<<

Particle identification

Katharina Müller, autumn 14 1 Particle identification (PID) important task for all detectors in particle and astro particle physics

Particle physics: B-physics, rare decays, CP violation, exotic hadronic decays -gluon plasma:identification of as many particles as possible Astro particle physics: distinguish different nuclei, identify charged particles, detection

Distinguish π/K K/p, e/π, π0/γ .. but also neutrino/, ν / ν . μ e

Method for PID depends on energy range Optimisation: efficiency and / or misidentification rate

tag Efficiency: ε = Nx / Nx n o i

tag t

Misidentification rate εmis = Ny / Ny c e j e r

Methods: d n

Mass determination u o r

Lifetime g k

Decay products c a

Missing energy B Shower profile Special detectors signal efficiency

Katharina Müller, autumn 14 2 Particle ID: Example HERA-b

Search for Φ→ KK

physics drowned in background Φ→ KK decay only visible after particle identification

Mass Φ= 1019 MeV Φ→ KK BR 48.9% 0 0 Φ→ K LK S BR 34.2% Φ→ π+π-π0 BR 15.3%

Katharina Müller, autumn 14 3 Particle ID

Red: signal B→D0K Yellow: background B→D0π Green: combinatorial background → particle identification needed: select the right tool

Katharina Müller, autumn 14 4 Particle identification

● dE/dX Energy loss of charged particles → PID if momentum is known ● Flight time (TOF) → velocity βc ● Cherenkov radiation (RICH) ● Transition radiation (TR) ● Cluster shape

most detectors use several methods

Katharina Müller, autumn 14 5 Example: ALICE

Collisions of heavy ions (Pb) at 5.5 TeV Quark­Gluon Plasma

Hits in TOF

Red hits belong to one particle: Identify as many particles as possible!

Katharina Müller, autumn 14 6 Example: ALICE

ITS: Tracker dEdX TPC: dEdX TOF: Time of flight TRD: Transition radiation HMPID: RICH PMD: Photons PHOS: Photons Muon Arm: Muon ID

Hits in TOF

http://www.lhc-facts.ch/index.php?page=alice

Katharina Müller, autumn 14 7 Time of flight measurement (TOF)

TOF: Time of flight good time resolution → scintillators length L p

2 particles (m , m ), momentum p 1 2 distance D L 1 1  t=  −  c   1 2

=1/ 1−2=E /m c2 L 1 1 L c 2 2 2 Δ t= ( − )≃ (m −m ) relativistic particles E>>mc 2 1 2 c + ( 2/ )2 + ( 2/ )2 2 p √1 m1c E1 √1 m2 c E2 (E ≃ pc and root expansion) L c non relativistic particles  t= m −m  p 1 2 Δt ~ 1/p2Δm2 : important for small velocities, large mass differences

Katharina Müller, autumn 14 8 Time of flight: measurement (TOF)

L c  ≃  2− 2 t m1 m2 Difference in TOF after 1m 2 p2

time resolution of scintillators 300 ps

→ kaon-pion separation up to 1 GeV with L = 3 m

TOF limited for particles p < GeV

better time resolution: ● plastic scintillators: 80-300 ps ● parallel plates counters: 100-200 ps

Katharina Müller, autumn 14 9 TOF measurement

MeV 125 Phenix at RHIC Heavy ion physics

250

500 1000

flight distance 5 m 1000 plastic scintillators resolution 85 ps 4 σ K/Pion separation p<4 GeV

http://www.phenix.bnl.gov/WWW/tof/

Katharina Müller, autumn 14 10 Particle identification with TOF particle identification NA49 TOF TOF and dE/dX

n o i P T / T

=

l e r T

BELLE

Mass from TOF measurement

Katharina Müller, autumn 14 11 ALICE (TOF)

TOF with very high multiplicity radius 3. 6 m → 150 m² ! Scintillators too expensive → gas detectors Multi gap resistive plate chambers (MGRPC) 160000 channels 2.5 x 3.5 cm² Time resolution better than 100 ps Small gap: good time resolution many gaps: high efficiency

2 x 5 gaps 250 μm 0.4 mm glass plates Spacer: fishing line Width 7 cm (2 Pads) Length 120 cm (48 Pads)

http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html

Katharina Müller, autumn 14 12 ALICE (TOF)

TOF with very high multiplicity Radius 3. 6 m → 150 m² !

Strips: length 240 cm 96 readout pads

http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html

Katharina Müller, autumn 14 13 ALICE (TOF) cleaning

storage

http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html

Katharina Müller, autumn 14 14 ALICE (TOF)

efficiency > 99.9% Efficiency and time resolution as function resolution better than 60 ps (design 80 ps) of particle flow

http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html

Katharina Müller, autumn 14 15 ALICE (TOF) Data

Cosmic rays: two tracks: two TOF signals Δt(exp) = L/c Resolution Δt(meas)-Δt(exp) σ=125 ps

Two independent measurements → resolution for one track: σt =σ /√2 = 88.5 ps

2 σ k-π separation up to 5 GeV in pT

http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html http://indico.cern.ch/materialDisplay.py?contribId=191&sessionId=15&materialId=slides&confId=181055

Katharina Müller, autumn 14 16 Energy loss dE/dX

Reminder Bethe-Bloch formula -K separation 2 2 2 −dE Z 1 1 2 me c T max  C 5% resolution! =K z2 [ ln −2− − ] dX A 2 2 I2 2 Z allows to determine βγ if momentum is known

Difficulties: ● Crossings of bands in dE/dX vs p! ● Saturation ● Landau-Tail ● Control measurement uncertainties ● Single measurements not usable

K- have a relative difference of 10% for βγ>3 → high precision (few percent) needed for significant results

Katharina Müller, autumn 14 17 http://arxiv­web3.library.cornell.edu/pdf/1209.5637 ALICE dE/dX Nucl. Instr. Meth. A622 (2010) 316

TPC: σ dE/dx = 5 % (Design) Inner tracker: σ dE/dx = 10-11 % (Design)

Resolution vs # TPC track points

Katharina Müller, autumn 14 18 Measurement of dE/dX

Problem: Bethe Bloch formula only gives the mean → single measurements have large variations (Landau distribution) → multiple measurements of dE/dX needed (sampling)

Better method: truncated mean x% of the measurements with highest dE/dX values are neglected (typically 20-30%), or restricted dE/dX

Improvement of resolution with „truncated mean“ (KLOE)

Katharina Müller, autumn 14 19 Separation Power

Important measure Separation power= Separation/Resolution strong momentum dependence

Opal: require 2σ Separation: e-Pion p<14.3 GeV Pion-Kaon p<20.5 GeV

Katharina Müller, autumn 14 20 Measurement of Landau-distribution

Several measurements of dE/dX: calculate probability that measured dE/dX distribution belongs to pion, kaon, p etc

i P π(x) probability that pion produces a signal x in detector i i P K(x) kaon

each particles produces a set of xi signals. Probability that this set of signals originates from a pion is i i Pπ = ∏i P π(xi) or for a kaon PK = ∏i P K(xi)

Probability that particle is a pion

P = Pπ/(Pπ+PK)

Already few measurements are enough to reach an effective pion-kaon separation up to 100 GeV.

Many measurements: fit Landau distribution

Katharina Müller, autumn 14 21 Systematic errors of measurement

• Non-linearities of readout electronics

• Stability of discriminator threshold

• Purity of chamber gas. Small impurities (10-6!) change gas amplification

• Stability of geometry, mechanical tolerances

• Pressure dependence of gas amplification

• Charge distribution depends on scattering angle

• Track multiplicity changes gas/amplification

• Noise

• Crosstalk

•.....etc

• Has to be understood at the 1% level!

Katharina Müller, autumn 14 22 Alice TPC: simulated separation

Katharina Müller, autumn 14 23 Detector Accelerator Type Size B (T) Gas Mixture Pressure Number of Sampling Effective track dE/dx resolution (∅ x L) (bar) samples length (mm) length (bar * m) isol., dense (%) ALEPH LEP TPC 3.6 m x 4.4 m 1.5 Ar/CH4 (91/9) 1 338 4 1.35 4.5 ARGUS DORIS drift cells 1.7 m x 2 m 0.8 C3H8/Methylal 1 36 18 0.65 4.1 BaBar PEP-II drift cells 1.6 m x 2.8 m 1.5 He/i-C4H10 (80/20) 1 40 12 0.48 7.5 BELLE KEK-B drift cells 1.9 m x 2.2 m 1.5 He/C2H6 (50/50) 1 47 16 0.75 5.5 BES BEPC jet cells 2.3 m x 2.1 m 0.4 Ar/CO2/CH4 (89/10/1) 1 54 5 0.27 9.0 CDF TEVATRON jet cells 2.6 m x 3.2 m 1.5 Ar/C2H6/C2H6O (49.6/49.6/0.8) 1 32 12 0.38 7.0 CLEO II CESR drift cells 1.9 m x 1.9 m 1.5 Ar/C2H6 (50/50) 1 51 14 0.71 6.2 CLEO III CESR drift cells 1.6 m x 1.9 m 1.5 He/C3H8 (60/40) 1 47 14 0.66 5.0 CRISIS TEVATRON jet cells 1 m x 1 m x 3 m - Ar/CO2 (80/20) 1 192 15 2.88 3.2 DELPHI LEP TPC 2.4 m x 2.7 m 1.2 Ar/CH4 (80/20) 1 192 4 0.77 5.7 D0 FDC TEVATRON jet cells 1.2 m x 0.3 m - Ar/CH4/CO2 (93/4/3) 1 32 8 0.26 12.7 H1 HERA jet cells 1.7 m x 2.2 m 1.13 Ar/C2H6 (50/50) 1 56 10 0.56 10.0 JADE PETRA jet cells 1.6 m x 2.4 m 0.48 Ar/CH4/i-C4H10 (88.7/8.5/2.8) 4 48 10 1.92 6.5 KEDR VEPP-4M jet cells 1.1 m x 1.1 m 2.0 DME (100) 1 42 10 0.42 10.0

KLOE DAΦNE drift cells 4 m x 3.3 m 0.6 He/i-C4H10 (90/10) 1 58 28 1.62 3.5 MARK II SLC drift cells 3 m x 2.3 m 0.475 Ar/CO2/CH4 (89/10/1) 1 72 8.33 0.60 7.0 NA49 SPS TPC 3.8 m x 3.8 m x 1.3 m - Ar/CH4/CO2 (90/5/5) 1 90 40 3.60 4.7 OBELIX LEAR jet cells 1.6 m x 1.4 m 0.5 Ar/C2H6 (50/50) 1 40 15 0.60 12.0 OPAL LEP jet cells 3.6 m x 4 m 0.435 Ar/CH4/i-C4H10 (88.2/9.8/2) 4 159 10 6.36 2.8 SLD SLC jet cells 2 m x 2 m 0.6 CO2/Ar/i-C4H10 (75/21/4) 1 80 6 0.48 7.0 STAR RHIC TPC 4 m x 4.2 m 0.5 Ar/CH4 (90/10) 1 45 17.2 0.77 8.0 TOPAZ TRISTAN TPC 2.4 m x 2.2 m 1.0 Ar/CH4 (90/10) 3.5 175 4 2.45 4.4 TPC/2γ PEP TPC 2 m x 2 m 1.375 Ar/CH4 (80/20) 8.5 183 4 6.22 3.0 ZEUS HERA jet cells 1.7 m x 2.4 m 1.43 Ar/CO2/C2H6 (90/8/2) 1 72 8 0.58 8.5

Alice: 5% resolution

t Best performance: large detectors & high pressure

Katharina Müller, autumn 14 24 Different approach: Cluster Counting

Traditionally dE/dx measurements integrate all charge deposited on the wire as a proxy for number of primary ionisation

Fluctuations in gas gain and number of primary degrades measurements

Counting primary ionization (clusters) reduces spread around the mean, improving particle identification Number of primary ionisations (Cluster) is Poisson distributed BUT: needs excellent position resolution: Silicon, MSGC

→ large number of clusters needed to reduce statistical error → Density of clusters in track must be low enough to see individual clusters

Studied for ILC and SuperB

Katharina Müller, autumn 14 25 Different approach: Cluster Counting

Number of primary ionisations (Cluster) is Poisson distributed needs excellent position resolution: Silicon, MSGC

Micro strip gas chambers (MSGC) +GEM

Katharina Müller, autumn 14 26 Cluster Counting

#peaks per cm: : 6.45 Kaons: 5.48

Separation power comparable to dEdX plus truncated mean

L. Cerrito et. al, NIM A 434 (1999) 261­270 3 GeV, 120 cm track n o i t u l

o dEdX s e r

dNdX

Studies for ILC: resolution <5% possible (arXiv:0708.0142v2 [hep-ex]) Problems: cluster dissolve Proof of principle in test beams but not used in large scale detectors so far

Katharina Müller, autumn 14 27