Download Download

Total Page:16

File Type:pdf, Size:1020Kb

Download Download INSECTA MUNDI A Journal of World Insect Systematics 0339 Checklist of medically important Hymenoptera of Afghanistan James C. Dunford Navy and Marine Corps Public Health Center Detachment Centers for Disease Control and Prevention Atlanta, GA, 30341 USA Joseph C. Turbyville Ireland Army Community Hospital Allergy-Immunology 851 Ireland Loop Fort Knox, KY 40121 USA John M. Leavengood, Jr. University of Kentucky Department of Entomology S-225 Agriculture Science Center Bldg. North Lexington, KY 40546 USA Date of Issue: January 31, 2014 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL James C. Dunford, Joseph C. Turbyville, and John M. Leavengood, Jr. Checklist of medically important Hymenoptera of Afghanistan Insecta Mundi 0339: 1-13 ZooBank Registered: urn:lsid:zoobank.org:pub:563F9221-1110-45DC-9670-74B3AB373B63 Published in 2014 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi pub- lishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Ab- stracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology. Manuscript preparation guidelines are availablr at the CSE website. Managing editor: Eugenio H. Nearns, e-mail: [email protected] Production editors: Michael C. Thomas, Paul E. Skelley, Brian Armitage, Ian Stocks, Eugenio H. Nearns Editorial board: J. H. Frank, M. J. Paulsen Subject editors: G.B. Edwards, Joe Eger, A. Rasmussen, Gary Steck, Ian Stocks, A. Van Pelt, Jennifer M. Zaspel, Nathan P. Lord, Adam Brunke Spanish editors: Julieta Brambila, Angélico Asenjo Website coordinator: Eugenio H. Nearns Printed copies (ISSN 0749-6737) annually deposited in libraries: CSIRO, Canberra, ACT, Australia Museu de Zoologia, São Paulo, Brazil Agriculture and Agrifood Canada, Ottawa, ON, Canada The Natural History Museum, London, Great Britain Muzeum i Instytut Zoologii PAN, Warsaw, Poland National Taiwan University, Taipei, Taiwan California Academy of Sciences, San Francisco, CA, USA Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA Field Museum of Natural History, Chicago, IL, USA National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia Electronic copies (On-Line ISSN 1942-1354, CDROM ISSN 1942-1362) in PDF format: Printed CD or DVD mailed to all members at end of year. Archived digitally by Portico. Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/ Goethe-Universität, Frankfurt am Main: http://edocs.ub.uni-frankfurt.de/volltexte/2010/14363/ Author instructions available on the Insecta Mundi page at: http://centerforsystematicentomology.org/insectamundi/ Copyright held by the author(s). This is an open access article distributed under the terms of the Creative Com- mons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. http://creativecommons.org/ licenses/by-nc/3.0/ 0339: 1–13 2014 Checklist of medically important Hymenoptera of Afghanistan James C. Dunford Navy and Marine Corps Public Health Center Detachment Centers for Disease Control and Prevention Atlanta, GA, 30341 USA [email protected] Joseph C. Turbyville Ireland Army Community Hospital Allergy-Immunology 851 Ireland Loop Fort Knox, KY 40121 USA John M. Leavengood, Jr. University of Kentucky Department of Entomology S-225 Agriculture Science Center Bldg. North Lexington, KY 40546 USA Abstract. A recent investigation was conducted to assess the threat of insect venom hypersensitivity to deployed U.S. service members operating in the region. In parallel with this study, a checklist of medically important Hymenoptera was assembled from limited fi eld collections as well as a comprehensive review of the literature and information provided by electronic databases. We compiled names of 14 families comprising 396 species of Hymenoptera capable of stinging humans. This is the fi rst such checklist for Afghanistan, and should aid future taxonomic work and provide reference information for public health-related entomology in this region. Introduction Afghanistan is a landlocked country located in south-central Asia with an area of approximately 650,000 square kilometers. It is dominated by the Hindu Kush and Himalayan mountain ranges in the north and arid desert to the south. Afghanistan is an entomologically understudied country but is undoubtedly rich in insect fauna due to its diversity of habitats. During a 2010 deployment in support of Operation Enduring Freedom, a study was conducted to determine the prevalence of insect stings and venom hypersensitivity in military personnel operating in Afghanistan (Turbyville et al. 2013). Because of the rugged terrain, lack of readily accessible medical facilities, and political instability of the country, prompt medical attention is not always available to military personnel, international aid workers, and local nationals who may suffer severe allergic reactions to Hymenoptera venom. In order to initially assess this threat, we compiled a list of potentially medically important Hymenoptera (i.e., capable of sting/venom injection in humans) from limited fi eld collections and observations, as well as from a comprehensive review of relevant literature. We recorded the sociality of hymenopteran species known to occur in Afghanistan when reported in the literature; social taxa are capable of demonstrat- ing more aggressive behavior in Hymenoptera (Pankiw 2009). We did not assess the level of sociality (e.g., primitive or highly social) in social species, but those belonging to the apine bees, paper-nesting wasps, yellow-jackets, hornets, and ants can display highly social behaviors (Goulet and Huber 1993). This list should be considered preliminary, as additional Hymenoptera species of medical importance undoubtedly occur in Afghanistan. For example, ants exhibit intrageneric variation in the presence or absence of a produced sting and differentiation between sting-produced reactions and reactions from abdominally-secreted chemicals is ambiguous; therefore it was diffi cult to recognize stinging ants of medical importance in the literature. Klotz et al. (2005) reported many stinging ant genera of medical signifi cance, although not all species of these genera possess a sting. No attempt was made to compile 1 2 • INSECTA MUNDI 0339, January 2014 DUNFORD ET AL. names of Hymenoptera taxa without modifi ed ovipositors capable of stinging humans; however, ad- ditional taxa (e.g., sawfl ies, microhymenoptera) are reported in the literature for Afghanistan. Methods and Materials We collected Hymenoptera primarily by aerial-netting ad libitum on military installations in southern (near Kandahar City) and eastern (Bagram Air Field) Afghanistan from June 2010 through January 2011. Collected specimens were curated, photographed, and identifi ed to species if possible. Voucher specimens and photographic prints were deposited in the Florida State Collection of Arthropods (FSCA), Division of Plant Industry (DPI), Florida Department of Agriculture and Consumer Services (FDACS). Logistical challenges prevented the authors from surveying outside of their respective areas of operation; thus, a literature review was also conducted to further identify stinging Hymenoptera species recorded in Afghanistan. For World Wide Web and specimen record database searches, we used various combinations of the following key words: Hymenoptera, Afghanistan, Iran, Iraq, Kyrgyzstan, Pakistan, Tajikistan, Turkey, Uzbekistan, Middle East, Asia, bees, wasps, ants, hornets, checklist, distribution, and taxonomy. Supraspecifi c taxonomy in our checklist follows Goulet and Huber (1993) with the exception of the taxonomic placement of Crabronidae (Alexander 1992; see also Pulawski 2003), and Anthophoridae, which are now included within Apidae (Ascher and Pickering 2013). Superfamilies, families, and spe- cies are listed alphabetically and do not imply any phylogenetic relationships within or between these taxonomic divisions. Common names often associated with family level groupings (VanDyk and Belov 2013) are included in Table 1. Record type (i.e., collected, observed, or recorded in the literature), so- ciality, and literature references for species records are given after the species name and authority in Table 1. Sociality was gleaned from the literature but in some cases species-specifi c information could
Recommended publications
  • The Digger Wasps of Saudi Arabia: New Records and Distribution, with a Checklist of Species (Hym.: Ampulicidae, Crabronidae and Sphecidae)
    NORTH-WESTERN JOURNAL OF ZOOLOGY 9 (2): 345-364 ©NwjZ, Oradea, Romania, 2013 Article No.: 131206 http://biozoojournals.3x.ro/nwjz/index.html The digger wasps of Saudi Arabia: New records and distribution, with a checklist of species (Hym.: Ampulicidae, Crabronidae and Sphecidae) Neveen S. GADALLAH1,*, Hathal M. AL DHAFER2, Yousif N. ALDRYHIM2, Hassan H. FADL2 and Ali A. ELGHARBAWY2 1. Entomology Department, Faculty of Science, Cairo University, Giza, Egypt. 2. Plant Protection Department, College of Food and Agriculture Science, King Saud University, King Saud Museum of Arthropod (KSMA), Riyadh, Saudi Arabia. *Corresponing author, N.S. Gadalah, E-mail: [email protected] Received: 24. September 2012 / Accepted: 13. January 2013 / Available online: 02. June 2013 / Printed: December 2013 Abstract. The “sphecid’ fauna of Saudi Arabia (Hymenoptera: Apoidea) is listed. A total of 207 species in 42 genera are recorded including previous and new species records. Most Saudi Arabian species recorded up to now are more or less common and widespread mainly in the Afrotropical and Palaearctic zoogeographical zones, the exception being Bembix buettikeri Guichard, Bembix hofufensis Guichard, Bembix saudi Guichard, Cerceris constricta Guichard, Oxybelus lanceolatus Gerstaecker, Palarus arabicus Pulawski in Pulawski & Prentice, Tachytes arabicus Guichard and Tachytes fidelis Pulawski, which are presumed endemic to Saudi Arabia (3.9% of the total number of species). General distribution and ecozones, and Saudi Arabian localities are given for each species. In this study two genera (Diodontus Curtis and Dryudella Spinola) and 11 species are newly recorded from Saudi Arabia. Key words: Ampulicidae, Crabronidae, Sphecidae, faunistic list, new records, Saudi Arabia. Introduction tata boops (Schrank), Bembecinus meridionalis A.Costa, Diodontus sp.
    [Show full text]
  • Changes in the Insect Fauna of a Deteriorating Riverine Sand Dune
    ., CHANGES IN THE INSECT FAUNA OF A DETERIORATING RIVERINE SAND DUNE COMMUNITY DURING 50 YEARS OF HUMAN EXPLOITATION J. A. Powell Department of Entomological Sciences University of California, Berkeley May , 1983 TABLE OF CONTENTS INTRODUCTION 1 HISTORY OF EXPLOITATION 4 HISTORY OF ENTOMOLOGICAL INVESTIGATIONS 7 INSECT FAUNA 10 Methods 10 ErRs s~lected for compar"ltive "lnBlysis 13 Bio1o~ica1 isl!lnd si~e 14 Inventory of sp~cies 14 Endemism 18 Extinctions 19 Species restricted to one of the two refu~e parcels 25 Possible recently colonized species 27 INSECT ASSOCIATES OF ERYSIMUM AND OENOTHERA 29 Poll i n!ltor<'l 29 Predqt,.n·s 32 SUMMARY 35 RECOm1ENDATIONS FOR RECOVERY ~4NAGEMENT 37 ACKNOWT.. EDGMENTS 42 LITERATURE CITED 44 APPENDICES 1. T'lbles 1-8 49 2. St::ttns of 15 Antioch Insects Listed in Notice of 75 Review by the U.S. Fish "l.nd Wildlife Service INTRODUCTION The sand dune formation east of Antioch, Contra Costa County, California, comprised the largest riverine dune system in California. Biogeographically, this formation was unique because it supported a northern extension of plants and animals of desert, rather than coastal, affinities. Geologists believe that the dunes were relicts of the most recent glaciation of the Sierra Nevada, probably originating 10,000 to 25,000 years ago, with the sand derived from the supratidal floodplain of the combined Sacramento and San Joaquin Rivers. The ice age climate in the area is thought to have been cold but arid. Presumably summertime winds sweeping through the Carquinez Strait across the glacial-age floodplains would have picked up the fine-grained sand and redeposited it to the east and southeast, thus creating the dune fields of eastern Contra Costa County.
    [Show full text]
  • Checklist of the Spheciform Wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia
    Checklist of the Spheciform Wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia Chris Ratzlaff Spencer Entomological Collection, Beaty Biodiversity Museum, UBC, Vancouver, BC This checklist is a modified version of: Ratzlaff, C.R. 2015. Checklist of the spheciform wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia. Journal of the Entomological Society of British Columbia 112:19-46 (available at http://journal.entsocbc.ca/index.php/journal/article/view/894/951). Photographs for almost all species are online in the Spencer Entomological Collection gallery (http://www.biodiversity.ubc.ca/entomology/). There are nine subfamilies of spheciform wasps in recorded from British Columbia, represented by 64 genera and 280 species. The majority of these are Crabronidae, with 241 species in 55 genera and five subfamilies. Sphecidae is represented by four subfamilies, with 39 species in nine genera. The following descriptions are general summaries for each of the subfamilies and include nesting habits and provisioning information. The Subfamilies of Crabronidae Astatinae !Three genera and 16 species of astatine wasps are found in British Columbia. All species of Astata, Diploplectron, and Dryudella are groundnesting and provision their nests with heteropterans (Bohart and Menke 1976). Males of Astata and Dryudella possess holoptic eyes and are often seen perching on sticks or rocks. Bembicinae Nineteen genera and 47 species of bembicine wasps are found in British Columbia. All species are groundnesting and most prefer habitats with sand or sandy soil, hence the common name of “sand wasps”. Four genera, Bembix, Microbembex, Steniolia and Stictiella, have been recorded nesting in aggregations (Bohart and Horning, Jr. 1971; Bohart and Gillaspy 1985).
    [Show full text]
  • CALIFORNIA WASPS of the GENUS OXYBELUS (Hymenoptera: Sphecidae, Crabroninae)
    Dorsal view of Oxybelus califwnicum Bohart and Schlinger, female. BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 4, NO. 4 CALIFORNIA WASPS OF THE GENUS OXYBELUS (Hymenoptera: Sphecidae, Crabroninae) BY RICHARD M. BOHART and EVERT I. SCHLINGER (Department of Entomology and Parasitology, University of California, Davis) UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1957 BULLETIN OF THE CALIFORNIA INSECT SURVEY Editors: E. G. Linsley, S. B. Freeborn, P. D. Hurd, R. L. Usinger Volume 4, No. 4, pp. 103-142, plates 9-16, 23 maps, frontis. Submitted by Editors, May 29, 1956 Issued April 11, 1957 Price, 75 cents UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LCS ANGELES CALIFORNIA CAMBRlDGE UNIVERSITY PRESS LONDON, ENGLAND PRINTED BY OFFSET IN THE UNITED STATES OF AMERICA CALIFORNIA WASPS OF THE GENUS OXYBELUS (Hymenoptera, Sphe cidae, Cr abroninae) BY Richard M. Bohart and Evert I. Schlinger INTRODUCTION The winglike expansions of the postscutellum and Generally speaking, the species of Oxybelus the spear-shaped median spine of the propodeum in can be considered rare. That is to say, they are species of the genus Oxybelus have always often local, most of them are small, their habits seemed remarkable to entomologists who have are inconspicuous, and ordinary collecting meth- observed them. It is surprising that with about 50 ods yield only occasional specimens. We have species known from this continent, only seventeen seen entire collections from twenty-five of the workers have published taxonomic studies other major entomological museums in the country, and than catalogues on the North American members some of these contained only a dozen or so since Thomas Say described the first species in specimens.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • DNA Barcodes Identify 99 Per Cent of Apoid Wasp Species (Hymenoptera: Ampulicidae, Crabronidae, Sphecidae) from the Western Palearctic
    Received: 14 July 2018 | Revised: 8 October 2018 | Accepted: 25 October 2018 DOI: 10.1111/1755-0998.12963 RESOURCE ARTICLE DNA barcodes identify 99 per cent of apoid wasp species (Hymenoptera: Ampulicidae, Crabronidae, Sphecidae) from the Western Palearctic Christian Schmid‐Egger1 | Jakub Straka2 | Toshko Ljubomirov3 | Gergin A. Blagoev4 | Jérôme Morinière1 | Stefan Schmidt1 1SNSB‐Zoologische Staatssammlung, Munich, Germany Abstract 2Faculty of Science, Department of The apoid wasps have traditionally been regarded as a paraphyletic assemblage of Zoology, Charles University, Prague, Czech four families (Ampulicidae, Crabronidae, Heterogynaidae and Sphecidae) that are Republic 3Institute of Biodiversity and Ecosystem closely related to the bees (Anthophila). The present study covers the three families Research, Bulgarian Academy of Sciences, of apoid wasps known to occur in Europe, that is, the Ampulicidae, Crabronidae and Sofia, Bulgaria Sphecidae. DNA barcode sequences of 3,695 specimens of apoid wasps were anal- 4Center for Biodiversity Genomics, University of Guelph, Guelph, Ontario, ysed for the present study, including 21 specimens of Ampulicidae, 3,398 Crabroni- Canada dae and 276 Sphecidae. The sequences of the dataset represent 661 species of Correspondence apoid wasps, including two species of Ampulicidae, 613 of Crabronidae and 46 spe- ‐ Stefan Schmidt, SNSB Zoologische cies of Sphecidae. The dataset includes DNA barcodes of 240 species of German Staatssammlung, Munich, Germany. Email: [email protected] apoid wasps, representing 88% of the German fauna, and 578 European species, representing 65% of the European apoid wasp fauna. The study demonstrates that Funding information Bayerisches Staatsministerium für virtually all species of the three examined families can be reliably identified by DNA Wissenschaft und Kunst, Science and Art; barcodes.
    [Show full text]
  • Evolution of the Insects
    CY501-C11[407-467].qxd 3/2/05 12:56 PM Page 407 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: But, for the point of wisdom, I would choose to Know the mind that stirs Between the wings of Bees and building wasps. –George Eliot, The Spanish Gypsy 11HHymenoptera:ymenoptera: Ants, Bees, and Ants,Other Wasps Bees, and The order Hymenoptera comprises one of the four “hyperdi- various times between the Late Permian and Early Triassic. verse” insectO lineages;ther the others – Diptera, Lepidoptera, Wasps and, Thus, unlike some of the basal holometabolan orders, the of course, Coleoptera – are also holometabolous. Among Hymenoptera have a relatively recent origin, first appearing holometabolans, Hymenoptera is perhaps the most difficult in the Late Triassic. Since the Triassic, the Hymenoptera have to place in a phylogenetic framework, excepting the enig- truly come into their own, having radiated extensively in the matic twisted-wings, order Strepsiptera. Hymenoptera are Jurassic, again in the Cretaceous, and again (within certain morphologically isolated among orders of Holometabola, family-level lineages) during the Tertiary. The hymenopteran consisting of a complex mixture of primitive traits and bauplan, in both structure and function, has been tremen- numerous autapomorphies, leaving little evidence to which dously successful. group they are most closely related. Present evidence indi- While the beetles today boast the largest number of cates that the Holometabola can be organized into two major species among all orders, Hymenoptera may eventually rival lineages: the Coleoptera ϩ Neuropterida and the Panorpida. or even surpass the diversity of coleopterans (Kristensen, It is to the Panorpida that the Hymenoptera appear to be 1999a; Grissell, 1999).
    [Show full text]
  • Wasps and Bees in Southern Africa
    SANBI Biodiversity Series 24 Wasps and bees in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2014 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 Sep- tember 2004 through the signing into force of the National Environmental Manage- ment: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include respon- sibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by, or executed in partnership with SANBI. Technical editing: Alicia Grobler Design & layout: Sandra Turck Cover design: Sandra Turck How to cite this publication: GESS, S.K. & GESS, F.W. 2014. Wasps and bees in southern Africa. SANBI Biodi- versity Series 24. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-73-0 Manuscript submitted 2011 Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved. No part of this book may be reproduced in any form without written per- mission of the copyright owners. The views and opinions expressed do not necessarily reflect those of SANBI.
    [Show full text]
  • DNA Barcodes Identify 99 Per Cent of Apoid Wasp Species (Hymenoptera: Ampulicidae, Crabronidae, Sphecidae) from the Western Palearctic
    Received: 14 July 2018 | Revised: 8 October 2018 | Accepted: 25 October 2018 DOI: 10.1111/1755-0998.12963 RESOURCE ARTICLE DNA barcodes identify 99 per cent of apoid wasp species (Hymenoptera: Ampulicidae, Crabronidae, Sphecidae) from the Western Palearctic Christian Schmid‐Egger1 | Jakub Straka2 | Toshko Ljubomirov3 | Gergin A. Blagoev4 | Jérôme Morinière1 | Stefan Schmidt1 1SNSB‐Zoologische Staatssammlung, Munich, Germany Abstract 2Faculty of Science, Department of The apoid wasps have traditionally been regarded as a paraphyletic assemblage of Zoology, Charles University, Prague, Czech four families (Ampulicidae, Crabronidae, Heterogynaidae and Sphecidae) that are Republic 3Institute of Biodiversity and Ecosystem closely related to the bees (Anthophila). The present study covers the three families Research, Bulgarian Academy of Sciences, of apoid wasps known to occur in Europe, that is, the Ampulicidae, Crabronidae and Sofia, Bulgaria Sphecidae. DNA barcode sequences of 3,695 specimens of apoid wasps were anal- 4Center for Biodiversity Genomics, University of Guelph, Guelph, Ontario, ysed for the present study, including 21 specimens of Ampulicidae, 3,398 Crabroni- Canada dae and 276 Sphecidae. The sequences of the dataset represent 661 species of Correspondence apoid wasps, including two species of Ampulicidae, 613 of Crabronidae and 46 spe- ‐ Stefan Schmidt, SNSB Zoologische cies of Sphecidae. The dataset includes DNA barcodes of 240 species of German Staatssammlung, Munich, Germany. Email: [email protected] apoid wasps, representing 88% of the German fauna, and 578 European species, representing 65% of the European apoid wasp fauna. The study demonstrates that Funding information Bayerisches Staatsministerium für virtually all species of the three examined families can be reliably identified by DNA Wissenschaft und Kunst, Science and Art; barcodes.
    [Show full text]
  • Sphecos: a Forum for Aculeate Wasp Researchers
    i7 FEBRUARY 1993 A FORUM FOR ACULEATE WASP RESEARCHERS RESEARCH NEWS NOTES FROM THE ARNOLD S.MENKE, Editor MUD D'AUB Tony P.Nuhn, Assistant E<fitor Systematic Entomology Laboratory Byron Alexander (Dept, of Entomol- Agricultural Research Service, USDA ogy, University of Kansas, Lawrence, History This issue includes an obituary and do National Museum ot Natural KS 66045) has developed an interest In Smithsonian Institution Washington.DC 20560 several reminiscences of Jack van der . of bembicme wasps. He FAX: <202) 786-9422 Phone:(202) 382-1803 the phytogeny Vecht, one of thelast of hisgeneration of is now waiting to learn the fate of a wasp workers. He was truly one of the pending grant proposal. In the mean- greats in hymenopterology, and Jack CLOUDY FUTURE FOR time, he has begun to borrow speci- will be missed. He was a real gentle- SPHECOS?? mens, some of which he is dissecting man, and I feel fortunate to have met and examining as time permits (which it and worked with him on several occa- USDA budgets have been shrinking rarely does). He is also rumored to be sions. steadily, and the costs of producing the collaborating with Kevin O'Neill on a In Sphecos 23 I wrote a tongue-in- newsletter come out of Menke’s yearly book about solitary wasps. His major cheek piece on left-handed labellers. I allotment. For FY 1993 I have about excuse for not writing anything so far is expected more flack from the reader- $1500 for all my expenses (travel, SEM that he is waiting for Brothers and Car- ship but so far only two people have costs,computerneeds, Sphecos, equip- penter to complete their phylogenetic responded (see p.
    [Show full text]
  • Strasbourg, 19 April 2013
    Strasbourg, 25 October 2013 T-PVS (2013) 17 [tpvs17e_2013.doc] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Group of Experts on the Conservation of Invertebrates Tirana, Albania 23-24 September 2013 ---ooOoo--- REPORT Document prepared by the Directorate of Democratic Governance This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS (2013) 17 - 2 - CONTENTS 1. Meeting report ................................................................................................................................... 3 2. Appendix 1: Agenda .......................................................................................................................... 6 3. Appendix 2: List of participants ........................................................................................................ 9 4. Appendix 3: Compilation of National Reports .................................................................................. 10 5. Appendix 4: Draft Recommendation on threats by neurotoxic insecticides to pollinators ................ 75 * * * The Standing Committee is invited to: 1. Take note of the report of the meeting; 2. Thank the Albanian government for the efficient preparation of the meeting and the excellent hospitality; 3. Continue with Bern Convention engagement with invertebrate conservation issues by further encouraging and monitoring national implementation of European Strategy for the Conservation
    [Show full text]
  • Polinizadores De Solidago Virgaurea L. Subsp
    POLINIZADORES DE SOLIDAGO VIRGAUREA L. SUBSP. VIRGAUREA (COMPOSITAE) EN LA PENÍNSULA IBÉRICA José Lara Ruiz C/ Condes de Bell-lloch, 189, 3º-2ªC, 08014 Barcelona e-mail:[email protected] RESUMEN Se estudian los polinizadores confirmados, potenciales y visitantes florales de Solidago virgaurea L. subsp. virgaurea (Composite) en la Península Ibérica. Palabras clave: Polinizadores, Solidago virgaurea subsp. virgaurea, Península Ibérica. ABSTRACT The pollinators and visitors of Solidago virgaurea L. subsp. virgaurea (Compositae) are studied. Key words: Pollinators, Solidago virgaurea subsp. virgaurea, Iberian Peninsula. INTRODUCCIÓN La vara de oro o vara de San José (Solidago virgaurea L.) es una planta herbácea perenne (hemiciptófito de 20 a 100 cm), perteneciente a la familia de las Compositae o Asteraceae, con las flores de un amarillo vivo agrupadas en capítulos radiados, panículas, tirsos o largos racimos terminales. Las flores externas, más escasas, son hemiliguladas, femeninas (pistiladas) mientras que las internas, más numerosas, son flosculosas y hermafroditas. Habita preferentemente en bosques caducifolios (Querco-Fagetea), desde la Cordillera Cantábrica y los Pirineos al Sistema Bético (macizo Cazorla-Segura, Hoya de Baza, Sierra Nevada). Es una planta lateeurosiberiana (holártica) de floración estival-postestival: junio a octubre por lo que es una importante fuente nectarífero- polinífera tardía para las abejas melíferas. Aunque alcanza los 3000 m (Sierra Nevada) formando parte de la vegetación orófila supraforestal, vegetación almohadillada y rastrera (Sierra Nevada y Pirineos) es más frecuente en los claros de bosques caducifolios o matorrales de la franja comprendida entre los 600-800 m (piso montano inferior en ambiente eurosiberiano) y en la franja 800-1000m (piso mesomediterráneo inferior en ambiente mediterráneo).
    [Show full text]