Measurement of Jet Substructure in Boosted Top Quark Decays at CMS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jet Quenching in Quark Gluon Plasma: flavor Tomography at RHIC and LHC by the CUJET Model
Jet quenching in Quark Gluon Plasma: flavor tomography at RHIC and LHC by the CUJET model Alessandro Buzzatti Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2013 c 2013 Alessandro Buzzatti All Rights Reserved Abstract Jet quenching in Quark Gluon Plasma: flavor tomography at RHIC and LHC by the CUJET model Alessandro Buzzatti A new jet tomographic model and numerical code, CUJET, is developed in this thesis and applied to the phenomenological study of the Quark Gluon Plasma produced in Heavy Ion Collisions. Contents List of Figures iv Acknowledgments xxvii Dedication xxviii Outline 1 1 Introduction 4 1.1 Quantum ChromoDynamics . .4 1.1.1 History . .4 1.1.2 Asymptotic freedom and confinement . .7 1.1.3 Screening mass . 10 1.1.4 Bag model . 12 1.1.5 Chiral symmetry breaking . 15 1.1.6 Lattice QCD . 19 1.1.7 Phase diagram . 28 1.2 Quark Gluon Plasma . 30 i 1.2.1 Initial conditions . 32 1.2.2 Thermalized plasma . 36 1.2.3 Finite temperature QFT . 38 1.2.4 Hydrodynamics and collective flow . 45 1.2.5 Hadronization and freeze-out . 50 1.3 Hard probes . 55 1.3.1 Nuclear effects . 57 2 Energy loss 62 2.1 Radiative energy loss models . 63 2.2 Gunion-Bertsch incoherent radiation . 67 2.3 Opacity order expansion . 69 2.3.1 Gyulassy-Wang model . 70 2.3.2 GLV . 74 2.3.3 Multiple gluon emission . 78 2.3.4 Multiple soft scattering . -
Decays of the Tau Lepton*
SLAC - 292 UC - 34D (E) DECAYS OF THE TAU LEPTON* Patricia R. Burchat Stanford Linear Accelerator Center Stanford University Stanford, California 94305 February 1986 Prepared for the Department of Energy under contract number DE-AC03-76SF00515 Printed in the United States of America. Available from the National Techni- cal Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. Price: Printed Copy A07, Microfiche AOl. JC Ph.D. Dissertation. Abstract Previous measurements of the branching fractions of the tau lepton result in a discrepancy between the inclusive branching fraction and the sum of the exclusive branching fractions to final states containing one charged particle. The sum of the exclusive branching fractions is significantly smaller than the inclusive branching fraction. In this analysis, the branching fractions for all the major decay modes are measured simultaneously with the sum of the branching fractions constrained to be one. The branching fractions are measured using an unbiased sample of tau decays, with little background, selected from 207 pb-l of data accumulated with the Mark II detector at the PEP e+e- storage ring. The sample is selected using the decay products of one member of the r+~- pair produced in e+e- annihilation to identify the event and then including the opposite member of the pair in the sample. The sample is divided into subgroups according to charged and neutral particle multiplicity, and charged particle identification. The branching fractions are simultaneously measured using an unfold technique and a maximum likelihood fit. The results of this analysis indicate that the discrepancy found in previous experiments is possibly due to two sources. -
Differences Between Quark and Gluon Jets As Seen at LEP 1 Introduction
UA0501305 Differences between Quark and Gluon jets as seen at LEP Marek Tasevsky CERN, CH-1211 Geneva 28, Switzerland E-mail: [email protected] Abstract The differences between quark and gluon jets are stud- ied using LEP results on jet widths, scale dependent multi- plicities, ratios of multiplicities, slopes and curvatures and fragmentation functions. It is emphasized that the ob- served differences stem primarily from the different quark and gluon colour factors. 1 Introduction The physics of the differences between quark and gluonjets contin- uously attracts an interest of both, theorists and experimentalists. Hadron production can be described by parton showers (successive gluon emissions and splittings) followed by formation of hadrons which cannot be described perturbatively. The gluon emission, being dominant process in the parton showers, is proportional to the colour factor associated with the coupling of the emitted gluon to the emitter. These colour factors are CA = 3 when the emit- ter is a gluon and Cp = 4/3 when it is a quark. Consequently, U6 the multiplicity from a gluon source is (asymptotically) 9/4 higher than from a quark source. In QCD calculations, the jet properties are usually defined in- clusively, by the particles in hemispheres of quark-antiquark (qq) or gluon-gluon (gg) systems in an overall colour singlet rather than by a jet algorithm. In contrast to the experimental results which often depend on a jet finder employed (biased jets), the inclusive jets do not depend on any jet finder (unbiased jets). 2 Results 2.1 Jet Widths As a consequence of the greater radiation of soft gluons in a gluon jet compared to a quark jet, gluon jets are predicted to be broader. -
Introduction to QCD and Jet I
Introduction to QCD and Jet I Bo-Wen Xiao Pennsylvania State University and Institute of Particle Physics, Central China Normal University Jet Summer School McGill June 2012 1 / 38 Overview of the Lectures Lecture 1 - Introduction to QCD and Jet QCD basics Sterman-Weinberg Jet in e+e− annihilation Collinear Factorization and DGLAP equation Basic ideas of kt factorization Lecture 2 - kt factorization and Dijet Processes in pA collisions kt Factorization and BFKL equation Non-linear small-x evolution equations. Dijet processes in pA collisions (RHIC and LHC related physics) Lecture 3 - kt factorization and Higher Order Calculations in pA collisions No much specific exercise. 1. filling gaps of derivation; 2. Reading materials. 2 / 38 Outline 1 Introduction to QCD and Jet QCD Basics Sterman-Weinberg Jets Collinear Factorization and DGLAP equation Transverse Momentum Dependent (TMD or kt) Factorization 3 / 38 References: R.D. Field, Applications of perturbative QCD A lot of detailed examples. R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and Collider Physics CTEQ, Handbook of Perturbative QCD CTEQ website. John Collins, The Foundation of Perturbative QCD Includes a lot new development. Yu. L. Dokshitzer, V. A. Khoze, A. H. Mueller and S. I. Troyan, Basics of Perturbative QCD More advanced discussion on the small-x physics. S. Donnachie, G. Dosch, P. Landshoff and O. Nachtmann, Pomeron Physics and QCD V. Barone and E. Predazzi, High-Energy Particle Diffraction 4 / 38 Introduction to QCD and Jet QCD Basics QCD QCD Lagrangian a a a b c with F = @µA @ν A gfabcA A . µν ν − µ − µ ν Non-Abelian gauge field theory. -
Introduction to Subatomic- Particle Spectrometers∗
IIT-CAPP-15/2 Introduction to Subatomic- Particle Spectrometers∗ Daniel M. Kaplan Illinois Institute of Technology Chicago, IL 60616 Charles E. Lane Drexel University Philadelphia, PA 19104 Kenneth S. Nelsony University of Virginia Charlottesville, VA 22901 Abstract An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle in- teractions with matter are summarized, after which we review particle detectors. We conclude with three examples that illustrate the variety of subatomic-particle spectrom- eters and exemplify the combined use of several detection techniques to characterize interaction events more-or-less completely. arXiv:physics/9805026v3 [physics.ins-det] 17 Jul 2015 ∗To appear in the Wiley Encyclopedia of Electrical and Electronics Engineering. yNow at Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723. 1 Contents 1 Introduction 5 2 Overview of Subatomic Particles 5 2.1 Leptons, Hadrons, Gauge and Higgs Bosons . 5 2.2 Neutrinos . 6 2.3 Quarks . 8 3 Overview of Particle Detection 9 3.1 Position Measurement: Hodoscopes and Telescopes . 9 3.2 Momentum and Energy Measurement . 9 3.2.1 Magnetic Spectrometry . 9 3.2.2 Calorimeters . 10 3.3 Particle Identification . 10 3.3.1 Calorimetric Electron (and Photon) Identification . 10 3.3.2 Muon Identification . 11 3.3.3 Time of Flight and Ionization . 11 3.3.4 Cherenkov Detectors . 11 3.3.5 Transition-Radiation Detectors . 12 3.4 Neutrino Detection . 12 3.4.1 Reactor Neutrinos . 12 3.4.2 Detection of High Energy Neutrinos . -
Machine-Learning-Based Global Particle-Identification Algorithms At
Machine-Learning-based global particle-identification algorithms at the LHCb experiment Denis Derkach1;2, Mikhail Hushchyn1;2;3, Tatiana Likhomanenko2;4, Alex Rogozhnikov2, Nikita Kazeev1;2, Victoria Chekalina1;2, Radoslav Neychev1;2, Stanislav Kirillov2, Fedor Ratnikov1;2 on behalf of the LHCb collaboration 1 National Research University | Higher School of Economics, Moscow, Russia 2 Yandex School of Data Analysis, Moscow, Russia 3 Moscow Institute of Physics and Technology, Moscow, Russia 4 National Research Center Kurchatov Institute, Moscow, Russia E-mail: [email protected] Abstract. One of the most important aspects of data analysis at the LHC experiments is the particle identification (PID). In LHCb, several different sub-detectors provide PID information: two Ring Imaging Cherenkov (RICH) detectors, the hadronic and electromagnetic calorimeters, and the muon chambers. To improve charged particle identification, we have developed models based on deep learning and gradient boosting. The new approaches, tested on simulated samples, provide higher identification performances than the current solution for all charged particle types. It is also desirable to achieve a flat dependency of efficiencies from spectator variables such as particle momentum, in order to reduce systematic uncertainties in the physics results. For this purpose, models that improve the flatness property for efficiencies have also been developed. This paper presents this new approach and its performance. 1. Introduction Particle identification (PID) algorithms play a crucial part in any high-energy physics analysis. A higher performance algorithm leads to a better background rejection and thus more precise results. In addition, an algorithm is required to work with approximately the same efficiency in the full available phase space to provide good discrimination for various analyses. -
Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007
Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007 Monte Carlo Methods 3 Bryan Webber Structure of LHC Events 1. Hard process 2. Parton shower 3. Hadronization 4. Underlying event Monte Carlo Methods 3 Bryan Webber Lecture 3: Hadronization Partons are not physical 1. Phenomenological particles: they cannot models. freely propagate. 2. Confinement. Hadrons are. 3. The string model. 4. Preconfinement. Need a model of partons' 5. The cluster model. confinement into 6. Underlying event hadrons: hadronization. models. Monte Carlo Methods 3 Bryan Webber Phenomenological Models Experimentally, two jets: Flat rapidity plateau and limited Monte Carlo Methods 3 Bryan Webber Estimate of Hadronization Effects Using this model, can estimate hadronization correction to perturbative quantities. Jet energy and momentum: with mean transverse momentum. Estimate from Fermi motion Jet acquires non-perturbative mass: Large: ~ 10 GeV for 100 GeV jets. Monte Carlo Methods 3 Bryan Webber Independent Fragmentation Model (“Feynman—Field”) Direct implementation of the above. Longitudinal momentum distribution = arbitrary fragmentation function: parameterization of data. Transverse momentum distribution = Gaussian. Recursively apply Hook up remaining soft and Strongly frame dependent. No obvious relation with perturbative emission. Not infrared safe. Not a model of confinement. Monte Carlo Methods 3 Bryan Webber Confinement Asymptotic freedom: becomes increasingly QED-like at short distances. QED: + – but at long distances, gluon self-interaction makes field lines attract each other: QCD: linear potential confinement Monte Carlo Methods 3 Bryan Webber Interquark potential Can measure from or from lattice QCD: quarkonia spectra: String tension Monte Carlo Methods 3 Bryan Webber String Model of Mesons Light quarks connected by string. -
Deep Inelastic Scattering
Particle Physics Michaelmas Term 2011 Prof Mark Thomson e– p Handout 6 : Deep Inelastic Scattering Prof. M.A. Thomson Michaelmas 2011 176 e– p Elastic Scattering at Very High q2 ,At high q2 the Rosenbluth expression for elastic scattering becomes •From e– p elastic scattering, the proton magnetic form factor is at high q2 Phys. Rev. Lett. 23 (1969) 935 •Due to the finite proton size, elastic scattering M.Breidenbach et al., at high q2 is unlikely and inelastic reactions where the proton breaks up dominate. e– e– q p X Prof. M.A. Thomson Michaelmas 2011 177 Kinematics of Inelastic Scattering e– •For inelastic scattering the mass of the final state hadronic system is no longer the proton mass, M e– •The final state hadronic system must q contain at least one baryon which implies the final state invariant mass MX > M p X For inelastic scattering introduce four new kinematic variables: ,Define: Bjorken x (Lorentz Invariant) where •Here Note: in many text books W is often used in place of MX Proton intact hence inelastic elastic Prof. M.A. Thomson Michaelmas 2011 178 ,Define: e– (Lorentz Invariant) e– •In the Lab. Frame: q p X So y is the fractional energy loss of the incoming particle •In the C.o.M. Frame (neglecting the electron and proton masses): for ,Finally Define: (Lorentz Invariant) •In the Lab. Frame: is the energy lost by the incoming particle Prof. M.A. Thomson Michaelmas 2011 179 Relationships between Kinematic Variables •Can rewrite the new kinematic variables in terms of the squared centre-of-mass energy, s, for the electron-proton collision e– p Neglect mass of electron •For a fixed centre-of-mass energy, it can then be shown that the four kinematic variables are not independent. -
Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 11: Mesons and Baryons
Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 11: Mesons and Baryons !Measuring Jets !Fragmentation !Mesons and Baryons !Isospin and hypercharge !SU(3) flavour symmetry !Heavy Quark states 1 From Tuesday: Summary • In QCD, the coupling strength "S decreases at high momentum transfer (q2) increases at low momentum transfer. • Perturbation theory is only useful at high momentum transfer. • Non-perturbative techniques required at low momentum transfer. • At colliders, hard scatter produces quark, anti-quarks and gluons. • Fragmentation (hadronisation) describes how partons produced in hard scatter become final state hadrons. Need non-perturbative techniques. • Final state hadrons observed in experiments as jets. Measure jet pT, !, ! • Key measurement at lepton collider, evidence for NC=3 colours of quarks. + 2 σ(e e− hadrons) e R = → = N q σ(e+e µ+µ ) c e2 − → − • Next lecture: mesons and baryons! Griffiths chapter 5. 2 6 41. Plots of cross sections and related quantities + σ and R in e e− Collisions -2 10 ω φ J/ψ -3 10 ψ(2S) ρ Υ -4 ρ ! 10 Z -5 10 [mb] σ -6 R 10 -7 10 -8 10 2 1 10 10 Υ 3 10 J/ψ ψ(2S) Z 10 2 φ ω to theR Fermilab accelerator complex. In addition, both the CDF [11] and DØ detectors [12] 10 were upgraded. The resultsρ reported! here utilize an order of magnitude higher integrated luminosity1 than reported previously [5]. ρ -1 10 2 II. PERTURBATIVE1 QCD 10 10 √s [GeV] + + + + Figure 41.6: World data on the total cross section of e e− hadrons and the ratio R(s)=σ(e e− hadrons, s)/σ(e e− µ µ−,s). -
Fragmentation and Hadronization 1 Introduction
Fragmentation and Hadronization Bryan R. Webber Theory Division, CERN, 1211 Geneva 23, Switzerland, and Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.1 1 Introduction Hadronic jets are amongst the most striking phenomena in high-energy physics, and their importance is sure to persist as searching for new physics at hadron colliders becomes the main activity in our field. Signatures involving jets almost always have the largest cross sections, but are the most difficult to interpret and to distinguish from background. Insight into the properties of jets is therefore doubly valuable: both as a test of our understanding of strong interaction dy- namics and as a tool for extracting new physics signals in multi-jet channels. In the present talk, I shall concentrate on jet fragmentation and hadroniza- tion, the topic of jet production having been covered admirably elsewhere [1, 2]. The terms fragmentation and hadronization are often used interchangeably, but I shall interpret the former strictly as referring to inclusive hadron spectra, for which factorization ‘theorems’2 are available. These allow predictions to be made without any detailed assumptions concerning hadron formation. A brief review of the relevant theory is given in Section 2. Hadronization, on the other hand, will be taken here to refer specifically to the mechanism by which quarks and gluons produced in hard processes form the hadrons that are observed in the final state. This is an intrinsically non- perturbative process, for which we only have models at present. The main models are reviewed in Section 3. In Section 4 their predictions, together with other less model-dependent expectations, are compared with the latest data on single- particle yields and spectra. -
Particle Identification
Particle Identification Graduate Student Lecture Warwick Week Sajan Easo 28 March 2017 1 Outline Introduction • Main techniques for Particle Identification (PID) Cherenkov Detectors • Basic principles • Photodetectors • Example of large Cherenkov detector in HEP Detectors using Energy Loss (dE/dx) from ionization and atomic excitation Time of Flight (TOF) Detectors Transition Radiation Detectors (TRD) More Examples of PID systems • Astroparticle Physics . Not Covered : PID using Calorimeters . Focus on principles used in the detection methods. 2 Introduction . Particle Identification is a crucial part of several experiments in Particle Physics. • goal: identify long-lived particles which create signals in the detector : electrons, muons ,photons , protons, charged pions, charged kaons etc. • short-lived particles identified from their decays into long-lived particles • quarks, gluons : inferred from hadrons, jets of particles etc , that are created. In the experiments at the LHC: Tracking Detector : Directions of charged particles (from the hits they create in silicon detectors, wire chambers etc.) Tracking Detector + Magnet : Charges and momenta of the charged particles (Tracking system ) Electromagnetic Calorimeter (ECAL) : Energy of photons, electrons and positrons (from the energy deposited in the clusters of hits they create in the shape of showers ). Hadronic Calorimeter (HCAL) : Energy of hadrons : protons, charged pions etc. ( from the energy deposited in the clusters of hits they create in the shape of showers ) Muon Detector : Tracking detector for muons, after they have traversed the rest of the detectors 3 Introduction Some of the methods for particle identification: Electron : ECAL cluster has a charged track pointing to it and its energy from ECAL is close to its momentum from Tracking system. -
Hadronization from the QGP in the Light and Heavy Flavour Sectors Francesco Prino INFN – Sezione Di Torino Heavy-Ion Collision Evolution
Hadronization from the QGP in the Light and Heavy Flavour sectors Francesco Prino INFN – Sezione di Torino Heavy-ion collision evolution Hadronization of the QGP medium at the pseudo- critical temperature Transition from a deconfined medium composed of quarks, antiquarks and gluons to color-neutral hadronic matter The partonic degrees of freedom of the deconfined phase convert into hadrons, in which partons are confined No first-principle description of hadron formation Non-perturbative problem, not calculable with QCD → Hadronisation from a QGP may be different from other cases in which no bulk of thermalized partons is formed 2 Hadron abundances Hadron yields (dominated by low-pT particles) well described by statistical hadronization model Abundances follow expectations for hadron gas in chemical and thermal equilibrium Yields depend on hadron masses (and spins), chemical potentials and temperature Questions not addressed by the statistical hadronization approach: How the equilibrium is reached? How the transition from partons to hadrons occurs at the microscopic level? 3 Hadron RAA and v2 vs. pT ALICE, PRC 995 (2017) 064606 ALICE, JEP09 (2018) 006 Low pT (<~2 GeV/c) : Thermal regime, hydrodynamic expansion driven by pressure gradients Mass ordering High pT (>8-10 GeV/c): Partons from hard scatterings → lose energy while traversing the QGP Hadronisation via fragmentation → same RAA and v2 for all species Intermediate pT: Kinetic regime, not described by hydro Baryon / meson grouping of v2 Different RAA for different hadron species