Measurement of Jet Substructure in Boosted Top Quark Decays at CMS

Total Page:16

File Type:pdf, Size:1020Kb

Measurement of Jet Substructure in Boosted Top Quark Decays at CMS Measurement of Jet Substructure in Boosted Top Quark Decays at CMS vorgelegt von Jan Skottke geboren am 3. Januar 1995 Masterarbeit im Studiengang Physik Universität Hamburg November 2019 1. Gutachter: Prof. Dr. Johannes Haller 2. Gutachter: Dr. Roman Kogler Abstract A measurement is presented of the differential t¯t production cross section as a function of the N-subjettiness ratio τ32 in fully merged hadronic top quark de- 0 cays. These decays of the type t ! bW ! bqq¯ are reconstructed using anti-kT jets with a distance parameter of 0:8 and transverse momentum greater than 400 GeV. The measurement is performed with data collected with the CMS detector at a center-of-mass energy of 13 TeV in 2016 corresponding to an integrated lumi- nosity of 35:9 fb−1. The data is unfolded to the particle level in order to correct for detector effects. This makes it possible to compare the data to predictions from event generators using different tunes and varied model parameters. It is found that the measurement is sensitive to the simulation of final state radia- tion, allowing for the possibility to constrain model parameters associated with it. This is important for achieving higher precision in the identification of jets originating from fully merged hadronic top quark decays. iii Zusammenfassung Die vorliegende Arbeit stellt eine Messung des differentiellen t¯t Produktion- swirkungsquerschnittes als Funktion des N-subjettiness Verhältnisses τ32 in vol- lkommen kollimierten Top Quark Zerfällen vor. Zerfälle der Art t ! bW ! bqq¯0 werden mit anti-kT Jets mit einem Radiusparameter von 0:8 und einem transver- salen Impuls von mehr als 400 GeV rekonstruiert. Die Messung benutzt Daten, welche vom CMS Detektor, bei einer Schwer- punktsenergie von 13 TeV aufgenommen wurden und einer integrierten Lumi- nosität von 35:9 fb−1 entsprechen. Die gemessenen Daten werden um Detek- toreffekte korrigiert und mit Monte Carlo simulierten Verteilungen verglichen. Durch diese Entfaltung ist es möglich, die Daten mit verschiedenen Vorhersagen von Ereignisgeneratoren mit verschiedenen Einstellungen und variierten Mod- ellparametern zu vergleichen. Es zeigt sich, dass die Messung sensitiv auf die Modellierung der Abstrahlung von Endzustandsteilchen ist, was es ermöglicht entsprechende Modellparameter einzuschränken. Dies ist vor allem für eine höhere Präzision bei der Identifikation von Jets aus vollkommen kollimierten Top Quark Zerfällen entscheidend. v Contents 1 Introduction 1 2 Theory 3 2.1 The Standard Model of Particle Physics . 3 2.1.1 Quantum Electro Dynamics . 4 2.1.2 Quantum Chromo Dynamics . 5 2.1.3 Charged-Current Weak Interaction . 6 2.1.4 Electroweak Unification . 7 2.1.5 Higgs Mechanism & Spontaneous Symmetry Breaking . 9 2.1.6 Shortcomings of the Standard Model . 10 2.2 The Top Quark . 11 2.2.1 Production and Decay at the LHC . 11 2.3 Physics of Proton-Proton Collisions . 13 2.4 Jet Substructure . 14 2.5 Simulation of Proton-Proton Collisions . 17 3 Measurement of Jet Substructure 19 3.1 Jet Mass . 19 3.2 N-subjettiness . 19 4 Experiment 23 4.1 The Large Hadron Collider . 23 4.2 The Compact Muon Solenoid . 25 4.2.1 Coordinate System . 26 4.2.2 Magnet . 27 4.2.3 Tracking System . 27 4.2.4 Calorimeters . 28 4.2.5 Muon System . 30 4.2.6 Trigger . 30 5 Reconstruction and Identification of Objects 33 5.1 Signature of Particles in the CMS Detector . 33 5.2 Particle Flow Algorithm . 34 vii Contents Contents 5.3 Muon Identification . 35 5.4 Electron Identification . 36 5.5 Reconstruction of Jets . 36 5.5.1 The anti-kT Jet Clustering Algorithm . 36 5.5.2 Pileup Mitigation Techniques . 38 5.5.3 Jet Energy Corrections . 39 5.5.4 b tagging . 39 5.6 Missing Transverse Momentum . 40 6 Analysis 41 6.1 Data Sets and Event Simulation . 41 6.1.1 Data Sets . 42 6.1.2 Monte Carlo Samples . 42 6.2 Analysis Strategy . 45 6.3 Studies on Particle Level . 45 6.4 Studies on Reconstruction Level . 47 6.5 Unfolding . 55 6.5.1 Regularized Unfolding . 55 6.5.2 Determination of Bin Sizes . 57 6.5.3 Migration Matrix . 61 6.5.4 Validation Tests . 62 6.6 Uncertainties . 66 6.6.1 Statistical Uncertainties . 66 6.6.2 Experimental Uncertainties . 66 6.6.3 Model Uncertainties . 68 6.6.4 Total Uncertainty and Correlation . 69 6.7 Unfolding of Data . 69 7 Summary and Outlook 75 viii 1 Introduction The standard model of particle physics (SM) is a theory, that describes three of the four know fundamental forces. Despite the successful description of ex- perimental data, there are still unanswered phenomena which the SM can not describe. For this reason particle collider like the Large Hadron Collider (LHC) are built to further test the standard model and search for new physics. The top quark is the heaviest particle in the standard model. Due to its high mass, it has a high Yukawa coupling to the Higgs boson and therefore plays an important role in the electroweak sector. Many new physics models predict new heavy particles which also have high Yukawa couplings to the top quark. Since those hypothetical new particles are often excluded at low masses, searches for new physics often aim at heavy particles. Because of the large mass of those new particles the decay products, e.g. top quarks, are highly Lorentz boosted. As a consequence their decay products can be reconstructed with a single jet. To distinguish jets originating from top quarks and jets originating from other particles, information regarding their substructure is being used in the recon- struction of collision events at the LHC. Therefore, a good understanding of the jet substructure is important. This analysis presents a first measurement of the differential t¯t production cross section as a function of the N-subjettiness ratio τ32 in the boosted regime with the Compact Muon Solenoid (CMS) detector. It is a variable to characterize the substructure of hadronic jets and plays an important role in the identification of jets containing a top quark decay since it discriminates three-prong decays of the top quark from two-prong and one-prong topologies. This analysis uses data collected with the CMS detector in proton-proton collisions at the LHC with a center-of-mass energy of 13 TeV in 2016 corresponding to an integrated luminosity of 35:9 fb−1. For this analysis, data is unfolded to particle level using regularized unfolding within the TUnfold framework. The result can then be used to constrain different tunes of the simulation to achieve higher precisions in the identification of jets originating from fully merged top quark decays. The thesis is structured in the following way. The theoretical foundations of the standard model, a more detailed look at the top quark, and an introduction to jet substructure are provided in Chapter 2. An overview of already performed 1 studies on jet substructure is given in Chapter 3. The experimental setup con- sisting of the LHC and the CMS experiment are introduced in Chapter 4. This is followed by a description of the algorithms that are used to reconstruct and identify physical objects measured inside the detector in Chapter 5. In Chapter 6 the analysis is presented, discussing the used data and simulation samples, the phase space definition, further selection requirements, treatment of the uncer- tainties, and presenting the measurement of the differential t¯t production cross section as a function of τ32. The thesis is closed by a conclusion and outlook in Chapter 7. 2 2 Theory The following chapter gives an introduction to the theoretical background of the presented analysis. It starts with an overview of the standard model of particles in 2.1, followed by a more detailed look into the top quark and its properties in 2.2. Physics of proton-proton collisions are described in 2.3 and jet substructure is discussed in 2.4. The chapter closes with a description of simulations in high-energy physics. 2.1 The Standard Model of Particle Physics The Standard Model of particle physics is a quantum field theory that describes all known elementary particles and their interactions through three of the four known fundamental forces. Those forces are the strong, weak and electromag- netic interaction. The fundamental particles can be grouped into fermions and 1 bosons with 2 and integer spin, respectively, as shown in Fig. 2.1. Fermions are further divided into quarks and leptons. Quarks are grouped into two different types, up-type and down-type. Up-type quarks carry a charge of 2 1 3 e and down-type quarks a charge of − 3 e, where e denotes the charge of the positron. Both types also carry a color charge with three different states. Lep- tons can either be charged or neutral. Charged leptons have an electric charge of −e while neutral leptons, called neutrinos, carry no electric charge. In addition, fermions also have a weak isospin which is for up-type quarks and neutrinos 1 1 T3 = 3 and for down-type quarks and charged leptons T3 = − 3 . Fermions come in three generations. Each fermion has an anti-fermion with inverted electrical- and color-charge. The gauge bosons are the mediators of the fundamental forces. The electromag- netic and strong force are mediated through the massless photons and gluons, respectively. The massive W± and Z0 bosons mediate the weak interaction. Those bosons carry a spin of one, while the Higgs boson is scalar. The Higgs boson is a result of the spontaneous symmetry breaking in the electroweak sec- tor and provides an explanation of how elementary particles get their masses.
Recommended publications
  • Jet Quenching in Quark Gluon Plasma: flavor Tomography at RHIC and LHC by the CUJET Model
    Jet quenching in Quark Gluon Plasma: flavor tomography at RHIC and LHC by the CUJET model Alessandro Buzzatti Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2013 c 2013 Alessandro Buzzatti All Rights Reserved Abstract Jet quenching in Quark Gluon Plasma: flavor tomography at RHIC and LHC by the CUJET model Alessandro Buzzatti A new jet tomographic model and numerical code, CUJET, is developed in this thesis and applied to the phenomenological study of the Quark Gluon Plasma produced in Heavy Ion Collisions. Contents List of Figures iv Acknowledgments xxvii Dedication xxviii Outline 1 1 Introduction 4 1.1 Quantum ChromoDynamics . .4 1.1.1 History . .4 1.1.2 Asymptotic freedom and confinement . .7 1.1.3 Screening mass . 10 1.1.4 Bag model . 12 1.1.5 Chiral symmetry breaking . 15 1.1.6 Lattice QCD . 19 1.1.7 Phase diagram . 28 1.2 Quark Gluon Plasma . 30 i 1.2.1 Initial conditions . 32 1.2.2 Thermalized plasma . 36 1.2.3 Finite temperature QFT . 38 1.2.4 Hydrodynamics and collective flow . 45 1.2.5 Hadronization and freeze-out . 50 1.3 Hard probes . 55 1.3.1 Nuclear effects . 57 2 Energy loss 62 2.1 Radiative energy loss models . 63 2.2 Gunion-Bertsch incoherent radiation . 67 2.3 Opacity order expansion . 69 2.3.1 Gyulassy-Wang model . 70 2.3.2 GLV . 74 2.3.3 Multiple gluon emission . 78 2.3.4 Multiple soft scattering .
    [Show full text]
  • Decays of the Tau Lepton*
    SLAC - 292 UC - 34D (E) DECAYS OF THE TAU LEPTON* Patricia R. Burchat Stanford Linear Accelerator Center Stanford University Stanford, California 94305 February 1986 Prepared for the Department of Energy under contract number DE-AC03-76SF00515 Printed in the United States of America. Available from the National Techni- cal Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. Price: Printed Copy A07, Microfiche AOl. JC Ph.D. Dissertation. Abstract Previous measurements of the branching fractions of the tau lepton result in a discrepancy between the inclusive branching fraction and the sum of the exclusive branching fractions to final states containing one charged particle. The sum of the exclusive branching fractions is significantly smaller than the inclusive branching fraction. In this analysis, the branching fractions for all the major decay modes are measured simultaneously with the sum of the branching fractions constrained to be one. The branching fractions are measured using an unbiased sample of tau decays, with little background, selected from 207 pb-l of data accumulated with the Mark II detector at the PEP e+e- storage ring. The sample is selected using the decay products of one member of the r+~- pair produced in e+e- annihilation to identify the event and then including the opposite member of the pair in the sample. The sample is divided into subgroups according to charged and neutral particle multiplicity, and charged particle identification. The branching fractions are simultaneously measured using an unfold technique and a maximum likelihood fit. The results of this analysis indicate that the discrepancy found in previous experiments is possibly due to two sources.
    [Show full text]
  • Differences Between Quark and Gluon Jets As Seen at LEP 1 Introduction
    UA0501305 Differences between Quark and Gluon jets as seen at LEP Marek Tasevsky CERN, CH-1211 Geneva 28, Switzerland E-mail: [email protected] Abstract The differences between quark and gluon jets are stud- ied using LEP results on jet widths, scale dependent multi- plicities, ratios of multiplicities, slopes and curvatures and fragmentation functions. It is emphasized that the ob- served differences stem primarily from the different quark and gluon colour factors. 1 Introduction The physics of the differences between quark and gluonjets contin- uously attracts an interest of both, theorists and experimentalists. Hadron production can be described by parton showers (successive gluon emissions and splittings) followed by formation of hadrons which cannot be described perturbatively. The gluon emission, being dominant process in the parton showers, is proportional to the colour factor associated with the coupling of the emitted gluon to the emitter. These colour factors are CA = 3 when the emit- ter is a gluon and Cp = 4/3 when it is a quark. Consequently, U6 the multiplicity from a gluon source is (asymptotically) 9/4 higher than from a quark source. In QCD calculations, the jet properties are usually defined in- clusively, by the particles in hemispheres of quark-antiquark (qq) or gluon-gluon (gg) systems in an overall colour singlet rather than by a jet algorithm. In contrast to the experimental results which often depend on a jet finder employed (biased jets), the inclusive jets do not depend on any jet finder (unbiased jets). 2 Results 2.1 Jet Widths As a consequence of the greater radiation of soft gluons in a gluon jet compared to a quark jet, gluon jets are predicted to be broader.
    [Show full text]
  • Introduction to QCD and Jet I
    Introduction to QCD and Jet I Bo-Wen Xiao Pennsylvania State University and Institute of Particle Physics, Central China Normal University Jet Summer School McGill June 2012 1 / 38 Overview of the Lectures Lecture 1 - Introduction to QCD and Jet QCD basics Sterman-Weinberg Jet in e+e− annihilation Collinear Factorization and DGLAP equation Basic ideas of kt factorization Lecture 2 - kt factorization and Dijet Processes in pA collisions kt Factorization and BFKL equation Non-linear small-x evolution equations. Dijet processes in pA collisions (RHIC and LHC related physics) Lecture 3 - kt factorization and Higher Order Calculations in pA collisions No much specific exercise. 1. filling gaps of derivation; 2. Reading materials. 2 / 38 Outline 1 Introduction to QCD and Jet QCD Basics Sterman-Weinberg Jets Collinear Factorization and DGLAP equation Transverse Momentum Dependent (TMD or kt) Factorization 3 / 38 References: R.D. Field, Applications of perturbative QCD A lot of detailed examples. R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and Collider Physics CTEQ, Handbook of Perturbative QCD CTEQ website. John Collins, The Foundation of Perturbative QCD Includes a lot new development. Yu. L. Dokshitzer, V. A. Khoze, A. H. Mueller and S. I. Troyan, Basics of Perturbative QCD More advanced discussion on the small-x physics. S. Donnachie, G. Dosch, P. Landshoff and O. Nachtmann, Pomeron Physics and QCD V. Barone and E. Predazzi, High-Energy Particle Diffraction 4 / 38 Introduction to QCD and Jet QCD Basics QCD QCD Lagrangian a a a b c with F = @µA @ν A gfabcA A . µν ν − µ − µ ν Non-Abelian gauge field theory.
    [Show full text]
  • Introduction to Subatomic- Particle Spectrometers∗
    IIT-CAPP-15/2 Introduction to Subatomic- Particle Spectrometers∗ Daniel M. Kaplan Illinois Institute of Technology Chicago, IL 60616 Charles E. Lane Drexel University Philadelphia, PA 19104 Kenneth S. Nelsony University of Virginia Charlottesville, VA 22901 Abstract An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle in- teractions with matter are summarized, after which we review particle detectors. We conclude with three examples that illustrate the variety of subatomic-particle spectrom- eters and exemplify the combined use of several detection techniques to characterize interaction events more-or-less completely. arXiv:physics/9805026v3 [physics.ins-det] 17 Jul 2015 ∗To appear in the Wiley Encyclopedia of Electrical and Electronics Engineering. yNow at Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723. 1 Contents 1 Introduction 5 2 Overview of Subatomic Particles 5 2.1 Leptons, Hadrons, Gauge and Higgs Bosons . 5 2.2 Neutrinos . 6 2.3 Quarks . 8 3 Overview of Particle Detection 9 3.1 Position Measurement: Hodoscopes and Telescopes . 9 3.2 Momentum and Energy Measurement . 9 3.2.1 Magnetic Spectrometry . 9 3.2.2 Calorimeters . 10 3.3 Particle Identification . 10 3.3.1 Calorimetric Electron (and Photon) Identification . 10 3.3.2 Muon Identification . 11 3.3.3 Time of Flight and Ionization . 11 3.3.4 Cherenkov Detectors . 11 3.3.5 Transition-Radiation Detectors . 12 3.4 Neutrino Detection . 12 3.4.1 Reactor Neutrinos . 12 3.4.2 Detection of High Energy Neutrinos .
    [Show full text]
  • Machine-Learning-Based Global Particle-Identification Algorithms At
    Machine-Learning-based global particle-identification algorithms at the LHCb experiment Denis Derkach1;2, Mikhail Hushchyn1;2;3, Tatiana Likhomanenko2;4, Alex Rogozhnikov2, Nikita Kazeev1;2, Victoria Chekalina1;2, Radoslav Neychev1;2, Stanislav Kirillov2, Fedor Ratnikov1;2 on behalf of the LHCb collaboration 1 National Research University | Higher School of Economics, Moscow, Russia 2 Yandex School of Data Analysis, Moscow, Russia 3 Moscow Institute of Physics and Technology, Moscow, Russia 4 National Research Center Kurchatov Institute, Moscow, Russia E-mail: [email protected] Abstract. One of the most important aspects of data analysis at the LHC experiments is the particle identification (PID). In LHCb, several different sub-detectors provide PID information: two Ring Imaging Cherenkov (RICH) detectors, the hadronic and electromagnetic calorimeters, and the muon chambers. To improve charged particle identification, we have developed models based on deep learning and gradient boosting. The new approaches, tested on simulated samples, provide higher identification performances than the current solution for all charged particle types. It is also desirable to achieve a flat dependency of efficiencies from spectator variables such as particle momentum, in order to reduce systematic uncertainties in the physics results. For this purpose, models that improve the flatness property for efficiencies have also been developed. This paper presents this new approach and its performance. 1. Introduction Particle identification (PID) algorithms play a crucial part in any high-energy physics analysis. A higher performance algorithm leads to a better background rejection and thus more precise results. In addition, an algorithm is required to work with approximately the same efficiency in the full available phase space to provide good discrimination for various analyses.
    [Show full text]
  • Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007
    Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007 Monte Carlo Methods 3 Bryan Webber Structure of LHC Events 1. Hard process 2. Parton shower 3. Hadronization 4. Underlying event Monte Carlo Methods 3 Bryan Webber Lecture 3: Hadronization Partons are not physical 1. Phenomenological particles: they cannot models. freely propagate. 2. Confinement. Hadrons are. 3. The string model. 4. Preconfinement. Need a model of partons' 5. The cluster model. confinement into 6. Underlying event hadrons: hadronization. models. Monte Carlo Methods 3 Bryan Webber Phenomenological Models Experimentally, two jets: Flat rapidity plateau and limited Monte Carlo Methods 3 Bryan Webber Estimate of Hadronization Effects Using this model, can estimate hadronization correction to perturbative quantities. Jet energy and momentum: with mean transverse momentum. Estimate from Fermi motion Jet acquires non-perturbative mass: Large: ~ 10 GeV for 100 GeV jets. Monte Carlo Methods 3 Bryan Webber Independent Fragmentation Model (“Feynman—Field”) Direct implementation of the above. Longitudinal momentum distribution = arbitrary fragmentation function: parameterization of data. Transverse momentum distribution = Gaussian. Recursively apply Hook up remaining soft and Strongly frame dependent. No obvious relation with perturbative emission. Not infrared safe. Not a model of confinement. Monte Carlo Methods 3 Bryan Webber Confinement Asymptotic freedom: becomes increasingly QED-like at short distances. QED: + – but at long distances, gluon self-interaction makes field lines attract each other: QCD: linear potential confinement Monte Carlo Methods 3 Bryan Webber Interquark potential Can measure from or from lattice QCD: quarkonia spectra: String tension Monte Carlo Methods 3 Bryan Webber String Model of Mesons Light quarks connected by string.
    [Show full text]
  • Deep Inelastic Scattering
    Particle Physics Michaelmas Term 2011 Prof Mark Thomson e– p Handout 6 : Deep Inelastic Scattering Prof. M.A. Thomson Michaelmas 2011 176 e– p Elastic Scattering at Very High q2 ,At high q2 the Rosenbluth expression for elastic scattering becomes •From e– p elastic scattering, the proton magnetic form factor is at high q2 Phys. Rev. Lett. 23 (1969) 935 •Due to the finite proton size, elastic scattering M.Breidenbach et al., at high q2 is unlikely and inelastic reactions where the proton breaks up dominate. e– e– q p X Prof. M.A. Thomson Michaelmas 2011 177 Kinematics of Inelastic Scattering e– •For inelastic scattering the mass of the final state hadronic system is no longer the proton mass, M e– •The final state hadronic system must q contain at least one baryon which implies the final state invariant mass MX > M p X For inelastic scattering introduce four new kinematic variables: ,Define: Bjorken x (Lorentz Invariant) where •Here Note: in many text books W is often used in place of MX Proton intact hence inelastic elastic Prof. M.A. Thomson Michaelmas 2011 178 ,Define: e– (Lorentz Invariant) e– •In the Lab. Frame: q p X So y is the fractional energy loss of the incoming particle •In the C.o.M. Frame (neglecting the electron and proton masses): for ,Finally Define: (Lorentz Invariant) •In the Lab. Frame: is the energy lost by the incoming particle Prof. M.A. Thomson Michaelmas 2011 179 Relationships between Kinematic Variables •Can rewrite the new kinematic variables in terms of the squared centre-of-mass energy, s, for the electron-proton collision e– p Neglect mass of electron •For a fixed centre-of-mass energy, it can then be shown that the four kinematic variables are not independent.
    [Show full text]
  • Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 11: Mesons and Baryons
    Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 11: Mesons and Baryons !Measuring Jets !Fragmentation !Mesons and Baryons !Isospin and hypercharge !SU(3) flavour symmetry !Heavy Quark states 1 From Tuesday: Summary • In QCD, the coupling strength "S decreases at high momentum transfer (q2) increases at low momentum transfer. • Perturbation theory is only useful at high momentum transfer. • Non-perturbative techniques required at low momentum transfer. • At colliders, hard scatter produces quark, anti-quarks and gluons. • Fragmentation (hadronisation) describes how partons produced in hard scatter become final state hadrons. Need non-perturbative techniques. • Final state hadrons observed in experiments as jets. Measure jet pT, !, ! • Key measurement at lepton collider, evidence for NC=3 colours of quarks. + 2 σ(e e− hadrons) e R = → = N q σ(e+e µ+µ ) c e2 − → − • Next lecture: mesons and baryons! Griffiths chapter 5. 2 6 41. Plots of cross sections and related quantities + σ and R in e e− Collisions -2 10 ω φ J/ψ -3 10 ψ(2S) ρ Υ -4 ρ ! 10 Z -5 10 [mb] σ -6 R 10 -7 10 -8 10 2 1 10 10 Υ 3 10 J/ψ ψ(2S) Z 10 2 φ ω to theR Fermilab accelerator complex. In addition, both the CDF [11] and DØ detectors [12] 10 were upgraded. The resultsρ reported! here utilize an order of magnitude higher integrated luminosity1 than reported previously [5]. ρ -1 10 2 II. PERTURBATIVE1 QCD 10 10 √s [GeV] + + + + Figure 41.6: World data on the total cross section of e e− hadrons and the ratio R(s)=σ(e e− hadrons, s)/σ(e e− µ µ−,s).
    [Show full text]
  • Fragmentation and Hadronization 1 Introduction
    Fragmentation and Hadronization Bryan R. Webber Theory Division, CERN, 1211 Geneva 23, Switzerland, and Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.1 1 Introduction Hadronic jets are amongst the most striking phenomena in high-energy physics, and their importance is sure to persist as searching for new physics at hadron colliders becomes the main activity in our field. Signatures involving jets almost always have the largest cross sections, but are the most difficult to interpret and to distinguish from background. Insight into the properties of jets is therefore doubly valuable: both as a test of our understanding of strong interaction dy- namics and as a tool for extracting new physics signals in multi-jet channels. In the present talk, I shall concentrate on jet fragmentation and hadroniza- tion, the topic of jet production having been covered admirably elsewhere [1, 2]. The terms fragmentation and hadronization are often used interchangeably, but I shall interpret the former strictly as referring to inclusive hadron spectra, for which factorization ‘theorems’2 are available. These allow predictions to be made without any detailed assumptions concerning hadron formation. A brief review of the relevant theory is given in Section 2. Hadronization, on the other hand, will be taken here to refer specifically to the mechanism by which quarks and gluons produced in hard processes form the hadrons that are observed in the final state. This is an intrinsically non- perturbative process, for which we only have models at present. The main models are reviewed in Section 3. In Section 4 their predictions, together with other less model-dependent expectations, are compared with the latest data on single- particle yields and spectra.
    [Show full text]
  • Particle Identification
    Particle Identification Graduate Student Lecture Warwick Week Sajan Easo 28 March 2017 1 Outline Introduction • Main techniques for Particle Identification (PID) Cherenkov Detectors • Basic principles • Photodetectors • Example of large Cherenkov detector in HEP Detectors using Energy Loss (dE/dx) from ionization and atomic excitation Time of Flight (TOF) Detectors Transition Radiation Detectors (TRD) More Examples of PID systems • Astroparticle Physics . Not Covered : PID using Calorimeters . Focus on principles used in the detection methods. 2 Introduction . Particle Identification is a crucial part of several experiments in Particle Physics. • goal: identify long-lived particles which create signals in the detector : electrons, muons ,photons , protons, charged pions, charged kaons etc. • short-lived particles identified from their decays into long-lived particles • quarks, gluons : inferred from hadrons, jets of particles etc , that are created. In the experiments at the LHC: Tracking Detector : Directions of charged particles (from the hits they create in silicon detectors, wire chambers etc.) Tracking Detector + Magnet : Charges and momenta of the charged particles (Tracking system ) Electromagnetic Calorimeter (ECAL) : Energy of photons, electrons and positrons (from the energy deposited in the clusters of hits they create in the shape of showers ). Hadronic Calorimeter (HCAL) : Energy of hadrons : protons, charged pions etc. ( from the energy deposited in the clusters of hits they create in the shape of showers ) Muon Detector : Tracking detector for muons, after they have traversed the rest of the detectors 3 Introduction Some of the methods for particle identification: Electron : ECAL cluster has a charged track pointing to it and its energy from ECAL is close to its momentum from Tracking system.
    [Show full text]
  • Hadronization from the QGP in the Light and Heavy Flavour Sectors Francesco Prino INFN – Sezione Di Torino Heavy-Ion Collision Evolution
    Hadronization from the QGP in the Light and Heavy Flavour sectors Francesco Prino INFN – Sezione di Torino Heavy-ion collision evolution Hadronization of the QGP medium at the pseudo- critical temperature Transition from a deconfined medium composed of quarks, antiquarks and gluons to color-neutral hadronic matter The partonic degrees of freedom of the deconfined phase convert into hadrons, in which partons are confined No first-principle description of hadron formation Non-perturbative problem, not calculable with QCD → Hadronisation from a QGP may be different from other cases in which no bulk of thermalized partons is formed 2 Hadron abundances Hadron yields (dominated by low-pT particles) well described by statistical hadronization model Abundances follow expectations for hadron gas in chemical and thermal equilibrium Yields depend on hadron masses (and spins), chemical potentials and temperature Questions not addressed by the statistical hadronization approach: How the equilibrium is reached? How the transition from partons to hadrons occurs at the microscopic level? 3 Hadron RAA and v2 vs. pT ALICE, PRC 995 (2017) 064606 ALICE, JEP09 (2018) 006 Low pT (<~2 GeV/c) : Thermal regime, hydrodynamic expansion driven by pressure gradients Mass ordering High pT (>8-10 GeV/c): Partons from hard scatterings → lose energy while traversing the QGP Hadronisation via fragmentation → same RAA and v2 for all species Intermediate pT: Kinetic regime, not described by hydro Baryon / meson grouping of v2 Different RAA for different hadron species
    [Show full text]