks of 18 Species of Cephalopods from the Pacific Ocean
    17 NOAA Technical Report NMFS 17 Identification and Estimation of Size From the Beaks of 18 Species of Cephalopods From the Pacific Ocean Gary A. Wolff November 1984 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORTS NMFS The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implemen­ tation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS series was established in 1983 to replace two subcategories of the Technical Reports series: "Special Scientific Report-Fisheries" and "Circular." The series contains the following types of reports: Scientific investigations that document long-term continuing programs of NMFS, intensive scientific reports on studies of restricted scope, papers on applied fishery problems, technical reports of general interest intended to aid conservation and management, reports that review in considerable detail and at a high technical level certain broad areas of research, and technical papers originating in economics studies and from management investigations.
    [Show full text]
  • Locomotor, Chromatic, Postural, and Bioluminescent Behaviors of the Deep-Sea Squid Octopoteuthis Deletron Young 1972
    Reference: Biol. Bull. 216: 7–22. (February 2009) © 2009 Marine Biological Laboratory Behaving in the Dark: Locomotor, Chromatic, Postural, and Bioluminescent Behaviors of the Deep-Sea Squid Octopoteuthis deletron Young 1972 STEPHANIE L. BUSH1,2,*, BRUCE H. ROBISON2, AND ROY L. CALDWELL1 1University of California, Berkeley, Department of Integrative Biology, Berkeley, California 94720; and 2Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd., Moss Landing, California 95039 Abstract. Visual behaviors are prominent components of tion (Packard and Sanders, 1971; Packard and Hochberg, intra- and interspecific communication in shallow-water 1977; Hanlon and Messenger, 1988, 1996). These cephalo- cephalopods. Meso- and bathypelagic cephalopods were be- pods assess their surroundings with well-developed vision, lieved to have limited visual communication, other than biolu- though in most species vision is monochromatic (Messen- minescence, due to the reduced illumination at depth. To ger, 1977; Kito et al., 1992; Shashar et al., 1998; Sweeney explore potential visual behaviors in mesopelagic squid, we et al., 2007). Individuals are capable of polyphenism con- used undersea vehicles to observe 76 individuals of Octopo- sisting of near instantaneous changes in appearance through teuthis deletron. In contrast to predictions, we found this spe- a broad range of camouflage and communication methods cies capable of a variety of visually linked behaviors not (Packard and Sanders, 1971; Packard and Hochberg, 1977; previously reported for a deep-ocean cephalopod. The resultant Hanlon and Messenger, 1988; Roper and Hochberg, 1988; ethogram describes numerous chromatic, postural, locomotor, Hanlon et al., 1999a; Barbato et al., 2007). An individual’s and bioluminescent behavioral components. A few common overall appearance, or body pattern, is composed of the body patterns—the whole appearance of the individual involv- following component types: chromatic, textural, postural, ing multiple components—are characterized.
    [Show full text]
  • The Natural Resources of Monterey Bay National Marine Sanctuary
    Marine Sanctuaries Conservation Series ONMS-13-05 The Natural Resources of Monterey Bay National Marine Sanctuary: A Focus on Federal Waters Final Report June 2013 U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service Office of National Marine Sanctuaries June 2013 About the Marine Sanctuaries Conservation Series The National Oceanic and Atmospheric Administration’s National Ocean Service (NOS) administers the Office of National Marine Sanctuaries (ONMS). Its mission is to identify, designate, protect and manage the ecological, recreational, research, educational, historical, and aesthetic resources and qualities of nationally significant coastal and marine areas. The existing marine sanctuaries differ widely in their natural and historical resources and include nearshore and open ocean areas ranging in size from less than one to over 5,000 square miles. Protected habitats include rocky coasts, kelp forests, coral reefs, sea grass beds, estuarine habitats, hard and soft bottom habitats, segments of whale migration routes, and shipwrecks. Because of considerable differences in settings, resources, and threats, each marine sanctuary has a tailored management plan. Conservation, education, research, monitoring and enforcement programs vary accordingly. The integration of these programs is fundamental to marine protected area management. The Marine Sanctuaries Conservation Series reflects and supports this integration by providing a forum for publication and discussion of the complex issues currently facing the sanctuary system. Topics of published reports vary substantially and may include descriptions of educational programs, discussions on resource management issues, and results of scientific research and monitoring projects. The series facilitates integration of natural sciences, socioeconomic and cultural sciences, education, and policy development to accomplish the diverse needs of NOAA’s resource protection mandate.
    [Show full text]
  • Visual Cognition in Deep-Sea Cephalopods: What We Don't
    Trim: 247mm × 174mm Top: 12.653mm Gutter: 16.871mm CUUK2624-10 CUUK2624/Darmaillacq ISBN: 978 1 107 01556 2 March 13, 2014 11:45 10 Visual cognition in deep-sea cephalopods: what we don’t know and why we don’t know it Sarah Zylinski and Sonke¨ Johnsen 10.1 The other cephalopods A quick glance at the recent cephalopod literature, or even at the chapters of this book, tells us that when we talk about cephalopod cognition we are really considering cognition in a handful of genera. There can be no argument that studies of these animals have led to remarkable results that have challenged the traditional view of invertebrate intelligence. Yet when we consider that less than 10 species of cephalopod are commonly seen as the focus of behavioral studies, let alone in studies specifically about cognition, it becomes apparent that claims regarding the cognitive capabilities of cephalopods are generali- zations drawn from work on a handful of genera. The majority of the 800 or so described species of cephalopod do not share the neritic and near-shore benthic habitats of the taxa with which we are most familiar; virtually unknown in terms of their behaviour and ecology, these species inhabit a different world in the deep, dark waters of the open ocean (Figure 10.1). In this chapter, we introduce and discuss the neglected cephalopods of the deep sea, many of which are not so distantly related to the species with which we are familiar, but whose existence in the deep sea has little in common with the complex reefs and near- shore habitats associated with taxa such as Octopus and Sepia.
    [Show full text]
  • Diet and Foraging Strategies of a Deep-Sea Predator, the Northern Elephant Seal
    UNIVERSITY OF CALIFORNIA SANTA CRUZ ILLUMINATING THE TWILIGHT ZONE: DIET AND FORAGING STRATEGIES OF A DEEP-SEA PREDATOR, THE NORTHERN ELEPHANT SEAL A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ECOLOGY AND EVOLUTIONARY BIOLOGY by Chandra Goetsch December 2018 The Dissertation of Chandra Goetsch is approved: _________________________________ Professor Daniel P. Costa, Chair _________________________________ Professor Pete Raimondi _________________________________ Dr. Elliott L. Hazen _________________________________ Professor Raphael M. Kudela _________________________________ Lori Kletzer Vice Provost and Dean of Graduate Studies Copyright © by Chandra Goetsch 2018 TABLE OF CONTENTS LIST OF TABLES ...................................................................................... vii LIST OF FIGURES...................................................................................... ix ABSTRACT .............................................................................................. xiv ACKNOWLEDGEMENTS ......................................................................... xvii DEDICATION ......................................................................................... xxvi INTRODUCTION ..........................................................................................1 Broad Context ......................................................................................................... 1 Dissertation Summary ...........................................................................................
    [Show full text]
  • Feeding Habits and Trophic Level of the Smooth Hammerhead Shark
    Journal of the Marine Biological Association of the United Kingdom, 2019, 99(3), 673–680. # Marine Biological Association of the United Kingdom, 2018 doi:10.1017/S0025315418000474 Feeding habits and trophic level of the smooth hammerhead shark, Sphyrna zygaena (Carcharhiniformes: Sphyrnidae), off Ecuador colombo estupin~a’ n-montan~o1,2, luis ceden~o-figueroa3, jose’ f. estupin~a’ n-ortiz1, felipe galva’ n-magan~a4, alejandro sandoval-london~o1,5, david castan~eda-suarez6 and carlos j. polo-silva6 1Fundacio´n Alium Pacific, Carrera 26 No. 5C–13, Cali, Colombia, 2Servicio Nacional de Aprendizaje, Centro Agroindustrial y Pesquero de la Costa Pacı´fica, La Chiricana km 21, Tumaco, Colombia, 3Facultad Ciencias del Mar, Universidad Laica “Eloy Alfaro” de Manabı´, Manta, Ecuador, 4Instituto Polite´cnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, La Paz, Baja California Sur, C.P. 23096, Mexico, 5Corporacio´n Acade´mica Ambiental, Universidad de Antioquia, Calle 70 No. 52-21, Medellı´n, Colombia, 6Facultad de Ciencias Naturales e Ingenierı´a, Programa de Biologı´a Marina, Universidad de Bogota´ Jorge Tadeo Lozano, Santa Marta, Colombia As apex predators, sharks are known to play an important role in marine food webs. Detailed information on their diet and trophic level is however needed to make clear inferences about their role in the ecosystem. A total of 335 stomachs of smooth hammerhead sharks, Sphyrna zygaena, were obtained from commercial fishing vessels operating in the Ecuadorian Pacific between January and December 2004. A total of 53 prey items were found in the stomachs. According to the Index of Relative Importance (%IRI), cephalopods were the main prey (Dosidicus gigas, Sthenoteuthis oualaniensis, Ancistrocheirus lesueurii and Lolliguncula [Loliolopsis] diomedeae).
    [Show full text]