Stellar Population Synthesis of NGC 2336 and NGC2841 Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Stellar Population Synthesis of NGC 2336 and NGC2841 Galaxies Il Cielo come Laboratorio A.S. 2010-2011 Stellar population synthesis of NGC 2336 and NGC2841 galaxies Gastaldello Niccolo´1, Saggin Filippo1, Zanini Valentina2 1Liceo G.B. Quadri, Vicenza 2Liceo Don G. Fogazzaro, Vicenza Abstract. We examined the spectra of galaxies NGC 2336 and NGC 2841 in order to determine a model of the stellar population for different parts of the galaxies. The two–dimensional spectra were divided into various parts and the obtained monodimensional spectra were compared with a suitable linear combination of standard star spectra, from O type to M type. Also the influence of internal reddening was examined, considering one of the many spectra analysed. 1. Introduction C spectrograph, 300 tr./mm grating and 200 microns slit width. Telescope scale: 10.78 arcsec/mm ; ccd scale: The observed spectrum of a given galaxy is an integra- 0.63 arcsec/pixel. Exposure time and slit position angle tion of the spectra of the stars dust and gas that compose p.a. are reported in the following table: it and, obviously, it depends on the percentage of the stars of different type. Stellar population synthesis con- sists in reproducing the observed spectrum of a galaxy Object exp. time (s) P.A.(0) with a linear combination of stellar spectra of various NGC 2336 1800 75 types. This studies are crucial in understanding galax- NGC 2841 900 60 ies structure even in relation with the galaxy morpho- logical type, and in understanding stellar formation and evolution phenomena. A galaxy has not an uniform composition of stars: the amount of young and old stars changes in its sub- structure. In the center of the galaxy (bulge) there are older and colder stars than in the disk and arms, where the stars are younger and hotter. Moreover, in the outer regions of spiral galaxies the presence of gases is greater than in the bulge. The gases and the interstellar dust are also responsible of a modification of spectra, with an effect called galactic extinction. It consists in an absorption and a scattering of the light, depending NGC 2336 on the wavelength. From the moment that the size of the dust granules is similar to the blue light wavelength ( 400 nm ), the intensity of the blue light is more atten- uated than the red light, resulting in a spectrum which is redder than expected (reddening). On the stellar pop- ulation this phenomenon causes an underestimation of blue stars. 2. Observational Data We analysed the spectra of the two galaxies NGC 2336 and NGC 2841, taken with 1.22 m Galileo telescope at Colle Pennar Observatory in Asiago, equipped with B& NGC 2841 Gastaldello, Saggin, Zanini: Stellar population synthesis of NGC 2336 and NGC2841 1 The main features of the galaxies are reported in the v ∆λ following table. Data source: NED archive z = = c λ0 The following table summarizes the z measurements for Object NGC 2336 NGC 2841 R.A. 07h27m04.05s 09h22m02.634s the selected spectral lines: Dec. +80d10m41.1s +50d58m35.47s Morph. Type SAB(r)bc SA(r)b redshift z (10−3) mag. (V) 10.43 9.22 lines NGC 2336 NGC 2841 d (Mpc) 33.617 17.823 Hβ – 2,50 −3 z (10 ) 7.35 2.128 [NII] 7.22 1.97 Na 7.42 – CaK 7.45 – 3. Work description CaH 7.22 – z 7.33 2.23 Using the software IRAF (Image Reduction and Analysis Facility – NOAO), we started extracting a number of subimages (monodimensional spectra) from Our measurements are in good agreement with the two-dimensional spectra. We selected the subim- those found in the Nasa/Ipac extragalactic database. ages examining the Hα emission line, obtaining a num- In order to compare standard stellar spectra with the ber of intensity profiles from the center to the edge of ours, we normalized them so that at 5500 Å the inten- our galaxies. sity value was 1 (arbitrary units). We smoothed each spectrum (key s of splot; pixel number: 5.) so reducing the noise. The last operation was to convert the spec- tra from fits format to ASCII tables, in order to employ Topcat for the next step analysis (task wspectext). 4. Analysis and results ff NGC 2841 regions (yellow arrow: field star) Standard spectra of di erent star types (from O to M), were used to fit the model of the spectra of our galaxies. We considered a mean spectrum for any different main spectral type (O,B,A,F,G,K,M), taking the mean value of the various subclasses (e.g.: B1, B2, B3....B9). Using software Topcat we guessed a lot of linear combinations of standard star spectra in order to fit our galaxies spectra as good as possible. The better models of each galaxy region are reported in the following scheme: NGC 2336 regions NGC 2841 We examined 6 subimages for NGC 2841 and 6 for region stellar population synthesis NGC 2336. For each spectrum (subimage) we had to do a 55%G 40%K 5%M various corrections. b 50%G 45%K 5%M The first operation was to correct the reddening of c 30%G 70%K the spectrum due to the interstellar dust of our galaxy, d 55%G 45%K the Milky Way, using the task deredden of the pack- e 60%G 40%K age onedspec; we used the value A(V),taken from the f 80%F 15%G 5%K Nasa/Ipac extragalactic database, which was 0.052 mag for the NCG 2841 and 0.109 mag for the NGC 2336. A(V) is the total extinction at the visual band at 5550 Å. For one region of NGC 2336 we did also the reddening NGC 2336 correcton due to internal extinction. We guessed three region stellar population synthesis different A(V) value: 0.25 - 0.75 - 1.50. The next step a 10%B 60%F 30%G was to correct the redshift, operation done with the task b 70%F 10%G 20%K newredshift of the package tools. The redshift was mea- c 80%F 15%G 5%K sured on the central galaxy region, to avoid the galaxy d 15%F 25%G 55%K 5%M rotation effect. We calculated the redshift using the for- e 20%G 80%K mula: f 20%F 10%G 60%K 10%M 2 Gastaldello, Saggin, Zanini: Stellar population synthesis of NGC 2336 and NGC2841 NGC 2336 (a) – internal extintion guess NGC2841 – Residual A(V) mag stellar population synthesis region mean σ min max 0.11 10%B 60%F 30%M a 0.0235 0.1144 -0.2579 1.4896 0.25 25%B 50%F 25%G b 0.0292 0.0976 -0.2165 1.0238 0.75 40%B 30%F 30%G c 0.0044 0.0639 -0.2350 0.2018 1.50 80%B 10%F 10%G d 0.0436 0.1080 -0.4373 1.2786 e 0.0496 0.1474 -0.6732 1.8546 f 0.0718 0.4706 -2.1342 6.6196 The following images show some examples of the obatined fit: NGC2336 – Residual region mean σ min max a 0.0520 0.2206 -0.6962 2.3296 b 0.2542 0.1761 -0.5991 1.3066 c 0.0411 0.1975 -0.5005 2.0669 d 0.0446 0.1167 -0.5596 0.7848 e 0.0175 0.0679 -0.2593 0.2351 f 0.0499 0.1931 -1.2014 0.9319 NGC 2336 e region 5. Results As espected the galaxies show a different stellar distri- bution from the center to the edge. The bulge has more stars of the late spectral types while on the edge we find hot and young stars. In fact the disk and the spiral arms are the zone where the star formation is more active. For galaxy NGC 2336 the fit was more difficult and, at the end, the results were less satisfactory than the ones NGC 2336 e region – residual relative to te galaxy NGC 2841. We found a quite good simmetry in our models with respect to the galaxy cen- ter. At the end, only for region a of galaxy NGC 2336 we attempted to consider three different values of the internal extinction. We show that this parameter has a great influence in the stellar composition model: in fact, the hot to cold star percentage varies from 25% – 25% to 80% – 10% assuming A(V) = 0.25 or A(V) = 1.5 respectively. Unfortunately, the internal reddening for NGC 2841 d region a given galaxy is not known and indeed rigorous mod- els consider A(V) as a free parameter to be fitted by the model itself. NGC 2336 shows a minor cold stars content (few percentance of M star), compared with to NGC 2841 that seems dominated by G, K and M stars. References http://nedwww.ipac.nasa.gov NGC 2841 d region – residual We analyzed the residual (O–C) that is the differ- ence between the observed galaxy spectrum ad the syn- tetic one (the model). We compute the mean value, the standard deviation σ and the minimum and maximum values in order to evaluate the obtained fit. As you can see, apart the region “f” for NGC 2841 and region “a” for NGC 2336 these values support the reliability of our fit, although the fits themselves were made “by eye”..
Recommended publications
  • Big Halpha Kinematical Sample of Barred Spiral Galaxies - I
    BhaBAR: Big Halpha kinematical sample of BARred spiral galaxies - I. Fabry-Perot Observations of 21 galaxies O. Hernandez, C. Carignan, P. Amram, L. Chemin, O. Daigle To cite this version: O. Hernandez, C. Carignan, P. Amram, L. Chemin, O. Daigle. BhaBAR: Big Halpha kinematical sample of BARred spiral galaxies - I. Fabry-Perot Observations of 21 galaxies. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2005, 360 Issue 4, pp.1201. 10.1111/j.1365-2966.2005.09125.x. hal-00014446 HAL Id: hal-00014446 https://hal.archives-ouvertes.fr/hal-00014446 Submitted on 26 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mon. Not. R. Astron. Soc. 360, 1201–1230 (2005) doi:10.1111/j.1365-2966.2005.09125.x BHαBAR: big Hα kinematical sample of barred spiral galaxies – I. Fabry–Perot observations of 21 galaxies O. Hernandez,1,2 † C. Carignan,1 P. Amram,2 L. Chemin1 and O. Daigle1 1Observatoire du mont Megantic,´ LAE, Universitede´ Montreal,´ CP 6128 succ. centre ville, Montreal,´ Quebec,´ Canada H3C 3J7 2Observatoire Astronomique de Marseille Provence et LAM, 2 pl.
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • Arxiv:0810.2303V1 [Astro-Ph] 13 Oct 2008 Zdeiso Rplrzdeiso Ln H Bar
    Accepted for publication in The Astrophysical Journal A Preprint typeset using LTEX style emulateapj v. 08/22/09 THE INTEGRATED POLARIZATION OF SPIRAL GALAXY DISKS Jeroen M. Stil Centre for Radio Astronomy, University of Calgary Marita Krause and Rainer Beck Max Planck Institut f¨ur Radio Astronomie, Auf dem H¨ugel, Bonn, Germany A. Russell Taylor Centre for Radio Astronomy, University of Calgary Draft version October 25, 2018 ABSTRACT We present integrated polarization properties of nearby spiral galaxies at 4.8 GHz, and models for the integrated polarization of spiral galaxy disks as a function of inclination. Spiral galaxies in our sample have observed integrated fractional polarization in the range . 1% to 17.6%. At inclinations less than 50 degrees, the fractional polarization depends mostly on the ratio of random to regular magnetic field strength. At higher inclinations, Faraday depolarization associated with the regular magnetic field becomes more important. The observed degree of polarization is lower (< 4%) for more 21 −1 luminous galaxies, in particular those with L4.8 > 2 10 W Hz . The polarization angle of the integrated emission is aligned with the apparent minor× axis of the disk for galaxies without a bar. In our axially symmetric models, the polarization angle of the integrated emission is independent of wavelength. Simulated distributions of fractional polarization for randomly oriented spiral galaxies at 4.8 GHz and 1.4 GHz are presented. We conclude that polarization measurements, e.g. with the SKA, of unresolved spiral galaxies allow statistical studies of the magnetic field in disk galaxies using large samples in the local universe and at high redshift.
    [Show full text]
  • 1983Apj. ..265 ...IA the Astrophysical Journal
    IA .... The Astrophysical Journal, 265:1-17, 1983 February 1 ..265 © 1983. The American Astronomical Society. All rights reserved. Printed in U.S.A. 1983ApJ. A DISTANCE SCALE FROM THE INFRARED MAGNITUDE/H I VELOCITY-WIDTH RELATION. IV. THE MORPHOLOGICAL TYPE DEPENDENCE AND SCATTER IN THE RELATION; THE DISTANCES TO NEARBY GROUPS Marc Aaronson Steward Observatory, University of Arizona AND Jeremy Mould Kitt Peak National Observatory1 Received 1982 February 5; accepted 1982 July 19 ABSTRACT A newly published catalog of infrared and 21 cm data for 300 galaxies in the Local Supercluster is analyzed in order to investigate empirically several properties of the Tully-Fisher relation. For this sample, we obtain the following results: 1. In the infrared, there is no significant dependence of the Tully-Fisher relation with type. A small type dependence is found in the blue; however, the spread in profile width at fixed magnitude is only about one-third as great as that found earlier by Roberts. 2. The slope of the Tully-Fisher relation is wavelength dependent, increasing in value from the blue to the infrared. The slope of the relation does appear steeper than previously indicated, though, and a small nonlinearity is identified. 3. The scatter in the Tully-Fisher relation is smaller in the infrared, where a ~ 0.45 mag, than in the optical. Distances to a number of nearby groups are calculated using the absolute calibration from Paper I. Good agreement in relative distance is found with both the Sandage-Tammann and de Vaucouleurs scales. Current disagreement over the absolute distance scale and value of the Hubble constant appears reduced to two issues: the infall velocity toward Virgo, and the distance scale for galaxies in the neighborhood of the Milky Way.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Arxiv:1408.6413V1 [Astro-Ph.GA] 27 Aug 2014 Ot Africa
    The Abundance Properties of Nearby Late-Type Galaxies. II. The Relation between Abundance Distributions and Surface Brightness Profiles L. S. Pilyugin1 and E. K. Grebel and I. A. Zinchenko1 Astronomisches Rechen-Institut, Zentrum f¨ur Astronomie der Universit¨at Heidelberg, M¨onchhofstr. 12–14, 69120 Heidelberg, Germany [email protected], [email protected], [email protected] A. Y. Kniazev2,3 South African Astronomical Observatory, PO Box 9, 7935 Observatory, Cape Town, South Africa [email protected] Received ; accepted arXiv:1408.6413v1 [astro-ph.GA] 27 Aug 2014 1Visiting Astronomer, Main Astronomical Observatory of National Academy of Sciences of Ukraine, 27 Zabolotnogo str., 03680 Kiev, Ukraine. 2Southern African Large Telescope Foundation, PO Box 9, 7935 Observatory, Cape Town, South Africa. 3Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow 119992, Russia –2– ABSTRACT The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W 1 band are examined for a nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric character- istics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH – SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R25) and on the properties of a galaxy: the disk scale length h and the morphological T -type. We suggest a general, four-dimensional OH – SB relation with the values r, h, and T as parameters. The parametric OH – SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that the simple relation.
    [Show full text]
  • On the X-Ray, Optical Emission Line and Black Hole Mass Properties of Local Seyfert Galaxies
    A&A 455, 173–185 (2006) Astronomy DOI: 10.1051/0004-6361:20064894 & c ESO 2006 Astrophysics On the X-ray, optical emission line and black hole mass properties of local Seyfert galaxies F. Panessa1, L. Bassani2, M. Cappi2,M.Dadina2,X.Barcons1, F. J. Carrera1,L.C.Ho3, and K. Iwasawa4 1 Instituto de Física de Cantabria (CSIC-UC), Avda. de los Castros, 39005 Santander, Spain e-mail: [email protected] 2 INAF – IASF, via P. Gobetti 101, 40129 Bologna, Italy 3 The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St. Pasadena, CA 91101, USA 4 Max Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstrasse 1, 85748 Garching, Germany Received 23 January 2006 / Accepted 4 May 2006 ABSTRACT We investigate the relation between X-ray nuclear emission, optical emission line luminosities and black hole masses for a sample of 47 Seyfert galaxies. The sample, which has been selected from the Palomar optical spectroscopic survey of nearby galaxies (Ho et al. 43 1997a, ApJS, 112, 315), covers a wide range of nuclear powers, from L2−10 keV ∼ 10 erg/s down to very low luminosities (L2−10 keV ∼ 1038 erg/s). Best available data from Chandra, XMM-Newton and, in a few cases, ASCA observations have been considered. Thanks to the good spatial resolution available from these observations and a proper modeling of the various spectral components, it has been possible to obtain accurate nuclear X-ray luminosities not contaminated by off-nuclear sources and/or diffuse emission. X-ray luminosities have then been corrected taking into account the likely candidate Compton thick sources, which are a high fraction (>30%) among type 2 Seyferts in our sample.
    [Show full text]
  • Camelopardalis Giraffe
    Lateinischer Name: Deutscher Name: Cam Camelopardalis Giraffe Atlas Karte (2000.0) Kulmination um Cambridge Star 1, 3 Mitternacht: Atlas 1, 2, 3, 4, Cam_chart.gif Sky Atlas 5 Cam_chart.gif 23. Dezember Deklinationsbereich: 53° ... 86° Fläche am Himmel: 757° 2 Benachbarte Sternbilder: Aur Cas Cep Dra Lyn Per UMa UMi Geschichte: Die Giraffe wurde erst zu Beginn des 17. Jahrhunderts in die Sternbilderkunde eingeführt und hat somit keinen mythologischen Hintergrund. Das Sternbild wird meist dem holländischen Astronomen Petrus Plancius zugeschrieben, doch hat der Mathematiker Jakob Bartsch , ein Schwiegersohn Johannes Kepler , es bereits 1624 in einem Buch erwähnt. Dieser jeder dichterischen Phantasie bare Mathematiker taufte in seinem Werk Usus astronomicus planisphaerium Argentinae diese amorphe Stelle am Himmel auf den Namen "Giraffe". Die Giraffe war im antiken Griechenland unter dem Begriff "Leoparden-Kamel" bekannt. Jakob Bartsch zog es vor, das Sternbild als Kamel zu bezeichnen, namentlich das Kamel, welches Rebekka von Haran nach Kanaan brachte um Isaak zu heiraten. (Genesis 24:61). Weitere von Bartsch benannte Sternbilder sind Columba und Monoceros . Da die Astronomen ungern einmal eingebürgerte Sternbildnamen ändern, blieb Camelopardalis (auch Camelopardus) bis auf den heutigen Tag erhalten. [bk7 , bk21 , dq1 ] Sternbild: Zwischen dem Sternbild Auriga und dem Polarstern klafft am Firmament eine Stelle gähnender Leere. Nur wenige Sterne erreichen eine Helligkeit, die unser Auge fesseln und zu einer Assoziation verleiten würde. Gerade
    [Show full text]
  • Abenteuer Astronomie 2 | April/Mai 2016 Fokussiert
    Abenteuer Astronomie 2 | April/Mai 2016 fokussiert Titelbild: Merkur, der merkwürdige innerste Planet des Sonnensystems, aufgenommen von der Raumsonde Messenger. NASA Ronald Stoyan Chefredakteur REDAKTION IM EINSATZ Astronomie immer und überall Jeden Tag ein astronomisches Erlebnis – das ist mein Mot- to. Mobile Ausrüstung ist dabei nützlich: So oft es geht beobachte ich die Sonne im Hα-Licht mit meinem kleinen . t Refraktor. Für unterwegs habe ich ein kleines Fernglas g oder ein 8×21-Monokular mit Weißlicht-Sonnenfi lter. Aber Liebe Leserinnen, liebe Leser, nicht immer braucht man ein optisches Hilfsmittel. Merkur, der innerste Planet, passt irgendwie nicht recht zum Ich versuche mir jeden Tag Zeit zu nehmen für fünf Minu- restlichen Planetensystem um unsere Sonne. Er ist kleiner als der ten Verbindung mit dem Kosmos, die Augen off en zu hal- ist untersa größte Mond Jupiters, besitzt eine auff ällig exzentrische Bahn, eine g ten für jene kurzen Augenblicke ins All, die den meisten ungewöhnlich langsame Eigenrotation – und auch seine Oberfl ä- Menschen nicht einmal gewahr sind. Das ist vielleicht nur che gibt Rätsel auf. Michael Montenbrey betrachtet den merkwür- reitun die Sonnenscheibe mit Fleck im dichten Nebel, der Auf- digen Planeten im Hauptartikel dieser Ausgabe näher, und wid- b gang des Vollmonds über der Autobahn oder der blinken- met sich besonders den noch nicht ganz verstandenen Strukturen de Sirius in einer Wolkenlücke. Für mich sind das kurze Mo- seiner verkraterten Oberfl äche. mente des Innehaltens im Alltag, gerade wenn keine oder wenig Zeit ist: Auf dem Weg zur Arbeit, auf den Heim- Man sagt, Kopernikus habe Merkur nie gesehen.
    [Show full text]
  • Name Type M Size Con G1
    Name Type m Size Con G1 - Mayall II GCL 13.7 2000 And + NGC 910 - Abell 347 Gal 12.2 2:00 × 2:00 And + NGC 6749 GCL 12.4 6:30 Aql + NGC 6751 PN 11.9 2100 Aql + Palomar 11 GCL 9.8 100 Aql + NGC 1985 BNL 12.7b 1:20 × 1:20 Aur { NGC 1569 Gal 11.3 2:90 × 1:50 Cam + IC 391 Gal 12.7 1:10 × 1:00 Cam { NGC 2336 Gal 10.7 7:10 × 3:90 Cam ? NGC 2366 Gal 11.0 8:10 × 3:30 Cam + NGC 2715 Gal 11.3 4:90 × 1:70 Cam { Abell 2 PN 14.5 3300 Cas { NGC 609 OCL 11.0 30 Cas + Abell 82 PN 12.7 9400 Cas { Abell 84 PN 13 14700 Cas { NGC 2276 Gal 11.8 2:60 × 2:50 Cep + NGC 7076 - Abell 75 PN 14.5 6700 Cep + IC 1454 - Abell 81 PN 14.4 3400 Cep + UGC 11465 Gal 12.8 1:30 × 1:30 Cyg + Abell 72 PN 12.7 13400 Del { Abell 39 PN 12.9 17000 Her { Minkowski 64 PN 13.3 1800 Lyr + Pegasus Dwarf Gal 12 4:60 × 3:00 Peg { Jones 1 PN 12.1 33000 Peg + Abell 4 PN 14.8 2200 Per { Name Type m Size Con IC 348 OCL 7.3 70 Per + NGC 660 Gal 11.4 8:30 × 3:20 Psc + NGC 3065 Gal 11.9 2:00 × 1:00 UMa { G1 - Mayall II And Globular Cluster α = 00h 32m 46:54s, δ = 39◦ 340 40:400 Magnitude: 13.7 Size: 2000 In galaxy M31.
    [Show full text]