The Challenge of Efflux-Mediated Antibiotic Resistance in Gram- Negative Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

The Challenge of Efflux-Mediated Antibiotic Resistance in Gram- Negative Bacteria crossmark The Challenge of Efflux-Mediated Antibiotic Resistance in Gram- Negative Bacteria Downloaded from Xian-Zhi Li,a Patrick Plésiat,b Hiroshi Nikaidoc Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canadaa; Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, Franceb; Department of Molecular and Cell Biology, University of California, Berkeley, California, USAc SUMMARY ..................................................................................................................................................338 http://cmr.asm.org/ INTRODUCTION ............................................................................................................................................339 BIOCHEMISTRY AND GENETICS OF MULTIDRUG EFFLUX PUMPS ........................................................................................339 Classes of Efflux Pumps...................................................................................................................................339 RND Transporters ........................................................................................................................................340 AcrB of Escherichia coli .................................................................................................................................340 Other RND transporters in E. coli .......................................................................................................................347 MFS Transporters .........................................................................................................................................347 ABC Transporters .........................................................................................................................................348 SMR Transporters.........................................................................................................................................348 MATE Transporters .......................................................................................................................................349 on March 24, 2015 by Univ of California-Berkeley Biosci & Natural Res Lib SYNERGY WITH THE OUTER MEMBRANE BARRIER ........................................................................................................349 Pathways of Drug Influx across the OM ..................................................................................................................349 Drugs Traversing the OM Mainly through Porin Channels ...............................................................................................350 Drugs Traversing the OM through the Lipid Bilayer Region ..............................................................................................351 GAMMAPROTEOBACTERIA: ENTEROBACTERIACEAE .......................................................................................................351 E. coli......................................................................................................................................................351 Fluoroquinolones......................................................................................................................................352 ␤-Lactams .............................................................................................................................................352 Other drugs............................................................................................................................................353 Salmonella spp. ..........................................................................................................................................353 Citrobacter spp. ...........................................................................................................................................353 Enterobacter aerogenes and Enterobacter cloacae.........................................................................................................354 Klebsiella pneumoniae ....................................................................................................................................354 Proteus, Providencia, and Morganella spp. ................................................................................................................356 Serratia marcescens .......................................................................................................................................356 Shigella flexneri............................................................................................................................................356 Yersinia enterocolitica and Yersinia pestis..................................................................................................................356 OTHER GAMMAPROTEOBACTERIA: VIBRIO, AEROMONAS, LEGIONELLA, AND PASTEURELLACEAE .......................................................357 Vibrio spp. ................................................................................................................................................357 Aeromonas spp. ..........................................................................................................................................357 Legionella spp. ...........................................................................................................................................357 Pasteurellaceae ...........................................................................................................................................358 Pasteurella multocida...................................................................................................................................358 Haemophilus influenzae ................................................................................................................................358 GAMMAPROTEOBACTERIA: PSEUDOMONAS, ACINETOBACTER, AND STENOTROPHOMONAS............................................................358 Pseudomonas aeruginosa .................................................................................................................................358 OM permeability.......................................................................................................................................358 RND efflux pumps. ....................................................................................................................................358 (continued) Published 18 March 2015 Citation Li X-Z, Plésiat P, Nikaido H. 18 March 2015. The challenge of efflux- mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev doi:10.1128/CMR.00117-14. Address correspondence to Hiroshi Nikaido, [email protected]. Copyright © 2015, American Society for Microbiology. All Rights Reserved. doi:10.1128/CMR.00117-14 April 2015 Volume 28 Number 2 Clinical Microbiology Reviews cmr.asm.org 337 Li et al. (i) MexAB-OprM .....................................................................................................................................358 (ii) MexXY-OprM(OprA)..............................................................................................................................359 (iii) MexCD-OprJ.....................................................................................................................................360 (iv) MexEF-OprN.....................................................................................................................................361 (v) Other RND pumps ...............................................................................................................................361 Downloaded from Acinetobacter spp. ........................................................................................................................................361 OM permeability.......................................................................................................................................361 RND efflux pumps .....................................................................................................................................362 Non-RND efflux pumps ................................................................................................................................362 Stenotrophomonas maltophilia ...........................................................................................................................363 ALPHAPROTEOBACTERIA: BRUCELLA, BARTONELLA, AND RICKETTSIA ....................................................................................363 Brucella spp. ..............................................................................................................................................364 Bartonella spp. ...........................................................................................................................................364 Rickettsia spp. ............................................................................................................................................364 BETAPROTEOBACTERIA: ACHROMOBACTER, BURKHOLDERIA, AND NEISSERIA ...........................................................................364 http://cmr.asm.org/ Achromobacter spp. ......................................................................................................................................364
Recommended publications
  • Determination of the Effects That a Previously Uncharacterized Secreted Product from Klebsiella Pneumoniae Has on Citrobacter Fr
    East Tennessee State University Digital Commons @ East Tennessee State University Undergraduate Honors Theses Student Works 5-2017 Determination of the effects that a previously uncharacterized secreted product from Klebsiella pneumoniae has on Citrobacter freundii and Enterobacter cloacae biofilms Cody M. Hastings Follow this and additional works at: https://dc.etsu.edu/honors Part of the Bacteria Commons, Bacteriology Commons, Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Medical Cell Biology Commons, Medical Microbiology Commons, Microbial Physiology Commons, and the Pathogenic Microbiology Commons Recommended Citation Hastings, Cody M., "Determination of the effects that a previously uncharacterized secreted product from Klebsiella pneumoniae has on Citrobacter freundii and Enterobacter cloacae biofilms" (2017). Undergraduate Honors Theses. Paper 419. https://dc.etsu.edu/ honors/419 This Honors Thesis - Withheld is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Determination of the effects that a previously uncharacterized secreted product from Klebsiella pneumoniae has on Citrobacter freundii and Enterobacter cloacae biofilms By Cody Hastings An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements
    [Show full text]
  • Carbapenem-Resistant Enterobacteriaceae (CRE)
    Carbapenem-resistant Enterobacteriaceae (CRE) The Enterobacteriaceae include a large family of Gram-negative bacilli found in the human gastrointestinal tract. Commonly encountered species include Escherichia coli, Klebsiella spp. and Enterobacter spp. Carbapenem-resistant Enterobacteriaceae (CRE) are not susceptible to carbapenem antibiotics. They are broadly categorized based on the mechanism of their resistance as carbapenemase producers (CP-CRE) and non-carbapenemase producers. Carbapenems are broad-spectrum antibiotics typically used to treat severe health care-associated infections (HAIs) caused by highly drug-resistant bacteria. Currently available carbapenems include imipenem, meropenem, ertapenem and doripenem. Although related to the ß-lactam antibiotics, carbapenems retain antibacterial activity in the presence of most ß-lactamases, including extended-spectrum ß-lactamases (ESBLs) and extended-spectrum cephalosporinases (e.g., AmpC-type ß-lactamases). Loss of susceptibility to carbapenems is a serious problem because few safe treatment alternatives remain against such resistant bacteria. Infections caused by CRE occur most commonly among people with chronic medical conditions through use of invasive medical devices such as central venous and urinary catheters, frequent or prolonged stays in health care settings or extended courses of antibiotics. CP-CRE are most concerning and have spread rapidly across the nation and around the globe, perhaps because carbapenemases can be encoded on plasmids that are easily transferred within and among bacterial species. In December 2011, CRE bacterial isolates became reportable in Oregon. The CRE case definition has gone through major changes over the years, which is reflected in the big changes in case numbers from year to year. In 2013, the definition was non-susceptible (intermediate or resistant) to all carbapenems tested and resistant to any third generation cephalosporins tested.
    [Show full text]
  • Treatment of Carbapenem-Resistant Klebsiella Pneumoniae
    Review For reprint orders, please contact [email protected] Review Treatment of Expert Review of Anti-infective Therapy carbapenem-resistant © 2013 Expert Reviews Ltd Klebsiella pneumoniae: 10.1586/ERI.12.162 the state of the art 1478-7210 Expert Rev. Anti Infect. Ther. 11(2), 159–177 (2013) 1744-8336 Nicola Petrosillo1, The increasing incidence of carbapenem-resistant Klebsiella pneumoniae (CR-KP) fundamentally Maddalena alters the management of patients at risk to be colonized or infected by such microorganisms. Giannella*1, Russell Owing to the limitation in efficacy and potential for toxicity of the alternative agents, many Lewis2 and Pierluigi experts recommend using combination therapy instead of monotherapy in CR-KP-infected 2 patients. However, in the absence of well-designed comparative studies, the best combination Viale for each infection type, the continued role for carbapenems in combination therapy and when 12nd Division of Infectious Diseases, combination therapy should be started remain open questions. Herein, the authors revise current National Institute for Infectious Diseases microbiological and clinical evidences supporting combination therapy for CR-KP infections to ‘Lazzaro Spallanzani’, Rome, Italy 2Department of Medical & Surgical address some of these issues. Sciences – Alma Mater Studiorum, University of Bologna, Bologna, Italy KEYWORDS: carbapenem-resistant Klebsiella pneumoniae s CARBAPENEMASE PRODUCING STRAINS s COMBINATION *Author for correspondence: antimicrobial therapy Tel.: +39 065 517 0499 Fax: +39 065 517 0486 Life-threatening infections caused by multidrug- levofloxacin and imipenem (IMP) in vitro [8,9]. [email protected] resistant (MDR) and sometimes pan-resistant Yet, no clinical studies on combination ther- Gram-negative bacteria have increased dramati- apy in Gram-negative infections to date have cally in the last decade [1] .
    [Show full text]
  • (Batch Learning Self-Organizing Maps), to the Microbiome Analysis of Ticks
    Title A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Nakao, Ryo; Abe, Takashi; Nijhof, Ard M; Yamamoto, Seigo; Jongejan, Frans; Ikemura, Toshimichi; Sugimoto, Author(s) Chihiro The ISME Journal, 7(5), 1003-1015 Citation https://doi.org/10.1038/ismej.2012.171 Issue Date 2013-03 Doc URL http://hdl.handle.net/2115/53167 Type article (author version) File Information ISME_Nakao.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Ryo Nakao1,a, Takashi Abe2,3,a, Ard M. Nijhof4, Seigo Yamamoto5, Frans Jongejan6,7, Toshimichi Ikemura2, Chihiro Sugimoto1 1Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan 2Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan 3Graduate School of Science & Technology, Niigata University, 8050, Igarashi 2-no-cho, Nishi- ku, Niigata 950-2181, Japan 4Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany 5Miyazaki Prefectural Institute for Public Health and Environment, 2-3-2 Gakuen Kibanadai Nishi, Miyazaki 889-2155, Japan 6Utrecht Centre for Tick-borne Diseases (UCTD), Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands 7Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110 Onderstepoort, South Africa aThese authors contributed equally to this work. Keywords: BLSOMs/emerging diseases/metagenomics/microbiomes/symbionts/ticks Running title: Tick microbiomes revealed by BLSOMs Subject category: Microbe-microbe and microbe-host interactions Abstract Ticks transmit a variety of viral, bacterial and protozoal pathogens, which are often zoonotic.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI Date: February 22, 2007 I, _ Samuel Lee Hayes________________________________________, hereby submit this work as part of the requirements for the degree of: Doctor of Philosophy in: Biological Sciences It is entitled: Response of Mammalian Models to Exposure of Bacteria from the Genus Aeromonas Evaluated using Transcriptional Analysis and Conjectures on Disease Mechanisms This work and its defense approved by: Chair: _Brian K. Kinkle _Dennis W. Grogan _Richard D. Karp _Mario Medvedovic _Stephen J. Vesper Response of Mammalian Models to Exposure of Bacteria from the Genus Aeromonas Evaluated using Transcriptional Analysis and Conjectures on Disease Mechanisms A dissertation submitted to the Division of Graduate Studies and Research of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Biological Sciences of the College of Arts and Sciences 2007 by Samuel Lee Hayes B.S. Ohio University, 1978 M.S. University of Cincinnati, 1986 Committee Chair: Dr. Brian K. Kinkle Abstract The genus Aeromonas contains virulent bacteria implicated in waterborne disease, as well as avirulent strains. One of my research objectives was to identify and characterize host- pathogen relationships specific to Aeromonas spp. Aeromonas virulence was assessed using changes in host mRNA expression after infecting cell cultures and live animals. Messenger RNA extracts were hybridized to murine genomic microarrays. Initially, these model systems were infected with two virulent A. hydrophila strains, causing up-regulation of over 200 and 50 genes in animal and cell culture tissues, respectively. Twenty-six genes were common between the two model systems. The live animal model was used to define virulence for many Aeromonas spp.
    [Show full text]
  • Genetic Diversity of Bartonella Species in Small Mammals in the Qaidam
    www.nature.com/scientificreports OPEN Genetic diversity of Bartonella species in small mammals in the Qaidam Basin, western China Huaxiang Rao1, Shoujiang Li3, Liang Lu4, Rong Wang3, Xiuping Song4, Kai Sun5, Yan Shi3, Dongmei Li4* & Juan Yu2* Investigation of the prevalence and diversity of Bartonella infections in small mammals in the Qaidam Basin, western China, could provide a scientifc basis for the control and prevention of Bartonella infections in humans. Accordingly, in this study, small mammals were captured using snap traps in Wulan County and Ge’ermu City, Qaidam Basin, China. Spleen and brain tissues were collected and cultured to isolate Bartonella strains. The suspected positive colonies were detected with polymerase chain reaction amplifcation and sequencing of gltA, ftsZ, RNA polymerase beta subunit (rpoB) and ribC genes. Among 101 small mammals, 39 were positive for Bartonella, with the infection rate of 38.61%. The infection rate in diferent tissues (spleens and brains) (χ2 = 0.112, P = 0.738) and gender (χ2 = 1.927, P = 0.165) of small mammals did not have statistical diference, but that in diferent habitats had statistical diference (χ2 = 10.361, P = 0.016). Through genetic evolution analysis, 40 Bartonella strains were identifed (two diferent Bartonella species were detected in one small mammal), including B. grahamii (30), B. jaculi (3), B. krasnovii (3) and Candidatus B. gerbillinarum (4), which showed rodent-specifc characteristics. B. grahamii was the dominant epidemic strain (accounted for 75.0%). Furthermore, phylogenetic analysis showed that B. grahamii in the Qaidam Basin, might be close to the strains isolated from Japan and China.
    [Show full text]
  • Sequencing of Five Poultry Strains Elucidates Phylogenetic Relationships and Divergence in Virulence Genes in Morganella Morganii
    Preprint: Please note that this article has not completed peer review. Sequencing of five poultry strains elucidates phylogenetic relationships and divergence in virulence genes in Morganella morganii CURRENT STATUS: UNDER REVIEW Nicola Palmieri Veterinarmedizinische Universitat Wien Claudia Hess Veterinarmedizinische Universitat Wien Michael Hess Veterinarmedizinische Universitat Wien Merima Alispahic Veterinarmedizinische Universitat Wien [email protected] Author ORCiD: https://orcid.org/0000-0002-2347-2030 DOI: 10.21203/rs.3.rs-21281/v1 SUBJECT AREAS Epigenetics & Genomics KEYWORDS Morganella morganii, poultry, NGS data, MALDI-TOF MS, antimicrobial resistance, virulence genes, phylogeny 1 Abstract Background M. morganii is a bacterium frequently associated with urinary infections in humans. While many human strains are sequenced, only the genomes of few poultry strains are available. Here, we performed a detailed characterization of five highly resistant Morganella morganii strains isolated in association with Escherichia coli from diseased domestic Austrian poultry flocks, namely geese, turkeys and chicken layers. Additionally, we sequenced the genomes of these strains by NGS and analyzed phylogenetic clustering, resistance and virulence genes in the context of host-specificity. Results Two strains were identified to be Extended Spectrum Beta Lactamase (ESBL) and one as AmpC beta- lactamases (AMP-C) phenotype, while two were ESBL negative. By integrating the genome sequences of these five poultry strains with all the available M. morganii genomes, we constructed a phylogenetic tree that clearly separates the Morganella genus into two clusters (M1 and M2), which approximately reflect the proposed subspecies classification ( morganii and sibonii ). Additionally, we found no association between phylogenetic structure and host, suggesting interspecies transmission. All five poultry strains contained genes for resistance to aminocoumarins, beta-lactams, colistin, elfamycins, fluoroquinolones, phenicol, rifampin and tetracycline.
    [Show full text]
  • Cycle 37 Organism 5
    P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, 170 Curzon Road Bryanston, Johannesburg, South Africa www.thistle.co.za Tel: +27 (011) 463 3260 Fax: +27 (011) 463 3036 Fax to Email: + 27 (0) 86-557-2232 e-mail : [email protected] Please read this section first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT-2015/009. Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. MICROBIOLOGY LEGEND CYCLE 37 ORGANISM 5 Morganella morganii Historical identification Morganella morganii was first described by a British bacteriologist H. de R. Morgan in 1906 as Morgan's bacillus. Morgan isolated the bacterium from stools of infants who were noted to have had "summer diarrhea". Later in 1919, Winslow et al. named Morgan's bacillus, Bacillus morganii. In 1936, though, Rauss renamed B. morganii as Proteus morganii. Fulton, in 1943, showed that B. columbensis and P. morganii were the same and defined the genus Morganella, due to the DNA-DNA hybridization. However in 1962, a review article by Ewing reported that M.
    [Show full text]
  • Principles of Drug Addiction Treatment: a Research-Based Guide (Third Edition)
    Publications Revised January 2018 Principles of Drug Addiction Treatment: A Research-Based Guide (Third Edition) Table of Contents Principles of Drug Addiction Treatment: A Research-Based Guide (Third Edition) Preface Principles of Effective Treatment Frequently Asked Questions Drug Addiction Treatment in the United States Evidence-Based Approaches to Drug Addiction Treatment Acknowledgments Resources Page 1 Principles of Drug Addiction Treatment: A Research-Based Guide (Third Edition) The U.S. Government does not endorse or favor any specific commercial product or company. Trade, proprietary, or company names appearing in this publication are used only because they are considered essential in the context of the studies described. Preface Drug addiction is a complex illness. It is characterized by intense and, at times, uncontrollable drug craving, along with compulsive drug seeking and use that persist even in the face of devastating consequences. This update of the National Institute on Drug Abuse’s Principles of Drug Addiction Treatment is intended to address addiction to a wide variety of drugs, including nicotine, alcohol, and illicit and prescription drugs. It is designed to serve as a resource for healthcare providers, family members, and other stakeholders trying to address the myriad problems faced by patients in need of treatment for drug abuse or addiction. Addiction affects multiple brain circuits, including those involved in reward and motivation, learning and memory, and inhibitory control over behavior. That is why addiction is a brain disease. Some individuals are more vulnerable than others to becoming addicted, depending on the interplay between genetic makeup, age of exposure to drugs, and other environmental influences.
    [Show full text]
  • Journal of Clinical Microbiology
    JOURNAL OF CLINICAL MICROBIOLOGY Volume 45 September 2007 No. 9 MINIREVIEW 16S rRNA Gene Sequencing for Bacterial Identification in J. Michael Janda and Sharon L. 2761–2764 the Diagnostic Laboratory: Pluses, Perils, and Pitfalls Abbott BACTERIOLOGY Is the Volume of Blood Cultured Still a Significant Factor in Emilio Bouza, Dolores Sousa, 2765–2769 the Diagnosis of Bloodstream Infections? Marta Rodrı´guez-Cre´ixems, Juan Garcı´a Lechuz, and Patricia Mun˜oz Reclassification of Phenotypically Identified Staphylococcus Takashi Sasaki, Ken Kikuchi, 2770–2778 intermedius Strains Yoshikazu Tanaka, Namiko Takahashi, Shinichi Kamata, and Keiichi Hiramatsu Evaluation of Gen-Probe APTIMA-Based Neisseria Erik Munson, Vivian Boyd, Jolanta 2793–2797 gonorrhoeae and Chlamydia trachomatis Confirmatory Testing Czarnecka, Judy Griep, Brian Lund, in a Metropolitan Setting of High Disease Prevalence Nancy Schaal, and Jeanne E. Hryciuk Convenient Test Using a Combination of Chelating Agents Soo-Young Kim, Seong Geun Hong, 2798–2801 for Detection of Metallo-␤-Lactamases in the Clinical Ellen S. Moland, and Kenneth S. Laboratory Thomson Molecular Characterization of Vancomycin-Resistant Bo Zheng, Haruyoshi Tomita, Yong 2813–2818 Enterococcus faecium Isolates from Mainland China Hong Xiao, Shan Wang, Yun Li, and Yasuyoshi Ike Bacteriology of Moderate-to-Severe Diabetic Foot Infections Diane M. Citron, Ellie J. C. 2819–2828 and In Vitro Activity of Antimicrobial Agents Goldstein, C. Vreni Merriam, Benjamin A. Lipsky, and Murray A. Abramson Outbreak of Pseudomonas
    [Show full text]
  • Downloaded 13 April 2017); Using Diamond
    bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 5 Re-evaluating the salty divide: phylogenetic specificity of 6 transitions between marine and freshwater systems 7 8 9 10 Sara F. Pavera, Daniel J. Muratorea, Ryan J. Newtonb, Maureen L. Colemana# 11 a 12 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA 13 b School of Freshwater Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA 14 15 Running title: Marine-freshwater phylogenetic specificity 16 17 #Address correspondence to Maureen Coleman, [email protected] 18 bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Marine and freshwater microbial communities are phylogenetically distinct and transitions 21 between habitat types are thought to be infrequent. We compared the phylogenetic diversity of 22 marine and freshwater microorganisms and identified specific lineages exhibiting notably high or 23 low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA 24 gene tag-sequencing datasets. As expected, marine and freshwater microbial communities 25 differed in the relative abundance of major phyla and contained habitat-specific lineages; at the 26 same time, however, many shared taxa were observed in both environments. 27 Betaproteobacteria and Alphaproteobacteria sequences had the highest similarity between 28 marine and freshwater sample pairs.
    [Show full text]
  • Delineation of Aeromonas Hydrophila Pathotypes by Dectection of Putative Virulence Factors Using Polymerase Chain Reaction and N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@Kennesaw State University Kennesaw State University DigitalCommons@Kennesaw State University Master of Science in Integrative Biology Theses Biology & Physics Summer 7-20-2015 Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Metz Kennesaw State University, [email protected] Follow this and additional works at: http://digitalcommons.kennesaw.edu/integrbiol_etd Part of the Integrative Biology Commons Recommended Citation Metz, John, "Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay" (2015). Master of Science in Integrative Biology Theses. Paper 7. This Thesis is brought to you for free and open access by the Biology & Physics at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Integrative Biology Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. Delineation of Aeromonas hydrophila Pathotypes by Detection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Michael Metz Submitted in partial fulfillment of the requirements for the Master of Science Degree in Integrative Biology Thesis Advisor: Donald J. McGarey, Ph.D Department of Molecular and Cellular Biology Kennesaw State University ABSTRACT Aeromonas hydrophila is a Gram-negative, bacterial pathogen of humans and other vertebrates. Human diseases caused by A. hydrophila range from mild gastroenteritis to soft tissue infections including cellulitis and acute necrotizing fasciitis. When seen in fish it causes dermal ulcers and fatal septicemia, which are detrimental to aquaculture stocks and has major economic impact to the industry.
    [Show full text]